Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Oral Dis ; 30(1): 38-49, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37498953

RESUMEN

OBJECTIVE: For functional restoration of salivary glands (SGs) injured by radiation therapy or Sjögren's syndrome (SS), various experimental approaches, such as gene therapy, tissue engineering, and cell-based therapy, have been proposed. This narrative review summarized recent progresses in research using cell-based therapies, including promising trials that could lead to bench-to-clinic applications. METHODS: A literature review based on PubMed publications in the last two decades was performed to summarize progresses in cell-based therapies for SG dysfunction. RESULTS: Over 100 experimental studies have shown the therapeutic potential of several types of cells, such as SG stem cells and mesenchymal stem cells, as well as effectively conditioned mononuclear cells, in both radiation injury and SS animal models. These therapies affect to slow fibrosis progression and stimulate tissue regeneration in atrophic glands. However, to date, only a total of seven studies have been developed to the stage of clinical study, showing the safety and preliminary efficacy. CONCLUSION: To lead the radical effectiveness expected in cell-based therapy, advances in reverse translational research and in innovative experimental research, based on the findings of recent clinical studies, will be critical in the next decade.


Asunto(s)
Glándulas Salivales , Síndrome de Sjögren , Animales , Síndrome de Sjögren/terapia , Ingeniería de Tejidos , Tratamiento Basado en Trasplante de Células y Tejidos , Células Madre
2.
J Clin Med ; 12(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37762935

RESUMEN

Biodegradable guided bone regeneration (GBR) membranes consist primarily of collagen and aliphatic polyesters. This study assessed the comparative efficacy of a poly(l-lactic-caprolactone) [P(LA/CL)] membrane versus that of a collagen membrane in GBR. Patients requiring GBR simultaneously or before dental implant placement in edentulous regions were randomly assigned to one of two membranes. Within each membrane, they were subdivided into 3 groups: dental implants were placed simultaneously with GBR in groups A and B, and 180 days post-GBR in group C. The augmented bone width was measured at 1, 3, and 6 mm from the implant's neck (groups A and B) or the reference line (group C), utilizing cone-beam computed tomography images, immediately and 150 days post-surgery. A histological study was performed to evaluate bone formation in group C. No adverse events were observed. In the collagen group, the absorbed ratios of the augmented bone were 40.9 ± 36.7%, 29.4 ± 30.1%, and 11.1 ± 22.0% at 1, 3, and 6 mm, respectively; the ratio at 6 mm was significantly lower than that at 1 mm (p = 0.0442). In the P(LA/CL) group, those were 26.2 ± 27.3%, 17.1 ± 19.7%, and 13.3 ± 16.4% at 1, 3, and 6 mm, respectively, with no significant difference at each point. No significant inter-membrane differences were observed. The bone augmentation potential of the P(LA/CL) membrane matched that of the collagen membrane. P(LA/CL) could be used as a safe and effective membrane in GBR.

3.
Cells ; 12(10)2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37408251

RESUMEN

A newly developed therapy using effective-mononuclear cells (E-MNCs) is reportedly effective against radiation-damaged salivary glands (SGs) due to anti-inflammatory and revascularization effects. However, the cellular working mechanism of E-MNC therapy in SGs remains to be elucidated. In this study, E-MNCs were induced from peripheral blood mononuclear cells (PBMNCs) by culture for 5-7 days in medium supplemented with five specific recombinant proteins (5G-culture). We analyzed the anti-inflammatory characteristics of macrophage fraction of E-MNCs using a co-culture model with CD3/CD28-stimulated PBMNCs. To test therapeutic efficacy in vivo, either E-MNCs or E-MNCs depleted of CD11b-positive cells were transplanted intraglandularly into mice with radiation-damaged SGs. Following transplantation, SG function recovery and immunohistochemical analyses of harvested SGs were assessed to determine if CD11b-positive macrophages contributed to tissue regeneration. The results indicated that CD11b/CD206-positive (M2-like) macrophages were specifically induced in E-MNCs during 5G-culture, and Msr1- and galectin3-positive cells (immunomodulatory macrophages) were predominant. CD11b-positive fraction of E-MNCs significantly inhibited the expression of inflammation-related genes in CD3/CD28-stimulated PBMNCs. Transplanted E-MNCs exhibited a therapeutic effect on saliva secretion and reduced tissue fibrosis in radiation-damaged SGs, whereas E-MNCs depleted of CD11b-positive cells and radiated controls did not. Immunohistochemical analyses revealed HMGB1 phagocytosis and IGF1 secretion by CD11b/Msr1-positive macrophages from both transplanted E-MNCs and host M2-macrophages. Thus, the anti-inflammatory and tissue-regenerative effects observed in E-MNC therapy against radiation-damaged SGs can be partly explained by the immunomodulatory effect of M2-dominant macrophage fraction.


Asunto(s)
Antígenos CD28 , Leucocitos Mononucleares , Ratones , Animales , Glándulas Salivales , Proteínas Recombinantes , Macrófagos
4.
Front Bioeng Biotechnol ; 11: 1144624, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168614

RESUMEN

Introduction: Sjögren syndrome (SS) is an autoimmune disease characterized by salivary gland (SG) destruction leading to loss of secretory function. A hallmark of the disease is the presence of focal lymphocyte infiltration in SGs, which is predominantly composed of T cells. Currently, there are no effective therapies for SS. Recently, we demonstrated that a newly developed therapy using effective-mononuclear cells (E-MNCs) improved the function of radiation-injured SGs due to anti-inflammatory and regenerative effects. In this study, we investigated whether E-MNCs could ameliorate disease development in non-obese diabetic (NOD) mice as a model for primary SS. Methods: E-MNCs were obtained from peripheral blood mononuclear cells (PBMNCs) cultured for 7 days in serum-free medium supplemented with five specific recombinant proteins (5G culture). The anti-inflammatory characteristics of E-MNCs were then analyzed using a co-culture system with CD3/CD28-stimulated PBMNCs. To evaluate the therapeutic efficacy of E-MNCs against SS onset, E-MNCs were transplanted into SGs of NOD mice. Subsequently, saliva secretion, histological, and gene expression analyses of harvested SG were performed to investigate if E-MNCs therapy delays disease development. Results: First, we characterized that both human and mouse E-MNCs exhibited induction of CD11b/CD206-positive cells (M2 macrophages) and that human E-MNCs could inhibit inflammatory gene expressions in CD3/CD28- stimulated PBMNCs. Further analyses revealed that Msr1-and galectin3-positive macrophages (immunomodulatory M2c phenotype) were specifically induced in E-MNCs of both NOD and MHC class I-matched mice. Transplanted E-MNCs induced M2 macrophages and reduced the expression of T cell-derived chemokine-related and inflammatory genes in SG tissue of NOD mice at SS-onset. Then, E-MNCs suppressed the infiltration of CD4-positive T cells and facilitated the maintenance of saliva secretion for up to 12 weeks after E-MNC administration. Discussion: Thus, the immunomodulatory actions of E-MNCs could be part of a therapeutic strategy targeting the early stage of primary SS.

5.
Medicines (Basel) ; 10(1)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36662493

RESUMEN

Background: We have recently proposed an alternative strategy of free gingival graft (FGG) and connective tissue graft (CTG) using micronized-gingival connective tissues (MGCTs). The advantage of this strategy is that MGCTs from a small piece of maxillary tuberosity can regenerate the keratinized tissue band. However, safety and efficacy have not yet been established in patients. This clinical study was a pilot case series, and the objective was to assess the safety and the preliminary efficacy of MGCTs on peri-implant mucosa regeneration. Methods: This was a pilot interventional, single-center, first-in-human (FIH), open (no masking), uncontrolled, and single-assignment study. A total of 4 patients who needed peri-implant soft tissues reconstruction around dental implants received transplantation of atelocollagen-matrix with MGCTs micronized by the tissue disruptor technique. The duration of intervention was 4 weeks after surgery. Results: This first clinical study demonstrated that using MGCTs did not cause any irreversible adverse events, and it showed the preliminary efficacy for peri-implant soft tissues reconstruction in dental implant therapy. Conclusions: Though further studies are needed on an appropriate scale, as an alternative strategy of FGG or CTG, MGCTs might be promising for peri-implant mucosa reconstruction without requiring a high level of skills and morbidity to harvest graft tissues.

6.
J Dent Sci ; 17(1): 368-376, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35028060

RESUMEN

BACKGROUND/PURPOSE: Guided bone regeneration (GBR) is the most popular technique for alveolar ridge augmentation in implant dentistry, and resorbable cell barrier membrane, made of collagen, is widely used. We tried to develop a new resorbable cell barrier membrane from an animal-free product. This study aimed to investigate the safety and feasibility for clinical application of poly (l-lactic acid/ε-caprolactone) [P (LA/CL)] membrane, a novel biodegradable synthetic material used for GBR. MATERIALS AND METHODS: Patients who required horizontal bone augmentation (≥3 mm implant exposure) for implant treatment were included in the study. P (LA/CL) membrane was used simultaneously with implant placement to achieve bone augmentation by GBR. The occurrence of adverse events was assessed until the follow-up period of a second surgical procedure. The amount of bone augmentation was assessed by means of cone-beam computed tomography, and implant stability was assessed by measuring the implant stability quotient (ISQ). Student's t-test was used and the level of significance was set at p < 0.05. RESULTS: This first-in-human study comprised five participants. Adverse events were observed in three of five patients, and a cause-and-effect relationship of the membrane could not be denied in one of them. Good bone formation was observed in the GBR region of all five patients. The ISQ during the second surgical procedure indicated good osseointegration in all the patients. CONCLUSION: The application of P (LA/CL) membrane for bone augmentation with GBR made it possible to maintain the augmented bone volume without causing any irreversible adverse events. However, further investigations on humans are required to confirm the safety of this biomaterial.

7.
J Clin Med ; 10(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34830513

RESUMEN

BACKGROUND: Although bone tissue engineering for dentistry has been studied for many years, the clinical outcome for severe cases has not been established. Furthermore, there are limited numbers of studies that include long-term follow-up. In this study, the safety and efficacy of bone tissue engineering for patients with a severely atrophic alveolar bone were examined using autogenous bone marrow stromal cells (BMSCs), and the long-term stability was also evaluated. METHODS: BMSCs from iliac bone marrow aspirate were cultured and expanded. Then, induced osteogenic cells were transplanted with autogenous platelet-rich plasma (PRP) and ß-tricalcium phosphate granules (ß-TCP) for maxillary sinus floor and alveolar ridge augmentation. Eight patients (two males and six females) with an average age of 54.2 years underwent cell transplantation. Safety was assessed by monitoring adverse events. Radiographic evaluation and bone biopsies were performed to evaluate the regenerated bone. RESULTS: The major population of transplanted BMSCs belonged to the fraction of CD34-, CD45dim, and CD73+ cells, which was only 0.065% of the total bone marrow cells. Significant deviations were observed in cell growth and alkaline phosphatase activities among individuals. However, bone regeneration was observed in all patients and the average bone area in the biopsy samples was 41.9% 6 months following transplantation, although there were also significant deviations among each case. No adverse events related to the transplants were observed. In the regenerated bone, 27 out of 29 dental implants were integrated. Dental implants and regenerated bone were stable for an average follow-up period of 7 years and 10 months. CONCLUSIONS: Although individual variations were observed, the results showed that bone tissue engineering using BMSCs with PRP and ß-TCP was feasible for patients with severe atrophic maxilla throughout a long-term follow-up period and was considered safe. However, further studies with a larger number of cases and controls to confirm the efficacy of BMSCs and the development of a protocol to establish a reproducible quality of stem cell-based graft material will be required.

8.
Materials (Basel) ; 14(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34832496

RESUMEN

We have developed nanoballs, a biocompatible self-assembly nano-vector based on electrostatic interactions that arrange anionic macromolecules to polymeric nanomaterials to create nucleic acid carriers. Nanoballs exhibit low cytotoxicity and high transfection efficiently in vivo. This study investigated whether a gene-activated matrix (GAM) composed of nanoballs containing plasmid (p) DNAs encoding bone morphogenetic protein 4 (pBMP4) could promote bone augmentation with a small amount of DNA compared to that composed of naked pDNAs. We prepared nanoballs (BMP4-nanoballs) constructed with pBMP4 and dendrigraft poly-L-lysine (DGL, a cationic polymer) coated by γ-polyglutamic acid (γ-PGA; an anionic polymer), and determined their biological functions in vitro and in vivo. Next, GAMs were manufactured by mixing nanoballs with 2% atelocollagen and ß-tricalcium phosphate (ß-TCP) granules and lyophilizing them for bone augmentation. The GAMs were then transplanted to rat cranial bone surfaces under the periosteum. From the initial stage, infiltrated macrophages and mesenchymal progenitor cells took up the nanoballs, and their anti-inflammatory and osteoblastic differentiations were promoted over time. Subsequently, bone augmentation was clearly recognized for up to 8 weeks in transplanted GAMs containing BMP4-nanoballs. Notably, only 1 µg of BMP4-nanoballs induced a sufficient volume of new bone, while 1000 µg of naked pDNAs were required to induce the same level of bone augmentation. These data suggest that applying this anionic vector to the appropriate matrices can facilitate GAM-based bone engineering.

9.
Sci Adv ; 7(24)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34108202

RESUMEN

Muscle stem cells (satellite cells) are distributed throughout the body and have heterogeneous properties among muscles. However, functional topographical genes in satellite cells of adult muscle remain unidentified. Here, we show that expression of Homeobox-A (Hox-A) cluster genes accompanied with DNA hypermethylation of the Hox-A locus was robustly maintained in both somite-derived muscles and their associated satellite cells in adult mice, which recapitulates their embryonic origin. Somite-derived satellite cells were clearly separated from cells derived from cranial mesoderm in Hoxa10 expression. Hoxa10 inactivation led to genomic instability and mitotic catastrophe in somite-derived satellite cells in mice and human. Satellite cell-specific Hoxa10 ablation in mice resulted in a decline in the regenerative ability of somite-derived muscles, which were unobserved in cranial mesoderm-derived muscles. Thus, our results show that Hox gene expression profiles instill the embryonic history in satellite cells as positional memory, potentially modulating region-specific pathophysiology in adult muscles.


Asunto(s)
Proteínas Homeobox A10 , Mesodermo , Músculo Esquelético , Células Madre , Animales , Genes Homeobox , Proteínas Homeobox A10/fisiología , Ratones , Músculo Esquelético/fisiología , Mioblastos , Células Madre/fisiología
10.
J Clin Med ; 10(8)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919726

RESUMEN

The purpose of this clinical study is to evaluate the safety and preliminary efficacy of autologous freeze-drying platelet-rich plasma (FD-PRP) on bone regeneration in maxillary sinus floor augmentation as a preliminary pilot study. Five patients that required sinus floor augmentation to facilitate the placement of dental implants participated in this clinical study. The PRP was prepared from the autologous peripheral blood and was lyophilized and stored at -20 °C for 4 weeks before surgery. At surgery, triple-concentrated FD-PRP (x3FD-PRP) mixed with synthetic bone grafting materials was rehydrated following the transplantation into the sinus floor. The primary outcome was a safety verification of x3FD-PRP, evaluated in terms of the clinical course and consecutive blood tests. The secondary outcome was clinical efficacy focused on bone regeneration in sinus floor augmentation evaluated by radiographic examination and implant stability. There were no adverse events, such as systemic complications, excessive inflammatory reactions, severe infection, or local site healing complications, besides those on the usual course associated with surgery. Vertical augmented height was maintained, and the initial stability of implants was achieved post-operatively in 6 months. The results obtained in this study suggest that x3FD-PRP can be used safely for bone engineering in clinical practice. Further studies are required to draw a conclusion concerning the efficacy of x3FD-PRP since this was a pilot study with a single arm and a small sample size.

11.
Regen Biomater ; 8(2): rbaa060, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33738113

RESUMEN

Gene-activated matrix (GAM) has a potential usefulness in bone engineering as an alternate strategy for the lasting release of osteogenic proteins but efficient methods to generate non-viral GAM remain to be established. In this study, we investigated whether an atelocollagen-based GAM containing naked-plasmid (p) DNAs encoding microRNA (miR) 20a, which may promote osteogenesis in vivo via multiple pathways associated with the osteogenic differentiation of mesenchymal stem/progenitor cells (MSCs), facilitates rat cranial bone augmentation. First, we confirmed the osteoblastic differentiation functions of generated pDNA encoding miR20a (pmiR20a) in vitro, and its transfection regulated the expression of several of target genes, such as Bambi1 and PPARγ, in rat bone marrow MSCs and induced the increased expression of BMP4. Then, when GAMs fabricated by mixing 100 µl of 2% bovine atelocollagen, 20 mg ß-TCP granules and 0.5 mg (3.3 µg/µl) AcGFP plasmid-vectors encoding miR20a were transplanted to rat cranial bone surface, the promoted vertical bone augmentation was clearly recognized up to 8 weeks after transplantation, as were upregulation of VEGFs and BMP4 expressions at the early stages of transplantation. Thus, GAM-based miR delivery may provide an alternative non-viral approach by improving transgene efficacy via a small sequence that can regulate the multiple pathways.

12.
J Neural Transm (Vienna) ; 127(11): 1467-1479, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33025085

RESUMEN

Salivary gland (SG) hypofunction is a common post-radiotherapy complication. Besides the parenchymal damage after irradiation (IR), there are also effects on mesenchymal stem cells (MSCs) which were shown to contribute to regeneration and repair of damaged tissues by differentiating into stromal cell types or releasing vesicles and soluble factors supporting the healing processes. However, there are no adequate reports about their roles during SG damage and regeneration so far. Using an irradiated SG mouse model, we performed certain immunostainings on tissue sections of submandibular glands at different time points after IR. Immunostaining for CD31 revealed that already one day after IR, vascular impairment was induced at the level of capillaries. In addition, the expression of CD44-a marker of acinar cells-diminished gradually after IR and, by 20 weeks, almost disappeared. In contrast, the number of CD34-positive cells significantly increased 4 weeks after IR and some of the CD34-positive cells were found to reside within the adventitia of arteries and veins. Laser confocal microscopic analyses revealed an accumulation of CD34-positive cells within the area of damaged capillaries where they were in close contact to the CD31-positive endothelial cells. At 4 weeks after IR, a fraction of the CD34-positive cells underwent differentiation into α-SMA-positive cells, which suggests that they may contribute to regeneration of smooth muscle cells and/or pericytes covering the small vessels from the outside. In conclusion, SG-resident CD34-positive cells represent a population of progenitors that could contribute to new vessel formation and/or remodeling of the pre-existing vessels after IR and thus, might be an important player during SG tissue healing.


Asunto(s)
Células Endoteliales , Células Madre Mesenquimatosas , Animales , Diferenciación Celular , Ratones , Morfogénesis , Glándulas Salivales
13.
Medicine (Baltimore) ; 99(26): e20788, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32590759

RESUMEN

BACKGROUND: Treatment for most patients with head and neck cancers includes ionizing radiation with or without chemotherapy. This treatment causes irreversible damage to salivary glands in the irradiation field accompanied by a loss of fluid-secreting acinar cells and a considerable decrease of saliva secretion. There is currently no adequate conventional treatment for this condition. In recent years, we developed an effective culture method to enhance the anti-inflammatory and vasculogenic phenotypes of peripheral blood mononuclear cells (PBMNCs), and such effectively conditioned PBMNC (E-MNC) therapy has shown promising improvements to the function of radiation-injured salivary glands in preclinical studies. However, the safety and effect of E-NMC therapy have yet assessed in human. The objective of this ongoing first-in-man study is to assess the safety, tolerability, and in part the efficacy of E-MNC therapy for treating radiation-induced xerostomia. METHODS/DESIGN: This phase 1 first-in-man study is an open-label, single-center, two-step dose escalation study. A total of 6 patients, who had no recurrence of head and neck cancer over 5 years following radiation therapy and suffered from radiation-induced xerostomia, will receive a transplantation of E-NMCs derived from autologous PBMNCs to a submandibular gland. The duration of the intervention will be 1 year. To analyze the recovery of salivary secretion, a gum test will be performed. To analyze the recovery of atrophic salivary glands, computed tomography (CT), and magnetic resonance imaging (MRI) of salivary glands will be conducted. The primary endpoint is the safety of the protocol. The secondary endpoints are the changes from baseline in whole saliva secretion and salivary gland atrophy. DISCUSSION: This will be the first clinical study of regenerative therapy using E-MNCs for patients with severe radiation-induced xerostomia. The results of this study are expected to contribute to developing the low-invasive cell-based therapy for radiation-induced xerostomia. TRIAL REGISTRATION: This study was registered with the Japan Registry of Clinical Trials (http://jrct.niph.go.jp) as jRCTb070190057.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Leucocitos Mononucleares/trasplante , Traumatismos por Radiación , Glándulas Salivales , Xerostomía , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Imagen por Resonancia Magnética/métodos , Traumatismos por Radiación/diagnóstico , Traumatismos por Radiación/etiología , Traumatismos por Radiación/fisiopatología , Traumatismos por Radiación/terapia , Proyectos de Investigación , Glándulas Salivales/diagnóstico por imagen , Glándulas Salivales/patología , Glándulas Salivales/fisiopatología , Glándulas Salivales/efectos de la radiación , Tomografía Computarizada por Rayos X/métodos , Trasplante Autólogo/métodos , Resultado del Tratamiento , Xerostomía/diagnóstico , Xerostomía/etiología , Xerostomía/fisiopatología , Xerostomía/terapia
14.
J Neural Transm (Vienna) ; 127(11): 1569-1577, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32385575

RESUMEN

3D cell culture models which closely resemble real human tissues are of high interest for disease modelling, drug screening as well as a deeper understanding of human developmental biology. Such structures are termed organoids. Within the last years, several human organoid models were described. These are usually stem cell derived, arise by self-organization, mimic mechanisms of normal tissue development, show typical organ morphogenesis and recapitulate at least some organ specific functions. Many tissues have been reproduced in vitro such as gut, liver, lung, kidney and brain. The resulting entities can be either derived from an adult stem cell population, or generated from pluripotent stem cells using a specific differentiation protocol. However, many organoid models only recapitulate the organs parenchyma but are devoid of stromal components such as blood vessels, connective tissue and inflammatory cells. Recent studies show that the incorporation of endothelial and mesenchymal cells into organoids improved their maturation and might be required to create fully functional micro-tissues, which will allow deeper insights into human embryogenesis as well as disease development and progression. In this review article, we will summarize and discuss recent works trying to incorporate stromal components into organoids, with a special focus on neural organoid models.


Asunto(s)
Células Madre Mesenquimatosas , Células Madre Pluripotentes , Encéfalo , Diferenciación Celular , Humanos , Organoides
15.
Regen Ther ; 14: 87-94, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31988998

RESUMEN

INTRODUCTION: Cultured stratified epithelial cell sheets have been clinically utilized as transplantable grafts for the regeneration of epithelial tissues, such as the esophagus, cornea, skin, and intraoral cavity. These cell sheets are expected to gain widespread use as regenerative medicine products and save many patients. For this purpose, establishing and disseminating the stale protocol of fabricating the cell sheet is crucial. The fabrication of cultured stratified epithelial cell sheets consists of many important steps, and since the patients' epithelial cell conditions vary widely and are sometimes unstable, the qualities of the epithelial cell grafts are likewise potentially unstable. Therefore, in this paper, we report the stable protocol for fabrication of the transplantable cell sheet particularly from patient-derived oral mucosal tissues. METHODS: Serum extracted from blood and buccal mucosal tissue were collected in Nagasaki University and transported to Tokyo Women's Medical University. Oral mucosal epithelial cells were collected by minimum trypsin method, and this treatment was studied whether to be a critical procedure. After 14 days cultivation, cultured cells were examined whether to be transplantable as cell sheets. RESULTS: We successfully transported buccal mucosal tissue and serum without damage and contamination. Oral mucosal epithelial cells were collected with high viability by minimum trypsin method. Finally, we succeeded to stably fabricate oral mucosal epithelial cell sheets in all 10 patients. CONCLUSIONS: We established a stable protocol for the fabrication of human oral mucosal epithelial cell sheets and their transportation in clinical settings in this study. These methodologies could also be basis for transplantation therapy using cultured cell sheets of various types other than oral mucosal epithelial cell and will contribute largely to the future development of regenerative medicine.

16.
J Biomed Mater Res B Appl Biomater ; 108(1): 243-252, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30980703

RESUMEN

The overall objective of this study was to assess the safety and efficacy of OCP/Col as a bone substitute material for bone regeneration during sinus floor augmentation. Maxillary sinus floor augmentation was performed thorough lateral window approach. According to the height of host bone, simultaneous approach (≥5 mm) or staged approach (less than 5 mm) was applied. In this research, clinical findings of dental implant treatment after setting the restorations were set as a primary endpoint in both approaches (infection, inflammation around the implant, movement of the implant, pain, sensory disorder, and bone resorption around the implant body on radiological evaluation.). In staged approach, histological evaluation of bone biopsy specimen was also conducted. As secondary endpoints, hounsfield unit (HU) value, vertical bone height, implant stability quotient (ISQ), and adverse events during the research were evaluated. In all cases, as a primary endpoint, clinical findings after setting the restorations were uneventful with no adverse events. Histological structure demonstrated mature bone derived from OCP/Col. In the ossified area, osteogenesis was observed around OCP granules, and osteoblast-like cells were arrayed around OCP granules. Osteocyte encapsulation was recognized in the new bone. HU increased over time with both approaches. Vertical bone height significantly increased at 3 months postoperatively, and maintained during follow-up. ISQ increased with both approaches. In particular, ISQ was significantly increased with the staged approach. This clinical trial demonstrated the safety and efficacy of OCP/Col for bone regeneration in maxillary sinus floor augmentation. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:243-252, 2020.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Fosfatos de Calcio/administración & dosificación , Colágeno/administración & dosificación , Elevación del Piso del Seno Maxilar , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
17.
Stem Cells Int ; 2019: 4214281, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781240

RESUMEN

Mesenchymal stem/stromal cells (MSCs) are known to be useful for treating local bone diseases. However, it is not known if MSCs are effective for treating systemic bone diseases, as the risk for mortality following intravenous MSC administration has hindered research progress. In this study, we compared the safety and efficacy of intra-bone marrow and intravenous administration of MSCs for the treatment of ovariectomy- (OVX-) induced osteoporosis. Cells capable of forming bone were isolated from the murine compact bones and expanded in culture. Relatively pure MSCs possessing increased potential for cell proliferation, osteogenic differentiation, and inhibition of osteoclastogenesis were obtained by magnetic-activated cell sorting with the anti-Sca-1 antibody. Sca-1-sorted MSCs were administered to OVX mice, which were sacrificed 1 month later. We observed that 22% of the mice died after intravenous administration, whereas none of the mice died after intra-bone marrow administration. With respect to efficacy, intravenous administration improved bone mineral density (BMD) by increasing bone mineral content without affecting bone thickness, whereas intra-bone marrow administration improved BMD by increasing both bone mineral content and bone thickness. These results indicate that intra-bone marrow administration of pure MSCs is a safer and more effective approach for treating osteoporosis.

18.
Stem Cell Res Ther ; 10(1): 304, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31623661

RESUMEN

BACKGROUND: There are currently no effective treatments available for patients with irreversible loss of salivary gland (SG) function caused by radiation therapy for head and neck cancer. In this study, we have developed an effective culture method to enhance the anti-inflammatory and vasculogenic phenotypes of peripheral blood mononuclear cells (PBMNCs) and investigated whether such effectively conditioned PBMNCs (E-MNCs) could regenerate radiation-injured SGs and ameliorate salivary secretory function in mice. METHODS: Mouse PBMNCs were expanded in primary serum-free culture with five vasculogenic proteins for 5 days, and then the resulting cells (E-MNCs) were analyzed for their characteristics. Subsequently, 5 × 104 E-MNCs (labeled with EGFP in some experiments) were injected intra-glandularly into a mouse model of radiation-injured atrophic submandibular glands. After 2-3 weeks, the submandibular glands were harvested, and then the injected E-MNCs were tracked. Four, 8, and 12 weeks after irradiation (IR), salivary outputs were measured to evaluate the recovery of secretory function, and the gland tissues were harvested for histological and gene expression analyses to clarify the effects of cell transplantation. RESULTS: The resulting E-MNCs contained an enriched population of definitive CD11b/CD206-positive (M2 macrophage-like) cells and showed anti-inflammatory and vasculogenic characteristics. Salivary secretory function in E-MNC-transplanted mice gradually recovered after 4 weeks post-irradiation (post-IR) and reached 3.8-fold higher than that of non-transplanted mice at 12 weeks. EGFP-expressing E-MNCs were detected in a portion of the vascular endothelium and perivascular gland tissues at 2 weeks post-IR, but mainly in some microvessels at 3 weeks. Between 4 and 12 weeks post-IR, mRNA expression and histological analyses revealed that E-MNC transplantation reduced the expression of inflammatory genes and increased the level of tissue-regenerative activities such as stem cell markers, cell proliferation, and blood vessel formation. At 12 weeks post-IR, the areas of acinar and ductal cells regenerated, and the glands had less fibrosis. CONCLUSIONS: This effective conditioning of PBMNCs is a simple, rapid, and efficient method that provides a non-invasive source of therapeutic cells for regenerating radiation-injured atrophic SGs.


Asunto(s)
Inflamación/terapia , Leucocitos Mononucleares/citología , Neovascularización Fisiológica/fisiología , Glándulas Salivales/citología , Cicatrización de Heridas/fisiología , Animales , Diferenciación Celular/fisiología , Trasplante de Células/métodos , Femenino , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Regeneración/fisiología
19.
Saudi Dent J ; 31(3): 301-302, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31337930
20.
Stem Cell Res Ther ; 10(1): 209, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311585

RESUMEN

BACKGROUND: Definitive treatment strategies for bisphosphonate-related osteonecrosis of the jaw (BRONJ) have not been developed. Cell-based therapy is an attractive treatment method for intractable diseases in the medical and dental fields; however, approval has been challenging in dentistry. Recently, we developed quality- and quantity (QQ)-controlled peripheral blood mononuclear cells (PBMNCs) that have anti-inflammatory and pro-angiogenesis effects. The aim of this study was to investigate the effects of QQ-controlled PBMNC transplantation on BRONJ-like lesions in mice. METHODS: To create high-prevalence BRONJ-like lesions, cyclophosphamide (CY) and zoledronate (ZA) were used with tooth extraction. Drug treatment was performed for 5 weeks. QQ-controlled PBMNC transplantation was performed immediately following tooth extraction of both maxillary first molars at 3 weeks after drug administration. Mice were euthanized at 2 weeks post-extraction. Histomorphometric and immunohistochemical analyses, microcomputed tomography assessment, and quantitative polymerase chain reaction evaluation were conducted using maxillae and long bones. RESULTS: ZA effects on long bones were noted, regardless of CY. Severely inhibited osseous and soft tissue wound healing of tooth extraction sockets was induced by CY/ZA combination therapy, which was diagnosed as BRONJ-like lesions. QQ-controlled PBMNC transplantation reduced BRONJ-like lesions by improving soft tissue healing with increased M1 and M2 macrophages and enhanced neovascularization in the connective tissue of tooth extraction sockets. QQ-controlled PBMNC transplantation also reduced inflammation by decreasing polymorphonuclear cells and TNF-α expression in the tooth extraction sockets. Additionally, QQ-controlled PBMNC transplantation partially improved osseous healing of tooth extraction sockets. Interestingly, only 20,000 QQ-controlled PBMNCs per mouse induced these transplantation effects. QQ-controlled PBMNC transplantation did not affect the systemic microenvironment. CONCLUSIONS: Our findings suggest that transplantation of a small amount of QQ-controlled PBMNCs may become novel therapeutic or prevention strategies for BRONJ without any adverse side effects.


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos/terapia , Macrófagos/trasplante , Trasplante de Células Madre de Sangre Periférica , Cicatrización de Heridas , Animales , Osteonecrosis de los Maxilares Asociada a Difosfonatos/diagnóstico por imagen , Osteonecrosis de los Maxilares Asociada a Difosfonatos/etiología , Osteonecrosis de los Maxilares Asociada a Difosfonatos/fisiopatología , Ciclofosfamida/toxicidad , Modelos Animales de Enfermedad , Humanos , Leucocitos Mononucleares/trasplante , Ratones , Diente Molar/diagnóstico por imagen , Diente Molar/efectos de los fármacos , Diente Molar/crecimiento & desarrollo , Extracción Dental , Microtomografía por Rayos X , Ácido Zoledrónico/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA