Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Bioessays ; 45(7): e2300036, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37092382

RESUMEN

Environmental, physiological, and pathological stimuli induce the misfolding of proteins, which results in the formation of aggregates and amyloid fibrils. To cope with proteotoxic stress, cells are equipped with adaptive mechanisms that are accompanied by changes in gene expression. The evolutionarily conserved mechanism called the heat shock response is characterized by the induction of a set of heat shock proteins (HSPs), and is mainly regulated by heat shock transcription factor 1 (HSF1) in mammals. We herein introduce the mechanisms by which HSF1 tightly controls the transcription of HSP genes via the regulation of pre-initiation complex recruitment in their promoters under proteotoxic stress. These mechanisms involve the stress-induced regulation of HSF1-transcription complex formation with a number of coactivators, changes in chromatin states, and the formation of phase-separated condensates through post-translational modifications.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Animales , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Cromatina/genética , Estrés Proteotóxico , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Transcripción Genética , Mamíferos/genética
2.
FEBS Lett ; 597(13): 1702-1717, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36971000

RESUMEN

Upon heat shock, activated heat shock transcription factor 1 (HSF1) binds to the heat shock response elements (HSEs) in the promoters of mammalian heat shock protein (HSP)-encoding genes and recruits the preinitiation complex and coactivators, including Mediator. These transcriptional regulators may be concentrated in phase-separated condensates around the promoters, but they are too minute to be characterized in detail. We herein established HSF1-/- mouse embryonic fibroblasts harbouring HSP72-derived multiple HSE arrays and visualized the condensates of fluorescent protein-tagged HSF1 with liquid-like properties upon heat shock. Using this experimental system, we demonstrate that endogenous MED12, a subunit of Mediator, is concentrated in artificial HSF1 condensates upon heat shock. Furthermore, the knockdown of MED12 markedly reduces the size of condensates, suggesting an important role for MED12 in HSF1 condensate formation.


Asunto(s)
Proteínas de Unión al ADN , Fibroblastos , Animales , Ratones , Factores de Transcripción del Choque Térmico/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/metabolismo , Factores de Transcripción/metabolismo , Respuesta al Choque Térmico/genética , Mamíferos/metabolismo
3.
Nat Commun ; 13(1): 4355, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906200

RESUMEN

Transcriptional regulation by RNA polymerase II is associated with changes in chromatin structure. Activated and promoter-bound heat shock transcription factor 1 (HSF1) recruits transcriptional co-activators, including histone-modifying enzymes; however, the mechanisms underlying chromatin opening remain unclear. Here, we demonstrate that HSF1 recruits the TRRAP-TIP60 acetyltransferase complex in HSP72 promoter during heat shock in a manner dependent on phosphorylation of HSF1-S419. TRIM33, a bromodomain-containing ubiquitin ligase, is then recruited to the promoter by interactions with HSF1 and a TIP60-mediated acetylation mark, and cooperates with the related factor TRIM24 for mono-ubiquitination of histone H2B on K120. These changes in histone modifications are triggered by phosphorylation of HSF1-S419 via PLK1, and stabilize the HSF1-transcription complex in HSP72 promoter. Furthermore, HSF1-S419 phosphorylation is constitutively enhanced in and promotes proliferation of melanoma cells. Our results provide mechanisms for HSF1 phosphorylation-dependent establishment of an active chromatin status, which is important for tumorigenesis.


Asunto(s)
Cromatina , Histonas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinogénesis/genética , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Histonas/metabolismo , Humanos , Lisina Acetiltransferasa 5/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Factores de Transcripción/genética
4.
Biol Reprod ; 105(4): 976-986, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34007999

RESUMEN

Activating transcription factor 1 (ATF1), belonging to the CREB/ATF family of transcription factors, is highly expressed in the testes. However, its role in spermatogenesis has not yet been established. Here, we aimed to elucidate the impact of ATF1 in spermatogenesis by examining the expression pattern of ATF1 in mice and the effect of ATF1 knockdown in the mouse testes. We found that ATF1 is expressed in various organs, with very high levels in the testes. Immunohistochemical staining showed that ATF1 was localized in the nuclei of spermatogonia and co-localized with proliferating cell nuclear antigen. In ATF1-deficient mice, the seminiferous tubules of the testis contained cells at all developmental stages; however, the number of spermatocytes was decreased. Proliferating cell nuclear antigen expression was decreased and apoptotic cells were rare in the seminiferous tubules. These results indicate that ATF1 plays a role in male germ cell proliferation and sperm production.


Asunto(s)
Factor de Transcripción Activador 1/genética , Expresión Génica , Ratones/genética , Espermatogénesis/genética , Testículo/metabolismo , Factor de Transcripción Activador 1/metabolismo , Animales , Perfilación de la Expresión Génica , Masculino , Ratones/metabolismo
5.
FEBS Lett ; 595(14): 1933-1948, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34056708

RESUMEN

Activated and promoter-bound heat-shock transcription factor 1 (HSF1) induces RNA polymerase II recruitment upon heat shock, and this is facilitated by the core Mediator in Drosophila and yeast. Another Mediator module, CDK8 kinase module (CKM), consisting of four subunits including MED12 and CDK8, plays a negative or positive role in the regulation of transcription; however, its involvement in HSF1-mediated transcription remains unclear. We herein demonstrated that HSF1 interacted with MED12 and recruited MED12 and CDK8 to the HSP70 promoter during heat shock in mammalian cells. The kinase activity of CDK8 (and its paralog CDK19) promoted HSP70 expression partly by phosphorylating HSF1-S326 and maintained proteostasis capacity. These results indicate an important role for CKM in the protection of cells against proteotoxic stress.


Asunto(s)
Quinasa 8 Dependiente de Ciclina/genética , Factores de Transcripción del Choque Térmico/genética , Respuesta al Choque Térmico/genética , Complejo Mediador/genética , Complejos Multiproteicos/genética , Proteostasis/genética , Animales , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Fibroblastos , Regulación de la Expresión Génica , Células HEK293 , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Factores de Transcripción del Choque Térmico/metabolismo , Humanos , Complejo Mediador/metabolismo , Ratones , Complejos Multiproteicos/metabolismo , Neuronas , Osteoblastos , Fosforilación , Unión Proteica , Transducción de Señal , Transcripción Genética
6.
FEBS Open Bio ; 10(6): 1135-1148, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32302062

RESUMEN

The mitochondrial unfolded protein response (UPRmt ) is characterized by the transcriptional induction of mitochondrial chaperone and protease genes in response to impaired mitochondrial proteostasis and is regulated by ATF5 and CHOP in mammalian cells. However, the detailed mechanisms underlying the UPRmt are currently unclear. Here, we show that HSF1 is required for activation of mitochondrial chaperone genes, including HSP60, HSP10, and mtHSP70, in mouse embryonic fibroblasts during inhibition of matrix chaperone TRAP1, protease Lon, or electron transfer complex 1 activity. HSF1 bound constitutively to mitochondrial chaperone gene promoters, and we observed that its occupancy was remarkably enhanced at different levels during the UPRmt . Furthermore, HSF1 supported the maintenance of mitochondrial function under the same conditions. These results demonstrate that HSF1 is required for induction of mitochondrial chaperones during the UPRmt , and thus, it may be one of the guardians of mitochondrial function under conditions of impaired mitochondrial proteostasis.


Asunto(s)
Factores de Transcripción del Choque Térmico/metabolismo , Mitocondrias/metabolismo , Chaperonas Moleculares/genética , Respuesta de Proteína Desplegada/genética , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Factores de Transcripción del Choque Térmico/genética , Humanos , Potencial de la Membrana Mitocondrial/genética , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforilación , Regiones Promotoras Genéticas/genética , Interferencia de ARN , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
EMBO J ; 38(24): e102566, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31657478

RESUMEN

The recruitment of RNA polymerase II (Pol II) to core promoters is highly regulated during rapid induction of genes. In response to heat shock, heat shock transcription factor 1 (HSF1) is activated and occupies heat shock gene promoters. Promoter-bound HSF1 recruits general transcription factors and Mediator, which interact with Pol II, but stress-specific mechanisms of Pol II recruitment are unclear. Here, we show in comparative analyses of HSF1 paralogs and their mutants that HSF1 interacts with the pericentromeric adaptor protein shugoshin 2 (SGO2) during heat shock in mouse cells, in a manner dependent on inducible phosphorylation of HSF1 at serine 326, and recruits SGO2 to the HSP70 promoter. SGO2-mediated binding and recruitment of Pol II with a hypophosphorylated C-terminal domain promote expression of HSP70, implicating SGO2 as one of the coactivators that facilitate Pol II recruitment by HSF1. Furthermore, the HSF1-SGO2 complex supports cell survival and maintenance of proteostasis in heat shock conditions. These results exemplify a proteotoxic stress-specific mechanism of Pol II recruitment, which is triggered by phosphorylation of HSF1 during the heat shock response.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , ARN Polimerasa II/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Ratones , Ratones Noqueados , Fosforilación , Unión Proteica
8.
Mol Cell Biol ; 38(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29661921

RESUMEN

The heat shock response (HSR) is characterized by the rapid and robust induction of heat shock proteins (HSPs), including HSP70, in response to heat shock and is regulated by heat shock transcription factor 1 (HSF1) in mammalian cells. Poly(ADP-ribose) polymerase 1 (PARP1), which can form a complex with HSF1 through the scaffold protein PARP13, has been suggested to be involved in the HSR. However, its effects on and the regulatory mechanisms of the HSR are not well understood. Here we show that prior to heat shock, the HSF1-PARP13-PARP1 complex binds to the HSP70 promoter. In response to heat shock, activated and auto-PARylated PARP1 dissociates from HSF1-PARP13 and is redistributed throughout the HSP70 locus. Remarkably, chromatin in the HSP70 promoter is initially PARylated at high levels and decondensed, whereas chromatin in the gene body is moderately PARylated afterwards. Activated HSF1 then binds to the promoter efficiently and promotes the HSR. Chromatin PARylation and HSF1 binding to the promoter are also facilitated by the phosphorylation-dependent dissociation of PARP13. Furthermore, the HSR and proteostasis capacity are reduced by pretreatment with genotoxic stresses, which disrupt the ternary complex. These results illuminate one of the priming mechanisms of the HSR that facilitates the binding of HSF1 to DNA during heat shock.


Asunto(s)
ADN/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Animales , Línea Celular , Cromatina/genética , Cromatina/metabolismo , ADN/genética , Daño del ADN , Técnicas de Silenciamiento del Gen , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Humanos , Ratones , Modelos Biológicos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasas/deficiencia , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteostasis , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
Eur J Pharmacol ; 824: 48-56, 2018 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-29409911

RESUMEN

Accumulating epidemiological evidence indicates that infection with Porphyromonas gingivalis which is a major periodontal pathogen, causes preterm birth and low birth weight. However, virulence factors of P. gingivalis responsible for preterm birth/low birth weight remain to be elucidated. In this study, using P. gingivalis-infected pregnant mice as an in vivo model, we investigated whether gingipains-cysteine proteinases produced by P. gingivalis-affect preterm birth and low birth weight. We found that intravenous infection of pregnant mice with P. gingivalis induced higher accumulation of the bacterium in the placenta than that in other organs. Compared to infection with P. gingivalis wild-type, infection with a gingipain-deficient P. gingivalis mutant KDP136 led to significant reduction in preterm birth and pregnancy loss. Although repetitive low-level infections of P. gingivalis failed to induce preterm birth and fetal death, it induced suppressive effects on IFN-γ production. Therapeutically, treatment with ginginpain inhibitors prevented fetal death and preterm birth caused by P. gingivalis infection and resulted in recovery of IFN-γ suppression caused by repetitive chronic P. gingivalis infection. These results indicate that gingipains are major virulence factors of P. gingivalis responsible for preterm birth/low birth, and gingipain inhibitors may be useful not only as a therapeutic agent for periodontal diseases, but also as a preventive medicine for preterm birth/low birth weight.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Muerte Fetal/etiología , Muerte Fetal/prevención & control , Porphyromonas gingivalis/fisiología , Nacimiento Prematuro/microbiología , Nacimiento Prematuro/prevención & control , Animales , Citocinas/biosíntesis , Membranas Extraembrionarias/efectos de los fármacos , Membranas Extraembrionarias/microbiología , Femenino , Cisteína-Endopeptidasas Gingipaínas , Ratones , Mutación , Placenta/efectos de los fármacos , Placenta/microbiología , Porphyromonas gingivalis/genética , Embarazo , Nacimiento Prematuro/metabolismo
10.
Nat Commun ; 8(1): 1638, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29158484

RESUMEN

Poly(ADP-ribose) polymerase 1 (PARP1) is involved in DNA repair, chromatin structure, and transcription. However, the mechanisms that regulate PARP1 distribution on DNA are poorly understood. Here, we show that heat shock transcription factor 1 (HSF1) recruits PARP1 through the scaffold protein PARP13. In response to DNA damage, activated and auto-poly-ADP-ribosylated PARP1 dissociates from HSF1-PARP13, and redistributes to DNA lesions and DNA damage-inducible gene loci. Histone deacetylase 1 maintains PARP1 in the ternary complex by inactivating PARP1 through deacetylation. Blocking ternary complex formation impairs redistribution of PARP1 during DNA damage, which reduces gene expression and DNA repair. Furthermore, ternary complex formation and PARP1 redistribution protect cells from DNA damage by promoting DNA repair, and support growth of BRCA1-null mammary tumors, which are sensitive to PARP inhibitors. Our findings identify HSF1 as a regulator of genome integrity and define this function as a guarding mechanism for a specific type of mammary tumorigenesis.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinogénesis/metabolismo , Reparación del ADN , Factores de Transcripción del Choque Térmico/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias de la Mama/patología , Carcinogénesis/genética , Daño del ADN , Femenino , Inestabilidad Genómica , Factores de Transcripción del Choque Térmico/genética , Humanos , Ratones , Poli(ADP-Ribosa) Polimerasa-1/genética , Unión Proteica , Proteínas de Unión al ARN/genética
11.
PLoS One ; 12(7): e0180776, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28686674

RESUMEN

Cells cope with temperature elevations, which cause protein misfolding, by expressing heat shock proteins (HSPs). This adaptive response is called the heat shock response (HSR), and it is regulated mainly by heat shock transcription factor (HSF). Among the four HSF family members in vertebrates, HSF1 is a master regulator of HSP expression during proteotoxic stress including heat shock in mammals, whereas HSF3 is required for the HSR in birds. To examine whether only one of the HSF family members possesses the potential to induce the HSR in vertebrate animals, we isolated cDNA clones encoding lizard and frog HSF genes. The reconstructed phylogenetic tree of vertebrate HSFs demonstrated that HSF3 in one species is unrelated with that in other species. We found that the DNA-binding activity of both HSF1 and HSF3 in lizard and frog cells was induced in response to heat shock. Unexpectedly, overexpression of lizard and frog HSF3 as well as HSF1 induced HSP70 expression in mouse cells during heat shock, indicating that the two factors have the potential to induce the HSR. Furthermore, knockdown of either HSF3 or HSF1 markedly reduced HSP70 induction in lizard cells and resistance to heat shock. These results demonstrated that HSF1 and HSF3 cooperatively regulate the HSR at least in lizards, and suggest complex mechanisms of the HSR in lizards as well as frogs.


Asunto(s)
Evolución Molecular , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico/genética , Lagartos/genética , Animales , Anuros/genética , Anuros/fisiología , Proteínas Aviares/genética , ADN Complementario/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción del Choque Térmico , Calor , Lagartos/fisiología , Filogenia , Transactivadores/genética , Factores de Transcripción/genética
12.
Endocrinology ; 158(8): 2648-2658, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575284

RESUMEN

Testicular testosterone synthesis begins with cholesterol transport into mitochondria via steroidogenic acute regulatory (StAR) protein in Leydig cells. Acute heat stress is known to obstruct testicular steroidogenesis by transcriptional repression of StAR. In contrast, chronic heat stress such as cryptorchidism or varicocele generally does not affect testicular steroidogenesis, suggesting that Leydig cells adapt to heat stress and retain their steroid synthesis ability. However, the mechanisms of the stress response in steroid-producing cells are unclear. We examined the relationship between the heat stress response and heat shock factor 1 (HSF1), which protects cells from proteotoxic stress by inducing heat shock protein as a molecular chaperone. The influences of HSF1 deficiency on cholesterol transport by StAR and the expression of steroidogenic enzymes under chronic heat stress were studied in testes of HSF1-knockout (HSF1KO) mice with experimental cryptorchidism. StAR protein in wild-type-cryptorchid mice was transiently decreased after induction of cryptorchidism and then gradually returned to basal levels. In contrast, StAR protein in HSF1KO mice continued to decrease and failed to recover, resulting in impaired serum testosterone. StAR messenger RNA was not decreased with cryptorchidism, indicating that posttranslational modification of StAR, not its transcription, was obstructed in cryptorchidism. Other steroidogenic enzymes, including CYP11A1, 3ß-HSD, and CYP17A1, were not decreased. Lipid droplets were increased in the cytosol of HSF1KO-cryptorchid mice, suggesting dysfunctional cholesterol transportation. These findings provide insight into the role of HSF1 in Leydig cell steroidogenesis, suggesting that it maintains cholesterol transport by recovering StAR under chronic heat stress.


Asunto(s)
Colesterol/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Intersticiales del Testículo/metabolismo , Testosterona/biosíntesis , Factores de Transcripción/metabolismo , Animales , Transporte Biológico , Criptorquidismo , Proteínas de Unión al ADN/genética , Epitelio , Regulación de la Expresión Génica/fisiología , Factores de Transcripción del Choque Térmico , Calor , Masculino , Ratones , Ratones Noqueados , Estrés Fisiológico , Factores de Transcripción/genética
13.
Transplantation ; 100(8): 1675-82, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27163536

RESUMEN

BACKGROUND: Renal ischemia-reperfusion (I/R) injury is associated with delayed graft function and results in poor long-term graft survival. We previously showed that splenectomy (SPLN) protects the kidney from I/R injury and reduces serum TNF-α levels. Herein, we further investigated the effects of SPLN on inflammatory responses and tissue injury in renal I/R by examining the expression of major inflammatory cytokines and heat shock protein 70 (HSP70). Because it was shown previously that the anti-TNF-α agent infliximab (IFX) attenuated renal I/R injury, we also investigated whether IFX administration mimics the effects of SPLN. METHODS: The left renal pedicles of adult male Wistar rats were clamped for 45 minutes and then reperfused for 24 hours; right nephrectomy and SPLN were performed immediately. A separate cohort was administered IFX 1 hour before surgery in lieu of SPLN. RESULTS: Serum creatinine and blood urea nitrogen levels were markedly elevated by I/R injury; these increases were significantly reversed by IFX. Furthermore, IFX inhibited the induction of inflammatory cytokines and HSP70 during renal I/R injury. Time-dependent profiles revealed that the expression of inflammatory cytokines was elevated immediately after I/R, whereas levels of HSP70, serum creatinine, and blood urea nitrogen began to rise 3 hours postreperfusion. Macrophages/monocytes were significantly increased in I/R-injured kidneys, but not in those administered IFX. The outcomes of SPLN mirrored those of IFX administration. CONCLUSIONS: Splenectomy and TNF-α inhibition both protect the kidney from I/R injury by reducing the accumulation of renal macrophages/monocytes and induction of major inflammatory cytokines.


Asunto(s)
Antiinflamatorios/farmacología , Funcionamiento Retardado del Injerto/prevención & control , Infliximab/farmacología , Trasplante de Riñón/efectos adversos , Riñón/efectos de los fármacos , Daño por Reperfusión/prevención & control , Esplenectomía , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Biomarcadores/sangre , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Funcionamiento Retardado del Injerto/sangre , Funcionamiento Retardado del Injerto/inmunología , Funcionamiento Retardado del Injerto/patología , Modelos Animales de Enfermedad , Proteínas HSP70 de Choque Térmico/sangre , Riñón/inmunología , Riñón/metabolismo , Riñón/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Ratas Wistar , Daño por Reperfusión/sangre , Daño por Reperfusión/inmunología , Daño por Reperfusión/patología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/inmunología
15.
Methods Mol Biol ; 1292: 53-65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25804747

RESUMEN

The heat shock response is characterized by the induction of heat shock proteins (HSPs) and is one of prominent mechanisms that regulate proteostasis capacity in the cell. In mammals, heat shock factor 1 (HSF1) regulates the expression of HSPs transcriptionally in both unstressed and stressed cells. Recent reports show that the HSF1-RPA complex constitutively gains access to nucleosomal DNA in part by recruiting a histone chaperone and a chromatin-remodeling component. Here, we describe the strategies to substitute endogenous HSF1 with ectopically expressed HSF1 or its mutant and to detect the occupancy of HSF1 transcription complex including RPA in vivo on two heat shock response elements located close together in the human or mouse HSP70 promoters by chromatin immunoprecipitation assay with high sensitivity and specificity.


Asunto(s)
Bioensayo/métodos , Proteínas HSP70 de Choque Térmico/metabolismo , Complejos Multiproteicos/metabolismo , Regiones Promotoras Genéticas/genética , Animales , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción del Choque Térmico , Respuesta al Choque Térmico/fisiología , Humanos , Ratones , Factores de Transcripción/metabolismo
16.
Nat Commun ; 6: 6580, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25762445

RESUMEN

Heat-shock response is an adaptive response to proteotoxic stresses including heat shock, and is regulated by heat-shock factor 1 (HSF1) in mammals. Proteotoxic stresses challenge all subcellular compartments including the mitochondria. Therefore, there must be close connections between mitochondrial signals and the activity of HSF1. Here, we show that heat shock triggers nuclear translocation of mitochondrial SSBP1, which is involved in replication of mitochondrial DNA, in a manner dependent on the mitochondrial permeability transition pore ANT-VDAC1 complex and direct interaction with HSF1. HSF1 recruits SSBP1 to the promoters of genes encoding cytoplasmic/nuclear and mitochondrial chaperones. HSF1-SSBP1 complex then enhances their induction by facilitating the recruitment of a chromatin-remodelling factor BRG1, and supports cell survival and the maintenance of mitochondrial membrane potential against proteotoxic stresses. These results suggest that the nuclear translocation of mitochondrial SSBP1 is required for the regulation of cytoplasmic/nuclear and mitochondrial proteostasis against proteotoxic stresses.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Núcleo Celular/metabolismo , Supervivencia Celular , Cromatina/química , Cromatina/metabolismo , Citoplasma/metabolismo , ADN Helicasas/metabolismo , ADN Mitocondrial/metabolismo , Células HEK293 , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Factores de Transcripción del Choque Térmico , Humanos , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Temperatura , Transcripción Genética
17.
Mol Cell Biol ; 35(1): 11-25, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25312646

RESUMEN

The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Respuesta al Choque Térmico , Factores de Transcripción/metabolismo , Animales , Proteína de Unión a CREB/metabolismo , Células Cultivadas , Cromatina/metabolismo , ADN Helicasas/metabolismo , Fibroblastos/metabolismo , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/metabolismo , Calor , Ratones , Proteínas Nucleares/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN
18.
Cancer Lett ; 354(2): 329-35, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25194503

RESUMEN

Heat shock factor 1 (HSF1) is a major transactivator of the heat shock response. Recent studies have demonstrated that HSF1 is involved in tumor initiation, maintenance, and progression by regulating the expression of heat shock proteins (HSPs) and other molecular targets. Furthermore, HSF1 was identified as a potent proinvasion oncogene in human melanomas. However, the biological functions of HSF1 in human melanoma remain poorly understood. To determine the functional role of HSF1 in melanoma, we used short hairpin RNA (shRNA) to silence HSF1 in human melanoma cell lines and investigated its effect on cell migration and invasive ability in vitro. We found that HSF1 knockdown led to a marked reduction in migration and invasive ability, and these functions were restored by overexpression of wild-type HSF1. To confirm the in vitro results, we performed subcutaneous xenograft experiments in athymic nude mice. We found that HSF1 was required for melanoma invasion and metastasis, as well as tumorigenic potential in vivo. Overall, these results show that HSF1 is indispensable for melanoma progression and metastasis, and suggests that HSF1 could be a promising therapeutic target for melanoma.


Asunto(s)
Movimiento Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Melanoma/patología , Factores de Transcripción/metabolismo , Animales , Carcinogénesis , Línea Celular Tumoral , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Factores de Transcripción del Choque Térmico , Humanos , Masculino , Melanoma/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Células Tumorales Cultivadas
19.
FASEB J ; 28(8): 3564-78, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24776743

RESUMEN

The periodontal pathogen Porphyromonas gingivalis produces a unique class of cysteine proteinases termed gingipains that comprises Arg-gingipain (Rgp) and Lys-gingipain (Kgp). Growing evidence indicates that these 2 types of gingipains synergistically contribute to the entire virulence of the organism and increase the risk of periodontal disease (PD) by disrupting the host immune system and degrading the host tissue and plasma proteins. Therefore, a dual inhibitor of both gingipains would have attractive clinical potential for PD therapy. In this study, a novel, potent, dual inhibitor of Rgp and Kgp was developed through structure-based drug design, and its biological potency was evaluated in vitro and in vivo. This inhibitor had low nanomolar inhibitory potency (Ki=40 nM for Rgp, Ki=0.27 nM for Kgp) and good selectivity for host proteases and exhibited potent antibacterial activity against P. gingivalis by abrogating its manifold pathophysiological functions. The therapeutic potential of this inhibitor in vivo was also verified by suppressing the vascular permeability that was enhanced in guinea pigs by the organism and the gingival inflammation in beagle dog PD models. These findings suggest that a dual inhibitor of Rgp and Kgp would exhibit noteworthy anti-inflammatory activity in the treatment of PD.


Asunto(s)
Adhesinas Bacterianas/efectos de los fármacos , Cisteína Endopeptidasas/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/uso terapéutico , Oligopéptidos/uso terapéutico , Periodontitis/tratamiento farmacológico , Porphyromonas gingivalis/enzimología , Animales , Permeabilidad Capilar/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/toxicidad , Inhibidores de Cisteína Proteinasa/farmacología , Citocinas/metabolismo , Progresión de la Enfermedad , Perros , Evaluación Preclínica de Medicamentos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Cisteína-Endopeptidasas Gingipaínas , Cobayas , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Oligopéptidos/síntesis química , Oligopéptidos/farmacología , Periodontitis/microbiología , Porphyromonas gingivalis/patogenicidad , Proteolisis , Especificidad por Sustrato , Virulencia
20.
PLoS One ; 8(12): e82415, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24340026

RESUMEN

Cathepsin E is an endosomal aspartic proteinase that is predominantly expressed in immune-related cells. Recently, we showed that macrophages derived from cathepsin E-deficient (CatE(-/-)) mice display accumulation of lysosomal membrane proteins and abnormal membrane trafficking. In this study, we demonstrated that CatE(-/-) macrophages exhibit abnormalities in autophagy, a bulk degradation system for aggregated proteins and damaged organelles. CatE(-/-) macrophages showed increased accumulation of autophagy marker proteins such as LC3 and p62, and polyubiquitinated proteins. Cathepsin E deficiency also altered autophagy-related signaling pathways such as those mediated by the mammalian target of rapamycin (mTOR), Akt, and extracellular signal-related kinase (ERK). Furthermore, immunofluorescence microscopy analyses showed that LC3-positive vesicles were merged with acidic compartments in wild-type macrophages, but not in CatE(-/-) macrophages, indicating inhibition of fusion of autophagosome with lysosomes in CatE(-/-) cells. Delayed degradation of LC3 protein was also observed under starvation-induced conditions. Since the autophagy system is involved in the degradation of damaged mitochondria, we examined the accumulation of damaged mitochondria in CatE(-/-) macrophages. Several mitochondrial abnormalities such as decreased intracellular ATP levels, depolarized mitochondrial membrane potential, and decreased mitochondrial oxygen consumption were observed. Such mitochondrial dysfunction likely led to the accompanying oxidative stress. In fact, CatE(-/-) macrophages showed increased reactive oxygen species (ROS) production and up-regulation of oxidized peroxiredoxin-6, but decreased antioxidant glutathione. These results indicate that cathepsin E deficiency causes autophagy impairment concomitantly with increased aberrant mitochondria as well as increased oxidative stress.


Asunto(s)
Autofagia , Catepsina E/metabolismo , Macrófagos Peritoneales/enzimología , Estrés Oxidativo , Proteolisis , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Catepsina E/genética , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Peroxiredoxina VI/genética , Peroxiredoxina VI/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA