Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Pharm ; 5(6): 1131-7, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19434925

RESUMEN

Hydrophobically substituted polyamine compounds, particularly N-acyl or N-alkyl derivatives of homospermine, are potent endotoxin (lipopolysaccharide) sequestrants. Despite their polycationic nature, the aqueous solubilites are limited owing to the considerable overall hydrophobicity contributed by the long-chain aliphatic substituent, but solubilization is readily achieved in the presence of human serum albumin (HSA). We desired first to delineate the structural basis of lipopolyamine-albumin interactions and, second, to explore possible structure-activity correlates in a well-defined, congeneric series of N-alkyl and -acyl homospermine lead compounds. Fluorescence spectroscopic and isothermal titration calorimetry (ITC) results indicate that these compounds appear to bind to HSA via occupancy of the fatty-acid binding sites on the protein. The acyl and carbamate compounds bind HSA the strongest; the ureido and N-alkyl analogues are significantly weaker, and the branched alkyl compound is weaker still. ITC-derived dissociation constants are weighted almost in their entirety by enthalpic deltaH terms, which is suggestive that the polarizability of the carbonyl groups facilitate, at least in large part, their interactions with HSA. The relative affinities of these lipopolyamines toward HSA is reflected in discernible differences in apparent potencies of LPS-sequestering activity under experimental conditions requiring physiological concentrations of HSA, and also of in vivo pharmacodynamic behavior. These results are likely to be useful in designing analogues with varying pharmacokinetic profiles.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Endotoxinas/metabolismo , Poliaminas/metabolismo , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Sitios de Unión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas , Estructura Molecular , Poliaminas/síntesis química , Poliaminas/química , Unión Proteica , Estructura Terciaria de Proteína
2.
Antimicrob Agents Chemother ; 50(3): 852-61, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16495242

RESUMEN

A homologous series of mono- and bis-acyl polyamines with varying acyl chain lengths originally synthesized for the purpose of sequestering lipopolysaccharide were evaluated for antimicrobial activity to test the hypothesis that these bis-cationic amphipathic compounds may also bind to and permeabilize intact gram-negative bacterial membranes. Some compounds were found to possess significant antimicrobial activity, mediated via permeabilization of bacterial membranes. Structure-activity relationship studies revealed a strong dependence of the acyl chain length on antimicrobial potency and permeabilization activity. Homologated spermine, bis-acylated with C8 or C9 chains, was found to profoundly sensitize Escherichia coli to hydrophobic antibiotics such as rifampin. Nonspecific cytotoxicity is a potential drawback of these membranophilic compounds. However, the surface activity of these cationic amphipaths is strongly attenuated under physiological conditions via binding to serum albumin. Significant antibacterial activity is still retained in the presence of physiological concentrations of human serum albumin, suggesting that these compounds may serve as leads in the development of novel adjuncts to conventional antimicrobial chemotherapy.


Asunto(s)
Antibacterianos/farmacología , Poliaminas/farmacología , Animales , Animales no Consanguíneos , Antibacterianos/síntesis química , Antibacterianos/química , Permeabilidad de la Membrana Celular , Relación Dosis-Respuesta a Droga , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Hemólisis/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Poliaminas/síntesis química , Poliaminas/química , Rifampin/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Relación Estructura-Actividad , Pruebas de Toxicidad Aguda
3.
Comb Chem High Throughput Screen ; 9(1): 27-36, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16454684

RESUMEN

Lipopolysaccharides (LPS), otherwise termed 'endotoxins', are an integral part of the outer leaflet of the outer-membrane of Gram-negative bacteria. Lipopolysaccharides play a pivotal role in the pathogenesis of 'Septic Shock', a major cause of mortality in the critically ill patient, worldwide. The sequestration of circulatory endotoxin may be a viable therapeutic strategy for the prophylaxis and treatment of Gram-negative sepsis. We have earlier shown that the pharmacophore necessary for small molecules to bind LPS involves two protonatable cationic functions separated by about 15 A, permitting the simultaneous interaction with the negatively charged phosphates on lipid A, the toxically active center of endotoxin. In this report, screening of a multi-thousand membered polyamine library through the combined use of computational and bioassay-guided screens resulted in the discovery of two novel classes of LPS-binding agents. These are represented by the 1) spermine sulfonamides and 2) C-aryl-substituted spermine analogs. We present the selection approach, screening results, computational multivariate analyses and initial structure-activity relationship evaluation herein.


Asunto(s)
Antitoxinas/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/química , Poliaminas/química , Espermina/farmacología , Antitoxinas/química , Simulación por Computador , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Modelos Moleculares , Estructura Molecular , Análisis Multivariante , Espermina/análogos & derivados , Espermina/química , Relación Estructura-Actividad
4.
J Comb Chem ; 8(1): 32-43, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16398551

RESUMEN

Lipopolysaccharides (LPS), also called "endotoxins", are outer-membrane constituents of Gram-negative bacteria. Lipopolysaccharides play a key role in the pathogenesis of "septic shock", a major cause of mortality in the critically ill patient. We had earlier shown that small molecules bind and neutralize LPS if they contain (i) two protonatable cationic groups separated by a distance of approximately 14 A to facilitate interactions with the phosphate moieties on the lipid Angstrom component of LPS and (ii) a long-chain aliphatic hydrocarbon to promote hydrophobic interactions. In an effort to identify optimal scaffolds possessing the above structural requirements, we now present an evaluation of a rationally designed combinatorial library in which the elements of the scaffold are systematically varied to maximize sampling of chemical space. Leads obtained via molecular analyses of the screening results were resynthesized and evaluated in greater detail with regard to the affinity of the interaction with LPS, as well as neutralization of endotoxicity in in vitro assays. The examination of a moderately sized 6 x 6 x 15 (540-membered) focused library allowed the assessment of the structural contributions to binding by the long-chain aliphatic tails, distance between charged amino groups, and potential aromatic CH-pi or OH-pi interactions. These findings are of value in further iterations of design and development of specific and potent endotoxin sequestrants.


Asunto(s)
Antibacterianos/síntesis química , Poliaminas Biogénicas/síntesis química , Técnicas Químicas Combinatorias/métodos , Diseño de Fármacos , Lipopolisacáridos/antagonistas & inhibidores , Antibacterianos/química , Antibacterianos/farmacología , Unión Competitiva , Poliaminas Biogénicas/química , Poliaminas Biogénicas/farmacología , Línea Celular , Lípido A/química , Lipopolisacáridos/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Modelos Moleculares , Estructura Molecular , Óxido Nítrico/antagonistas & inhibidores , Relación Estructura-Actividad
5.
Bioorg Med Chem Lett ; 16(5): 1305-8, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16377188

RESUMEN

We have shown that lipopolyamines bind to the lipid A moiety of lipopolysaccharide, a constituent of Gram-negative bacterial membranes, and neutralize its toxicity in animal models of endotoxic shock. In an effort to identify non-polyamine scaffolds with similar endotoxin-recognizing features, we had observed an unusually high frequency of hits containing guanylhydrazone scaffolds in high-throughput screens. We now describe the syntheses and preliminary structure-activity relationships in a homologous series of bis-guanylhydrazone compounds decorated with hydrophobic functionalities. These first-generation compounds bind and neutralize lipopolysaccharide with a potency comparable to that of polymyxin B, a peptide antibiotic known to sequester LPS.


Asunto(s)
Endotoxinas/metabolismo , Endotoxinas/farmacología , Guanidinas/química , Guanidinas/metabolismo , Hidrazonas/química , Hidrazonas/metabolismo , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo , Animales , Endotoxinas/antagonistas & inhibidores , Endotoxinas/química , Guanidinas/farmacología , Hidrazonas/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Concentración 50 Inhibidora , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Ratones , Estructura Molecular , Ácidos Ftálicos/farmacología , Relación Estructura-Actividad
6.
Bioorg Med Chem Lett ; 16(3): 714-7, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16266804

RESUMEN

Lipopolysaccharides (LPS), otherwise termed "endotoxins", are outer-membrane constituents of Gram-negative bacteria and play a key role in the pathogenesis of "septic shock", a major cause of mortality in the critically ill patient. We have shown that the pharmacophore necessary for optimal recognition and neutralization of LPS by small molecules requires an interaction between two protonatable positive charges separated by a distance of approximately 14A, which corresponds to the distance between two anionic phosphates on the glycolipid component of LPS called lipid A. The in silico binding of a diverse set of compounds with bis-amino, -amidino, -guanidino, and -aminoguanidino functionalities, identified as potential lead scaffolds in a high-throughput screen, with lipid A was explored using molecular docking simulations. A weighted expression for binding affinity was trained relative to experimental ED(50) measurements, attaining a correlation of R(2)=0.66. Our docking results showed that the electrostatic interaction between ligands and lipid A phosphates dominates the expression and varies little across the series, and other ligand-receptor interactions seem to play a secondary role in governing the observed variations in the relative ligand binding affinity. Further, it appears that the ligand internal energy plays the primary role in differentiating between compound binding affinities which also correlated well with experimental ED(50) data (R=0.77). Application of this strategy would be useful in the de novo design of highly active endotoxin-sequestering agents.


Asunto(s)
Cationes/química , Lípido A/química , Lipopolisacáridos/química , Amidinas/química , Amidinas/metabolismo , Aminas/química , Aminas/metabolismo , Sitios de Unión , Cationes/metabolismo , Simulación por Computador , Guanidina/química , Guanidina/metabolismo , Ligandos , Lípido A/metabolismo , Lipopolisacáridos/metabolismo , Modelos Moleculares , Relación Estructura-Actividad
7.
J Med Chem ; 48(7): 2589-99, 2005 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-15801849

RESUMEN

Lipopolysaccharides (LPS), otherwise termed "endotoxins", are outer membrane constituents of Gram-negative bacteria. Lipopolysaccharides play a key role in the pathogenesis of "septic shock", a major cause of mortality in the critically ill patient. Therapeutic options aimed at limiting downstream systemic inflammatory processes by targeting lipopolysaccharide do not exist at the present time. We have defined the pharmacophore necessary for small molecules to specifically bind and neutralize LPS and, using animal models of sepsis, have shown that the sequestration of circulatory LPS by small molecules is a therapeutically viable strategy. In this paper, the interactions of a series of acylated homologated spermine compounds with LPS have been characterized. The optimal acyl chain length for effective sequestration of LPS was identified to be C(16) for the monoacyl compounds. The most promising of these compounds, 4e, binds LPS with an ED(50) of 1.37 muM. Nitric oxide production in murine J774A.1 cells, as well as TNF-alpha in human blood, is inhibited in a dose-dependent manner by 4e at concentrations orders of magnitude lower than toxic doses. Administration of 4e to d-galactosamine-sensitized mice challenged with supralethal doses of LPS provided significant protection against lethality. Potent antiendotoxic activity, low toxicity, and ease of synthesis render this class of compounds candidate endotoxin-sequestering agents of potential significant therapeutic value.


Asunto(s)
Amidas/síntesis química , Lipopolisacáridos/antagonistas & inhibidores , Espermina/análogos & derivados , Espermina/síntesis química , Amidas/química , Amidas/farmacología , Amidas/toxicidad , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Escherichia coli , Femenino , Hemólisis , Humanos , Técnicas In Vitro , Lípido A/antagonistas & inhibidores , Lípido A/metabolismo , Lipopolisacáridos/metabolismo , Ratones , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Sepsis/mortalidad , Sepsis/prevención & control , Espermina/química , Espermina/farmacología , Espermina/toxicidad , Relación Estructura-Actividad , Propiedades de Superficie , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
8.
Bioorg Med Chem ; 13(7): 2523-36, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15755654

RESUMEN

Lipopolysaccharides (LPS), otherwise termed 'endotoxins', are outer-membrane constituents of Gram-negative bacteria. Lipopolysaccharides play a key role in the pathogenesis of 'Septic Shock', a major cause of mortality in the critically ill patient. Therapeutic options aimed at limiting downstream systemic inflammatory processes by targeting lipopolysaccharide do not exist at the present time. We have defined the pharmacophore necessary for small molecules to specifically bind and neutralize LPS and, using animal models of sepsis, have shown that the sequestration of circulatory LPS by small molecules is a therapeutically viable strategy. In this paper, the interactions of a focused library of lysine-spermine conjugates with lipopolysaccharide (LPS) have been characterized. Lysine-spermine conjugates with the epsilon-amino terminus of the lysinyl moiety derivatized with long-chain aliphatic hydrophobic substituents in acyl or alkyl linkage bind and neutralize bacterial lipopolysaccharides, and may be of use in the prevention or treatment of endotoxic shock states.


Asunto(s)
Amidas/farmacología , Antibacterianos/síntesis química , Lipopolisacáridos/antagonistas & inhibidores , Lisina/síntesis química , Poliaminas/farmacología , Espermina/síntesis química , Amidas/química , Animales , Antibacterianos/química , Antibacterianos/farmacología , Unión Competitiva , Línea Celular , Citocinas/antagonistas & inhibidores , Citocinas/sangre , Modelos Animales de Enfermedad , Femenino , Humanos , Lipopolisacáridos/química , Lipopolisacáridos/clasificación , Lisina/química , Lisina/farmacología , Ratones , Óxido Nítrico/antagonistas & inhibidores , Poliaminas/química , Sepsis/mortalidad , Sepsis/prevención & control , Espermina/química , Espermina/farmacología , Relación Estructura-Actividad
9.
Bioorg Med Chem Lett ; 15(5): 1295-8, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15713373

RESUMEN

Lipopolysaccharides (LPS), otherwise termed 'endotoxins', are outer-membrane constituents of Gram-negative bacteria, and play a key role in the pathogenesis of 'Septic Shock', a major cause of mortality in the critically ill patient. We had previously defined the pharmacophore necessary for small molecules to specifically bind and neutralize LPS and, using animal models of sepsis, have shown that the sequestration of circulatory LPS by small molecules is a therapeutically viable strategy. Polyamidoamine dendrimers, with the surface amines substoichiometrically derivatized with alkyl groups bind LPS with high affinity, neutralize LPS-induced inflammatory responses in vitro, and afford protection in a murine model of endotoxic shock. Dendrimers represent a new class of potentially useful compounds for the therapy of Gram-negative sepsis.


Asunto(s)
Endotoxinas/antagonistas & inhibidores , Lipopolisacáridos/antagonistas & inhibidores , Poliaminas/farmacología , Sepsis/tratamiento farmacológico , Animales , Línea Celular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Endotoxinas/química , Endotoxinas/farmacología , Lipopolisacáridos/química , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Estructura Molecular , Óxido Nítrico/biosíntesis , Poliaminas/síntesis química , Poliaminas/química , Sepsis/inducido químicamente , Sepsis/prevención & control , Relación Estructura-Actividad , Propiedades de Superficie
10.
Comb Chem High Throughput Screen ; 7(8): 733-47, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15578935

RESUMEN

Lipopolysaccharides (LPS), otherwise termed 'endotoxins', are an integral part of the outer leaflet of the outer-membrane of Gram-negative bacteria. Lipopolysaccharides play a pivotal role in the pathogenesis of 'Septic Shock', a major cause of mortality in the critically ill patient, worldwide. The sequestration of circulatory endotoxin may be a viable therapeutic strategy for the prophylaxis and treatment of Gram-negative sepsis. We have earlier shown that the pharmacophore necessary for small molecules to bind LPS is simple, comprising of two protonatable cationic functions separated by about 15 A, permitting the simultaneous interaction with the negatively charged phosphates on lipid A, the toxically active center of endotoxin. In this report, we employ high-throughput screening methods, using a novel fluorescent probe displacement method. Searches in three-dimensional structure databases yielded about approximately 4000 commercially available small molecules, each possessing two cationic functions spaced approximately 15 A apart. Approximately 400 such compounds have been screened in an effort to validate the method by which high-affinity endotoxin binders can be identified. We show that the IC50 values that are obtained from the fluorescence-based primary screen are correlated both to the enthalpy of binding, as measured by isothermal titration calorimetry, as well as to biological potency in vitro assays. By performing rapid toxicity screens in tandem with the bioassays, lead compounds of interest can be easily identified for further systematic structural modifications and SAR studies.


Asunto(s)
Endotoxinas/antagonistas & inhibidores , Endotoxinas/química , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/química , Calorimetría , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Evaluación Preclínica de Medicamentos , Indicadores y Reactivos , Óxido Nítrico/química , Relación Estructura-Actividad
11.
Comb Chem High Throughput Screen ; 7(3): 239-49, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15134530

RESUMEN

Lipopolysaccharides (LPS), otherwise termed 'endotoxins', are outer-membrane constituents of Gram-negative bacteria. Lipopolysaccharides play a key role in the pathogenesis of 'Septic Shock', a major cause of mortality in the critically ill patient. Therapeutic options aimed at limiting downstream systemic inflammatory processes by targeting lipopolysaccharide do not exist at the present time. We have defined the pharmacophore necessary for small molecules to specifically bind and neutralize LPS, and have shown using animal models of sepsis that the sequestration of circulatory LPS by small molecules is a therapeutically viable strategy. Assays reported previously in the literature do not lend themselves well to the rapid screening of large numbers of structurally diverse compounds. In this report, we describe a highly sensitive and robust fluorescent displacement assay using BODIPY TR cadaverine (BC), which binds specifically to the toxic center of LPS, lipid A, and is competitively displaced by compounds displaying an affinity for lipid A. The assay clearly discriminates subtle differences in the binding of polymyxin B, and its nonapeptide derivative, with LPS. The spectral properties of the BODIPY fluorophore are ideally suited for screening diverse structural classes of compounds, including those with conjugated aromatic groups, or with chromophores in the 260-500 nm range. The fluorescent probe: LPS complex is stable under physiologically relevant salt concentrations, resulting in the rapid rejection of spurious binders interacting via non-specific electrostatic interactions, and, therefore, in greatly improved dispersion of ED(50)values.


Asunto(s)
Proteínas de Fase Aguda , Antibacterianos/análisis , Compuestos de Boro , Cadaverina , Proteínas Portadoras/análisis , Colorantes Fluorescentes , Lipopolisacáridos/análisis , Glicoproteínas de Membrana , Cadaverina/análogos & derivados , Humanos , Lípido A/análisis , Lípido A/inmunología , Lipopolisacáridos/inmunología , Modelos Animales , Conformación Molecular , Polimixina B , Espectrometría de Fluorescencia
12.
Bioorg Med Chem Lett ; 13(15): 2449-53, 2003 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-12852941

RESUMEN

The expression of many staphylococcal virulence factors are regulated by the agr locus via a two-component signal transduction system (TCSTS), which is activated in response to a secreted autoinducer peptide (AIP). By exploiting the unique chemical architecture of the naturally occurring AIP-1, several potent inhibitors of staphylococcal TCSTS were designed and synthesized using either a linear or branched solid-phase approach. These inhibitors are competitive binders and contain the crucial 16-membered side-chain-to-tail thiolactone peptide pharmacophore.


Asunto(s)
4-Butirolactona/análogos & derivados , Lactonas/antagonistas & inhibidores , Péptidos/antagonistas & inhibidores , Staphylococcus/efectos de los fármacos , Staphylococcus/fisiología , 4-Butirolactona/farmacología , Proteínas Bacterianas/genética , Ciclización , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Genes Reporteros/genética , Indicadores y Reactivos , Transducción de Señal/fisiología , Staphylococcus/genética , Relación Estructura-Actividad , Transactivadores/genética , Tirosina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA