Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
AJR Am J Roentgenol ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356480
2.
Acta Pharmacol Sin ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090392

RESUMEN

Aristolochic acids (AAs) have been identified as a significant risk factor for hepatocellular carcinoma (HCC). Ferroptosis is a type of regulated cell death involved in the tumor development. In this study, we investigated the molecular mechanisms by which AAs enhanced the growth of HCC. By conducting bioinformatics and RNA-Seq analyses, we found that AAs were closely correlated with ferroptosis. The physical interaction between p53 and AAs in HepG2 cells was validated by bioinformatics analysis and SPR assays with the binding pocket sites containing Pro92, Arg174, Asp207, Phe212, and His214 of p53. Based on the binding pocket that interacts with AAs, we designed a mutant and performed RNA-Seq profiling. Interestingly, we found that the binding pocket was responsible for ferroptosis, GADD45A, NRF2, and SLC7A11. Functionally, the interaction disturbed the binding of p53 to the promoter of GADD45A or NRF2, attenuating the role of p53 in enhancing GADD45A and suppressing NRF2; the mutant did not exhibit the same effects. Consequently, this event down-regulated GADD45A and up-regulated NRF2, ultimately inhibiting ferroptosis, suggesting that AAs hijacked p53 to down-regulate GADD45A and up-regulate NRF2 in HepG2 cells. Thus, AAs treatment resulted in the inhibition of ferroptosis via the p53/GADD45A/NRF2/SLC7A11 axis, which led to the enhancement of tumor growth. In conclusion, AAs-hijacked p53 restrains ferroptosis through the GADD45A/NRF2/SLC7A11 axis to enhance tumor growth. Our findings provide an underlying mechanism by which AAs enhance HCC and new insights into p53 in liver cancer. Therapeutically, the oncogene NRF2 is a promising target for liver cancer.

3.
Emerg Microbes Infect ; 13(1): 2389095, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39101691

RESUMEN

Influenza virus infection poses a continual menace to public health. Here, we developed soluble trimeric HA ectodomain vaccines by establishing interprotomer disulfide bonds in the stem region, which effectively preserve the native antigenicity of stem epitopes. The stable trimeric H1 ectodomain proteins exhibited higher thermal stabilities in comparison with unmodified HAs and showed strong binding activities towards a panel of anti-stem cross-reactive antibodies that recognize either interprotomer or intraprotomer epitopes. Negative stain transmission electron microscopy (TEM) analysis revealed the stable trimer architecture of the interprotomer disulfide-stapled WA11#5, NC99#2, and FLD#1 proteins as well as the irregular aggregation of unmodified HA molecules. Immunizations of mice with those trimeric HA ectodomain vaccines formulated with incomplete Freund's adjuvant elicited significantly more potent cross-neutralizing antibody responses and offered broader immuno-protection against lethal infections with heterologous influenza strains compared to unmodified HA proteins. Additionally, the findings of our study indicate that elevated levels of HA stem-specific antibody responses correlate with strengthened cross-protections. Our design strategy has proven effective in trimerizing HA ectodomains derived from both influenza A and B viruses, thereby providing a valuable reference for designing future influenza HA immunogens.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Disulfuros , Glicoproteínas Hemaglutininas del Virus de la Influenza , Vacunas contra la Influenza , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae , Animales , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Anticuerpos Antivirales/inmunología , Ratones , Disulfuros/química , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Anticuerpos Neutralizantes/inmunología , Femenino , Protección Cruzada/inmunología , Reacciones Cruzadas , Humanos , Gripe Humana/prevención & control , Gripe Humana/inmunología , Gripe Humana/virología , Epítopos/inmunología , Epítopos/genética , Epítopos/química , Multimerización de Proteína , Virus de la Influenza B/inmunología , Virus de la Influenza B/genética , Virus de la Influenza B/química
4.
Int J Ophthalmol ; 17(6): 1018-1027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895677

RESUMEN

AIM: To explore the effect of epidermal growth factor receptor (EGFR) inhibition by erlotinib and EGFR siRNA on epidermal growth factor (EGF)-induced activation of retinal pigment epithelium (RPE) cells. METHODS: Human RPE cell line (ARPE-19 cells) was activated by 100 ng/mL EGF. Erlotinib and EGFR siRNA were used to intervene EGF treatment. Cellular viability, proliferation, and migration were detected by methyl thiazolyl tetrazolium (MTT) assay, bromodeoxyuridine (BrdU) staining assay and wound healing assay, respectively. EGFR/protein kinase B (AKT) pathway proteins and N-cadherin, α-smooth muscle actin (α-SMA), and vimentin were tested by Western blot assay. EGFR was also determined by immunofluorescence staining. RESULTS: EGF treatment for 24h induced a significant increase of ARPE-19 cells' viability, proliferation and migration, phosphorylation of EGFR/AKT proteins, and decreased total EGFR expression. Erlotinib suppressed ARPE-19 cells' viability, proliferation and migration through down regulating total EGFR and AKT protein expressions. Erlotinib also inhibited EGF-induced an increase of proliferative and migrative ability in ARPE-19 cells and clearly suppressed EGF-induced EGFR/AKT proteins phosphorylation and decreased expression of N-cadherin, α-SMA, and vimentin proteins. Similarly, EGFR inhibition by EGFR siRNA significantly affected EGF-induced an increase of cell proliferation, viability, and migration, phosphorylation of EGFR/AKT proteins, and up-regulation of N-cadherin, α-SMA, and vimentin proteins. CONCLUSION: Erlotinib and EGFR-knockdown suppress EGF-induced cell viability, proliferation, and migration via EGFR/AKT pathway in RPE cells. EGFR inhibition may be a possible therapeutic approach for proliferative vitreoretinopathy (PVR).

5.
Acta Pharmacol Sin ; 45(9): 1951-1963, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38760543

RESUMEN

Bevacizumab is a recombinant humanized monoclonal immunoglobulin (Ig) G1 antibody of VEGF, and inhibits angiogenesis and tumor growth in hepatocellular carcinoma (HCC). Ferroptosis, a new form of regulated cell death function independently of the apoptotic machinery, has been accepted as an attractive target for pharmacological intervention; the ferroptosis pathway can enhance cell immune activity of anti-PD1 immunotherapy in HCC. In this study we investigated whether and how bevacizumab regulated ferroptosis and immune activity in liver cancer. Firstly, we performed RNA-sequencing in bevacizumab-treated human liver cancer cell line HepG2 cells, and found that bevacizumab significantly altered the expression of a number of genes including VEGF, PI3K, HAT1, SLC7A11 and IL-9 in liver cancer, bevacizumab upregulated 37 ferroptosis-related drivers, and downregulated 17 ferroptosis-related suppressors in particular. We demonstrated that bevacizumab triggered ferroptosis in liver cancer cells by driving VEGF/PI3K/HAT1/SLC7A11 axis. Clinical data confirmed that the expression levels of VEGF were positively associated with those of PI3K, HAT1 and SLC7A11 in HCC tissues. Meanwhile, we found that bevacizumab enhanced immune cell activity in tumor immune-microenvironment. We identified that HAT1 up-regulated miR-143 targeting IL-9 mRNA 3'UTR in liver cancer cells; bevacizumab treatment resulted in the increase of IL-9 levels and its secretion via VEGF/PI3K/HAT1/miR-143/IL-9 axis, which led to the inhibition of tumor growth in vivo through increasing the release of IL-2 and Granzyme B from activated CD8+ T cells. We conclude that in addition to inhibiting angiogenesis, bevacizumab induces ferroptosis and enhances CD8+ T cell immune activity in liver cancer. This study provides new insight into the mechanisms by which bevacizumab synergistically modulates ferroptosis and CD8+ T cell immune activity in liver cancer.


Asunto(s)
Bevacizumab , Linfocitos T CD8-positivos , Ferroptosis , Neoplasias Hepáticas , Ferroptosis/efectos de los fármacos , Humanos , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/inmunología , Células Hep G2 , Microambiente Tumoral/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Masculino
6.
Acta Pharmacol Sin ; 45(8): 1686-1700, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38589688

RESUMEN

Lymphocyte activation gene 3 (LAG3), an immune checkpoint molecule expressed on activated T cells, functions as a negative regulator of immune responses. Persistent antigen exposure in the tumor microenvironment results in sustained LAG3 expression on T cells, contributing to T cell dysfunction. Fibrinogen-like protein 1 (FGL1) has been identified as a major ligand of LAG3, and FGL1/LAG3 interaction forms a novel immune checkpoint pathway that results in tumor immune evasion. In addition, ubiquitin-specific peptidase 7 (USP7) plays a crucial role in cancer development. In this study we investigated the role of USP7 in modulation of FGL1-mediated liver cancer immune evasion. We showed that knockdown of USP7 or treatment with USP7 inhibitor P5091 suppressed liver cancer growth by promoting CD8+ T cell activity in Hepa1-6 xenograft mice and in HepG2 or Huh7 cells co-cultured with T cells, whereas USP7 overexpression produced the opposite effect. We found that USP7 upregulated FGL1 in HepG2 and Huh7 cells by deubiquitination of transcriptional factor PR domain zinc finger protein 1 (PRDM1), which transcriptionally activated FGL1, and attenuated the CD8+ T cell activity, leading to the liver cancer growth. Interestingly, USP7 could be transcriptionally stimulated by PRDM1 as well in a positive feedback loop. P5091, an inhibitor of USP7, was able to downregulate FGL1 expression, thus enhancing CD8+ T cell activity. In an immunocompetent liver cancer mouse model, the dual blockade of USP7 and LAG3 resulted in a superior antitumor activity compared with anti-LAG3 therapy alone. We conclude that USP7 diminishes CD8+ T cell activity by a USP7/PRDM1 positive feedback loop on FGL1 production in liver cancer; USP7 might be a promising target for liver cancer immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Hepáticas , Peptidasa Específica de Ubiquitina 7 , Regulación hacia Arriba , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Peptidasa Específica de Ubiquitina 7/genética , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Humanos , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Línea Celular Tumoral , Ratones Endogámicos C57BL , Fibrinógeno , Tiofenos
7.
Diagn Interv Imaging ; 105(7-8): 292-298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38378382

RESUMEN

PURPOSE: The purpose of this study was to evaluate the incremental diagnostic value of virtual non-contrast (VNC) images derived from unenhanced dual-energy computed tomography (CT) for the diagnosis of choledocholithiasis by comparison with conventional unenhanced CT. MATERIALS AND METHODS: Eighty-nine patients with gallbladder stones who had undergone both abdominal unenhanced dual-energy CT and magnetic resonance cholangiopancreatography (MRCP) were retrospectively included. There were 53 men and 36 women, with a mean age of 54 ± 13 (standard deviation) years (age range: 41-67 years). VNC and conventional CT images were generated. Two independent radiologists evaluated the presence of choledocholithiasis in three reading sessions (session 1, conventional unenhanced CT images; session 2, VNC images; session 3, conventional unenhanced CT plus VNC images). The reading time to identify choledocholithiasis was recorded. Inter-reader agreement was measured by using the Cohen kappa (κ) test. Incremental diagnostic value of VNC imaging when combined with conventional unenhanced CT was assessed based on discrimination (area under the curve [AUC]) and clinical utility (decision curve analysis). The diagnostic performance of dual-energy CT and that of MRCP were compared using DeLong test. RESULTS: Using the standard of reference, 39 patients (39/89; 44%) had choledocholithiasis. The diagnosis of choledocholithiasis was improved using VNC images in combination with conventional unenhanced CT (AUC, 0.877; 95% confidence interval [CI]: 0.808, 0.947) by comparison with conventional unenhanced CT alone (AUC, 0.789; 95% CI: 0.718, 0.877) (P = 0.033) and achieved almost perfect inter-reader agreement (κ = 0.88; 95% CI: 0.72, 1.00) for the diagnosis of choledocholithiasis, without lengthening the median reading time (16.2 s for the combination of conventional CT and VNC images vs. 14.7 s for conventional CT alone; P= 0.325). Based on decision curve analysis, adding VNC imaging to conventional unenhanced CT resulted in a higher net benefit among most of decision thresholds. No differences in diagnostic performance were found between the combination of conventional unenhanced CT and VNC imaging (AUC, 0.877; 95% CI: 0.808, 0.947) and MRCP (AUC, 0.913; 95% CI: 0.852, 0.974) (P= 0.458). CONCLUSIONS: VNC images derived from dual-energy unenhanced CT have incremental diagnostic value for the diagnosis of choledocholithiasis. Unenhanced CT in a dual-energy mode may be a useful tool for the diagnosis of choledocholithiasis.


Asunto(s)
Coledocolitiasis , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Persona de Mediana Edad , Coledocolitiasis/diagnóstico por imagen , Adulto , Anciano , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Pancreatocolangiografía por Resonancia Magnética/métodos , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Sensibilidad y Especificidad
9.
Cancer Cell Int ; 24(1): 32, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229092

RESUMEN

BACKGROUND: Bladder cancer is the second most common genitourinary malignancy worldwide. The death rate of bladder cancer has increased every year. However, the molecular mechanism of bladder cancer is not sufficiently studied. Deubiquitinating enzymes (DUBs) play an important role in carcinogenesis. Several studies have demonstrated that USP5 associated with malignancy and pathological progression in hepatocellular carcinoma, colorectal and non-small cell lung cancer. However, the role of USP5 in bladder cancer need to be explored. METHODS: The USP5 expression was analysed using the web server GEPIA. To explore USP5 function in bladder cancer, we constructed USP5-knockout cell lines in T24 cells. A FLAG-USP5 (WT USP5) plasmid and a plasmid FLAG-USP5 C335A (catalytic-inactive mutant) used to overexpress USP5 in EJ cells. CCK8, colony formation, transwell and scratch assays were used to assess cell viability, proliferation and migration. RNA sequencing (RNA-seq) and dual-luciferase reporter assays were performed to screen the pathway. Coimmunoprecipitation and immunofluorescence were used to explore the interaction between USP5 and c-Jun. Cycloheximide (CHX) chase assays were performed to establish the effect of USP5 on c-Jun stability. Xenograft mouse model was used to study the role of USP5 in bladder cancer. RESULTS: USP5 expression is increased in bladder cancer patients. Genetic ablation of USP5 markedly inhibited bladder cancer cell proliferation, viability, and migration both in vitro and in vivo. RNA-seq and luciferase pathway screening showed that USP5 activated JNK signalling, and we identified the interaction between USP5 and c-Jun. USP5 was found to activate c-Jun by inhibiting its ubiquitination. CONCLUSIONS: Our results show that high USP5 expression promotes bladder cancer progression by stabilizing c-Jun and that USP5 is a potential therapeutic target in bladder cancer.

10.
Abdom Radiol (NY) ; 49(1): 301-311, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37831168

RESUMEN

PURPOSE: To evaluate the potential application of radiomics in predicting Tumor-Node-Metastasis (TNM) stage in patients with resectable esophageal squamous cell carcinoma (ESCC). METHODS: This retrospective study included 122 consecutive patients (mean age, 57 years; 27 women). Corresponding tumor of interest was identified on axial arterial-phase CT images with manual annotation. Radiomics features were extracted from intra- and peritumoral regions. Features were pruned to train LASSO regression model with 93 patients to construct a radiomics signature, whose performance was validated in a test set of 29 patients. Prognostic value of radiomics-predicted TNM stage was estimated by survival analysis in the entire cohort. RESULTS: The radiomics signature incorporating one intratumoral and four peritumoral features was significantly associated with TNM stage. This signature discriminated tumor stage with an area under curve (AUC) of 0.823 in the training set, with similar performance in the test set (AUC 0.813). Recurrence-free survival (RFS) was significantly different between different radiomics-predicted TNM stage groups (Low-risk vs high-risk, log-rank P = 0.004). Univariate and multivariate Cox regression analyses revealed that radiomics-predicted TNM stage was an independent preoperative factor for RFS. CONCLUSIONS: The proposed radiomics signature combing intratumoral and peritumoral features was predictive of TNM stage and associated with prognostication in ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Femenino , Persona de Mediana Edad , Carcinoma de Células Escamosas de Esófago/diagnóstico por imagen , Carcinoma de Células Escamosas de Esófago/cirugía , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/cirugía , Estudios Retrospectivos , Radiómica , Tomografía Computarizada por Rayos X/métodos
11.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4959-4966, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802837

RESUMEN

The suitable habitat for the endangered and valuable medicinal herb Panax ginseng is gradually decreasing. It is crucial to investigate its suitable growing areas in China for global protection and sustainable utilization of P. ginseng. In this study, 371 distribution points of P. ginseng were collected, and 21 environmental factors were used as ecological indicators. The geographic information system for global medicinal plants(GMPGIS) system, MaxEnt model, and Thiessen polygon method were used to analyze the potential suitable areas for P. ginseng globally. The results showed that the key environmental variables affecting P. ginseng were precipitation in the hottest quarter(Bio18) and the coefficient of temperature seasonality(Bio4). The suitable habitats for P. ginseng were mostly located in the "One Belt, One Road" countries such as China, Japan, South Korea, North Korea, and Russia. The highly suitable habitats were mainly distributed along mountain ranges in southeastern Shandong, southern Shanxi and Shaanxi, northern Jiangsu, and northwestern Henan of China. Data analysis indicated that the current P. ginseng planting sites were all in high suitability zones, and the Thiessen polygon results showed that the geographic locations of P. ginseng production companies were unbalanced and urgently needed optimization. This study provides data support for P. ginseng planting site selection, scientific introduction, production layout, and long-term development planning.


Asunto(s)
Panax , Plantas Medicinales , Ecosistema , China , Sistemas de Información Geográfica , Temperatura
13.
Acta Pharmacol Sin ; 44(12): 2525-2536, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37474643

RESUMEN

Heat shock protein family A member 8 (HSPA8) participates in the folding or degradation of misfolded proteins under stress and plays critical roles in cancer. In this study, we investigated the function of HSPA8 in the development of liver cancer. By analyzing the TCGA transcriptome dataset, we found that HSPA8 was upregulated in 134 clinical liver cancer tissue samples, and positively correlated with poor prognosis. IHC staining showed the nuclear and cytoplasmic localization of HSPA8 in liver cancer cells. Knockdown of HSPA8 resulted in a decrease in the proliferation of HepG2 and Huh-7 cells. ChIP-seq and RNA-seq analysis revealed that HSPA8 bound to the promoter of pleckstrin homology-like domain family A member 2 (PHLDA2) and regulated its expression. The transcription factor ETV4 in HepG2 cells activated PHLDA2 transcription. HSPA8 and ETV4 could interact with each other in the cells and colocalize in the nucleus. From a functional perspective, we demonstrated that HSPA8 upregulated PHDLA2 through the coactivating transcription factor ETV4 to enhance the growth of liver cancer in vitro and in vivo. From a therapeutic perspective, we identified both HSPA8 and PHDLA2 as novel targets in the treatment of HCC. In conclusion, this study demonstrates that HSPA8 serves as a coactivator of ETV4 and upregulates PHLDA2, leading to the growth of HCC, and is a potential therapeutic target in HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Factores de Transcripción/genética , Carcinoma Hepatocelular/genética , Proteínas de Choque Térmico , Regulación de la Expresión Génica , Proteínas Proto-Oncogénicas c-ets/genética
14.
Cell Rep ; 42(7): 112766, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37421618

RESUMEN

Neuraminidase is suggested as an important component for developing a universal influenza vaccine. Targeted induction of neuraminidase-specific broadly protective antibodies by vaccinations is challenging. To overcome this, we rationally select the highly conserved peptides from the consensus amino acid sequence of the globular head domains of neuraminidase. Inspired by the B cell receptor evolution process, a reliable sequential immunization regimen is designed to result in immuno-focusing by steering bulk immune responses to a selected region where broadly protective B lymphocyte epitopes reside. After priming neuraminidase protein-specific antibody responses in C57BL/6 or BALB/c inbred mice strains by immunization or pre-infection, boost immunizations with certain neuraminidase-derived peptide-keyhole limpet hemocyanin conjugates significantly strengthened serum neuraminidase inhibition activities and cross-protections. Overall, this study provides proof of concept for a peptide-based sequential immunization strategy for achieving targeted induction of cross-protective antibody response, which provides references for designing universal vaccines against other highly variable pathogens.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Ratones , Humanos , Infecciones por Orthomyxoviridae/prevención & control , Neuraminidasa , Anticuerpos Antivirales , Ratones Endogámicos C57BL , Vacunación , Péptidos , Ratones Endogámicos BALB C , Glicoproteínas Hemaglutininas del Virus de la Influenza
16.
Acta Pharmacol Sin ; 44(8): 1712-1724, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36829052

RESUMEN

A number of studies have shown that aspirin, as commonly prescribed drug, prevents the development of hepatocellular carcinoma (HCC). Ferroptosis as a dynamic tumor suppressor plays a vital role in hepatocarcinogenesis. In this study we investigated whether aspirin affected ferroptosis in liver cancer cells. RNA-seq analysis revealed that aspirin up-regulated 4 ferroptosis-related drivers and down-regulated 5 ferroptosis-related suppressors in aspirin-treated HepG2 cells. Treatment with aspirin (4 mM) induced remarkable ferroptosis in HepG2 and Huh7 cells, which was enhanced by the ferroptosis inducer erastin (10 µM). We demonstrated that NF-κB p65 restricted ferroptosis in HepG2 and Huh7 cells through directly binding to the core region of SLC7A11 promoter and activating the transcription of ferroptosis inhibitor SLC7A11, whereas aspirin induced ferroptosis through inhibiting NF-κB p65-activated SLC7A11 transcription. Overexpression of p65 rescued HepG2 and Huh7 cells from aspirin-induced ferroptosis. HCC patients with high expression levels of SLC7A11 and p65 presented lower survival rate. Functionally, NF-κB p65 blocked the aspirin-induced ferroptosis in vitro and in vivo, which was attenuated by erastin. We conclude that aspirin triggers ferroptosis by restricting NF-κB-activated SLC7A11 transcription to suppress the growth of HCC. These results provide a new insight into the mechanism by which aspirin regulates ferroptosis in hepatocarcinogenesis. A combination of aspirin and ferroptosis inducer may provide a potential strategy for the treatment of HCC in clinic.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , FN-kappa B/metabolismo , Neoplasias Hepáticas/patología , Aspirina/farmacología , Aspirina/uso terapéutico , Línea Celular Tumoral , Sistema de Transporte de Aminoácidos y+/genética
17.
World J Clin Cases ; 11(4): 874-882, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36818619

RESUMEN

BACKGROUND: Copy number variation (CNV) has become widely recognized in recent years due to the extensive use of gene screening in developmental disorders and epilepsy research. 1q21.1 microduplication syndrome is a rare CNV disease that can manifest as multiple congenital developmental disorders, autism spectrum disorders, congenital malformations, and congenital heart defects with genetic heterogeneity. CASE SUMMARY: We reported a pediatric patient with 1q21.1 microduplication syndrome, and carried out a literature review to determine the correlation between 1q21.1 microduplication and its phenotypes. We summarized the patient's medical history and clinical symptoms, and extracted genomic DNA from the patient, her parents, elder brother, and sister. The patient was an 8-mo-old girl who was hospitalized for recurrent convulsions over a 2-mo period. Whole exon sequencing and whole genome low-depth sequencing (CNV-seq) were then performed. Whole exon sequencing detected a 1.58-Mb duplication in the CHR1:145883867-147465312 region, which was located in the 1q21.1 region. Family analysis showed that the pathogenetic duplication fragment, which was also detected in her elder brother's DNA originated from the mother. CONCLUSION: Whole exon sequencing combined with quantitative polymerase chain reaction can provide an accurate molecular diagnosis in children with 1q21.1 microduplication syndrome, which is of great significance for genetic counseling and early intervention.

18.
J Invest Surg ; 36(1): 2172488, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36775654

RESUMEN

PURPOSE: Readmission is one of the measures of quality of care and potential costs. This study aimed to determine whether lactate dehydrogenase (LDH) is associated with an increased risk of 30-day readmission in gastric cancer. METHODS: We performed a retrospective study of patients who underwent radical gastrectomy for gastric cancer at our institution between July 2014 and May 2018. Balanced cohorts were created by propensity score matching (PSM) with a 1:1 ratio to generate the elevated LDH (ELDH) group (n = 151) and the low LDH group (Control) (n = 302). To determine the incidence, causes, and risk factors of 30-day readmission, subgroup analyzes were performed and used to develop an efficient prediction model. RESULTS: A total of 788 patients met the criteria to be included in the study. The cutoff value for serum LDH was 215.5. After PSM, a total of 302 patients were matched in pairs (ELDH group, n = 151, Control group, n = 151). ELDH levels had a higher risk of readmission (p = 0.005, Odds ratio 3.768, 95% confidence interval 1.493-9.510). The pre-match 30-day readmission rate was 7.2 percent, and common causes of post-match readmission included infection-related symptoms, gastrointestinal symptoms, and gastrointestinal bleeding. CONCLUSIONS: Patients with preoperative ELDH levels, postoperative complications, and high preoperative American Society of Anesthesiologists Scores had a higher risk of readmission 30 days after surgery.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/epidemiología , Neoplasias Gástricas/cirugía , Puntaje de Propensión , Readmisión del Paciente , Estudios Retrospectivos , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/cirugía , Gastrectomía/efectos adversos , Lactato Deshidrogenasas
20.
Acta Pharmacol Sin ; 44(1): 211-220, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35835856

RESUMEN

Aspirin as a chemopreventive agent is able to restrict the tumor growth. Phosphoglycerate mutase 1 (PGAM1) is a key enzyme of glycolysis, playing an important role in the development of cancer. However, the underlying mechanism by which aspirin inhibits the proliferation of cancer cells is poorly understood. This study aims to identify the effects of aspirin on modulating PGAM1 enzymatic activities in liver cancer. Here, we found that aspirin attenuated the PGAM1 succinylation to suppress the PGAM1 enzymatic activities and glycolysis in hepatoma cells. Mechanically, aspirin remarkably reduced the global succinylation levels of hepatoma cells, including the PGAM1 succinylation, which led to the block of conversion from 3-phosphoglycerate (3-PG) to 2-phosphoglycerate (2-PG) in cells. Interestingly, RNA-seq analysis identified that aspirin could significantly decrease the levels of histone acetyltransferase 1 (HAT1), a writer of PGAM1 succinylation, in liver cancer. As a target of aspirin, NF-κB p65 could effectively up-regulate the expression of HAT1 in the system, resulting in the increase of PGAM1 enzymatic activities. Moreover, we observed that the PGAM1-K99R mutant failed to rescue the aspirin-induced inhibition of PGAM1 activities, glycolysis, and proliferation of hepatoma cells relative to PGAM1-WT. Functionally, aspirin down-regulated HAT1 and decreased the PGAM1 succinylation levels in the tumor tissues from mice treated with aspirin in vivo. Thus, we conclude that aspirin modulates PGAM1K99 succinylation to restrict the PGAM1 activities and glycolysis through NF-κB p65/HAT1/PGAM1 signaling in liver cancer. Our finding provides new insights into the mechanism by which aspirin inhibits glycolysis in hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , FN-kappa B/metabolismo , Fosfoglicerato Mutasa , Aspirina/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Glucólisis , Histona Acetiltransferasas/metabolismo , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA