Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 20(14)2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31331079

RESUMEN

Lgr5, an intestinal adult stem cell marker, was recently also found in neuronal tissues. We investigated whether retinal Lgr5+ cells express properties of neural stem cells (NSC) and/or of differentiated interneurons during retinal development. RNA was isolated from Lgr5+ and Lgr5- populations from postnatal day 5 (PN5) and adult retinas of Lgr5EGFP-Ires-CreERT2 knock-in mice sorted by fluorescence-activated cell sorting (FACS). Transcriptome analyses were performed on two RNA samples of each developmental stage (PN5 and adult). The online platform PANTHER (Protein ANalysis THrough Evolutionary Relationships) was used to determine overrepresented gene ontology (GO) terms of biological processes within the set of differentially expressed genes. The detailed evaluation included gene expression in regard to stem cell maintenance/proliferation, cell cycle, and Wnt signaling but also markers of differentiated retinal neurons. None of the enriched GO terms of upregulated genes of Lgr5+ cells showed a positive association to NSC. On the contrary, NSC maintenance and proliferation rather prevail in the Lgr5- cell population. Furthermore, results suggesting that Wnt signaling is not active in the Lgr5+ population. Therefore, our transcriptome analysis of Lgr5+ retinal cells suggest that these cells are differentiated neurons, specifically glycinergic amacrine cells.


Asunto(s)
Perfilación de la Expresión Génica , Receptores Acoplados a Proteínas G/genética , Retina/citología , Células Madre/citología , Células Madre/metabolismo , Transcriptoma , Células Amacrinas/metabolismo , Animales , Diferenciación Celular/genética , Proliferación Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
2.
EBioMedicine ; 27: 258-274, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29269042

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss. The protein HtrA1 is enriched in retinal pigment epithelial (RPE) cells isolated from AMD patients and in drusen deposits. However, it is poorly understood how increased levels of HtrA1 affect the physiological function of the RPE at the intracellular level. Here, we developed hfRPE (human fetal retinal pigment epithelial) cell culture model where cells fully differentiated into a polarized functional monolayer. In this model, we fine-tuned the cellular levels of HtrA1 by targeted overexpression. Our data show that HtrA1 enzymatic activity leads to intracellular degradation of tubulin with a corresponding reduction in the number of microtubules, and consequently to an altered mechanical cell phenotype. HtrA1 overexpression further leads to impaired apical processes and decreased phagocytosis, an essential function for photoreceptor survival. These cellular alterations correlate with the AMD phenotype and thus highlight HtrA1 as an intracellular target for therapeutic interventions towards AMD treatment.


Asunto(s)
Polaridad Celular , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Degeneración Macular/metabolismo , Degeneración Macular/patología , Modelos Biológicos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Tubulina (Proteína)/metabolismo , Uniones Adherentes/metabolismo , Adulto , Feto/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Humanos , Microtúbulos/metabolismo , Mutación/genética , Nanopartículas/química , Fagocitosis , Polimerizacion , Agregado de Proteínas , Unión Proteica , Transcripción Genética
3.
J Vis Exp ; (128)2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29155720

RESUMEN

A fascinating difference between teleost and mammals is the lifelong potential of the teleost retina for retinal neurogenesis and regeneration after severe damage. Investigating the regeneration pathways in zebrafish might bring new insights to develop innovative strategies for the treatment of retinal degenerative diseases in mammals. Herein, we focused on the induction of a focal lesion to the outer retina in adult zebrafish by means of a 532 nm diode laser. A localized injury allows investigating biological processes that take place during retinal degeneration and regeneration directly at the area of damage. Using non-invasive optical coherence tomography (OCT), we were able to define the location of the damaged area and monitor subsequent regeneration in vivo. Indeed, OCT imaging produces high-resolution, cross-sectional images of the zebrafish retina, providing information which was previously only available with histological analyses. In order to confirm the data from real-time OCT, histological sections were performed and regenerative response after the induction of the retinal injury was investigated by immunohistochemistry.


Asunto(s)
Células Ependimogliales/microbiología , Regeneración/fisiología , Degeneración Retiniana/metabolismo , Tomografía de Coherencia Óptica/métodos , Animales , Estudios Transversales , Rayos Láser , Degeneración Retiniana/patología , Pez Cebra
4.
Exp Cell Res ; 333(1): 11-20, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25724900

RESUMEN

The goal of this study was to assess the in vitro differentiation capacity of human bone marrow-derived stem cells (hBMSCs) along retinal lineages. Mononuclear cells (MNC) were isolated from bone marrow (BM) and mobilized peripheral blood (mPB) using Ficoll-Paque density gradient centrifugation, and were sorted by magnetic-activated cell sorting (MACS) for specific stem cell subsets (CD34(+)CD38(+)/CD34(+)CD38(-)). These cells were then co-cultured on human retinal pigment epithelial cells (hRPE) for 7 days. The expression of stem cell, neural and retina-specific markers was examined by immunostaining, and the gene expression profiles were assessed after FACS separation of the co-cultured hBMSCs by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, in vitro functionality of the differentiated cells was analyzed by quantifying phagocytosis of CY5-labeled photoreceptor outer segments (POS). After 7 days of co-culture, hBMSCs adopted an elongated epithelial-like morphology and expressed RPE-specific markers, such as RPE65 and bestrophin. In addition, these differentiated cells were able to phagocytose OS, one of the main characteristics of native RPE cells. Our data demonstrated that human CD34(+)CD38(-) hBMSC may differentiate towards an RPE-like cell type in vitro and could become a new type of autologous donor cell for regenerative therapy in retinal degenerative diseases.


Asunto(s)
Células Madre Adultas/fisiología , Células de la Médula Ósea/fisiología , Diferenciación Celular , Epitelio Pigmentado de la Retina/fisiología , Células Cultivadas , Técnicas de Cocultivo , Expresión Génica , Humanos , Fagocitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA