Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Cancer Lett ; 592: 216919, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38704133

RESUMEN

Efforts to develop targetable molecular bases for drug resistance for pancreatic ductal adenocarcinoma (PDAC) have been equivocally successful. Using RNA-seq and ingenuity pathway analysis we identified that the superpathway of cholesterol biosynthesis is upregulated in gemcitabine resistant (gemR) tumors using a unique PDAC PDX model with resistance to gemcitabine acquired in vivo. Analysis of additional in vitro and in vivo gemR PDAC models showed that HMG-CoA synthase 2 (HMGCS2), an enzyme involved in cholesterol biosynthesis and rate limiting in ketogenesis, is overexpressed in these models. Mechanistic data demonstrate the novel findings that HMGCS2 contributes to gemR and confers metastatic properties in PDAC models, and that HMGCS2 is BRD4 dependent. Further, BET inhibitor JQ1 decreases levels of HMGCS2, sensitizes PDAC cells to gemcitabine, and a combination of gemcitabine and JQ1 induced regressions of gemR tumors in vivo. Our data suggest that decreasing HMGCS2 may reverse gemR, and that HMGCS2 represents a useful therapeutic target for treating gemcitabine resistant PDAC.


Asunto(s)
Azepinas , Carcinoma Ductal Pancreático , Desoxicitidina , Resistencia a Antineoplásicos , Gemcitabina , Hidroximetilglutaril-CoA Sintasa , Neoplasias Pancreáticas , Triazoles , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Humanos , Ratones , Antimetabolitos Antineoplásicos/farmacología , Azepinas/farmacología , Proteínas que Contienen Bromodominio , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hidroximetilglutaril-CoA Sintasa/metabolismo , Hidroximetilglutaril-CoA Sintasa/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacología , Femenino , Ratones SCID
2.
Bioanalysis ; 16(8): 227-238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38497709

RESUMEN

We have developed and validated a novel LC-MS/MS method for the simultaneous quantification of ZEN-3694 and its active metabolite ZEN-3791 in human plasma after protein precipitation. Stable isotope-labeled versions were used as internal standards. Chromatographic separation was achieved on a Kinetex C18 column using 0.1% formic acid in H2O and 0.1% formic acid in MeOH as mobile phases. Detection was performed via positive electrospray ionization mode with multiple reaction monitoring. The assay exhibited linearity in the concentration range of 5-5000 ng/ml for both analytes. Intra- and inter-assay precision and accuracy were within ±11%. ZEN-3694 and ZEN-3791 recoveries were between 93 and 105%. This LC-MS/MS assay is an essential tool to study ZEN-3694 in an ongoing clinical trial (NCT04840589).


[Box: see text].


Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Humanos , Cromatografía Líquida con Espectrometría de Masas/métodos , Espectrometría de Masas en Tándem/métodos
3.
Eur J Med Chem ; 265: 116052, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38134745

RESUMEN

The bromodomain and extraterminal domain (BET) family proteins recognize acetyl-lysine (Kac) at the histone tail through two tandem bromodomains, i.e., BD1 and BD2, to regulate gene expression. BET proteins are attractive therapeutic targets in cancer due to their involvement in oncogenic transcriptional activation, and bromodomains have defined Kac-binding pockets. Here, we present DW-71177, a potent BET inhibitor that selectively interacts with BD1 and exhibits strong antileukemic activity. X-ray crystallography, isothermal titration calorimetry, and molecular dynamic studies have revealed the robust and specific binding of DW-71177 to the Kac-binding pocket of BD1. DW-71177 effectively inhibits oncogenes comparable to the pan-BET inhibitor OTX-015, but with a milder impact on housekeeping genes. It efficiently blocks cancer-associated transcriptional changes by targeting genes that are highly enriched with BRD4 and histone acetylation marks, suggesting that BD1-selective targeting could be an effective and safe therapeutic strategy against leukemia.


Asunto(s)
Leucemia Mieloide Aguda , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Histonas , Proteínas Nucleares , Quinoxalinas/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas de Ciclo Celular/metabolismo , Proteínas que Contienen Bromodominio
4.
J Biol Chem ; 299(12): 105482, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37992806

RESUMEN

Bromodomains (BDs) regulate gene expression by recognizing protein motifs containing acetyllysine. Although originally characterized as histone-binding proteins, it has since become clear that these domains interact with other acetylated proteins, perhaps most prominently transcription factors. The likely transient nature and low stoichiometry of such modifications, however, has made it challenging to fully define the interactome of any given BD. To begin to address this knowledge gap in an unbiased manner, we carried out mRNA display screens against a BD-the N-terminal BD of BRD3-using peptide libraries that contained either one or two acetyllysine residues. We discovered peptides with very strong consensus sequences and with affinities that are significantly higher than typical BD-peptide interactions. X-ray crystal structures also revealed modes of binding that have not been seen with natural ligands. Intriguingly, however, our sequences are not found in the human proteome, perhaps suggesting that strong binders to BDs might have been selected against during evolution.


Asunto(s)
Proteoma , Factores de Transcripción , Humanos , Proteoma/metabolismo , Factores de Transcripción/metabolismo , Dominios Proteicos , Secuencias de Aminoácidos , Péptidos/metabolismo , Unión Proteica , Acetilación
5.
Cells ; 12(8)2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37190058

RESUMEN

Bromodomain- and extra-terminal domain (BET) proteins are epigenetic reader proteins that regulate transcription of their target genes by binding to acetylated histone side chains. Small molecule inhibitors, such as I-BET151, have anti-inflammatory properties in fibroblast-like synoviocytes (FLS) and in animal models of arthritis. Here, we investigated whether BET inhibition can also affect the levels of histone modifications, a novel mechanism underlying BET protein inhibition. On the one hand, FLSs were treated with I-BET151 (1 µM) for 24 h in absence and presence of TNF. On the other hand, FLSs were washed with PBS after 48 h of I-BET151 treatment, and the effects were measured 5 days after I-BET151 treatment or after an additional 24 h stimulation with TNF (5 d + 24 h). Mass spectrometry analysis indicated that I-BET151 induced profound changes in histone modifications, with a global reduction in acetylation on different histone side chains 5 days after treatment. We confirmed changes on acetylated histone side chains in independent samples by Western blotting. I-BET151 treatment reduced mean TNF-induced levels of total acetylated histone 3 (acH3), H3K18ac, and H3K27ac. In line with these changes, the TNF-induced expression of BET protein target genes was suppressed 5 d after I-BET151 treatment. Our data indicate that BET inhibitors not only prevent the reading of acetylated histones but directly influence overall chromatin organization, in particular after stimulation with TNF.


Asunto(s)
Cromatina , Sinoviocitos , Animales , Cromatina/metabolismo , Histonas/metabolismo , Regulación de la Expresión Génica , Sinoviocitos/metabolismo , Fibroblastos/metabolismo
6.
Med Res Rev ; 43(4): 972-1018, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36971240

RESUMEN

Epigenetic mechanisms for controlling gene expression through heritable modifications to DNA, RNA, and proteins, are essential processes in maintaining cellular homeostasis. As a result of their central role in human diseases, the proteins responsible for adding, removing, or recognizing epigenetic modifications have emerged as viable drug targets. In the case of lysine-ε-N-acetylation (Kac ), bromodomains serve as recognition modules ("readers") of this activating epigenetic mark and competition of the bromodomain-Kac interaction with small-molecule inhibitors is an attractive strategy to control aberrant bromodomain-mediated gene expression. The bromodomain and extra-terminal (BET) family proteins contain eight similar bromodomains. These BET bromodomains are among the more commonly studied bromodomain classes with numerous pan-BET inhibitors showing promising anticancer and anti-inflammatory efficacy. However, these results have yet to translate into Food and Drug Administration-approved drugs, in part due to a high degree of on-target toxicities associated with pan-BET inhibition. Improved selectivity within the BET-family has been proposed to alleviate these concerns. In this review, we analyze the reported BET-domain selective inhibitors from a structural perspective. We highlight three essential characteristics of the reported molecules in generating domain selectivity, binding affinity, and mimicking Kac molecular recognition. In several cases, we provide insight into the design of molecules with improved specificity for individual BET-bromodomains. This review provides a perspective on the current state of the field as this exciting class of inhibitors continue to be evaluated in the clinic.


Asunto(s)
Histonas , Factores de Transcripción , Humanos , Dominios Proteicos , Antiinflamatorios
7.
Front Endocrinol (Lausanne) ; 13: 923925, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176467

RESUMEN

Chronic inflammation of pancreatic islets is a key driver of ß-cell damage that can lead to autoreactivity and the eventual onset of autoimmune diabetes (T1D). In the islet, elevated levels of proinflammatory cytokines induce the transcription of the inducible nitric oxide synthase (iNOS) gene, NOS2, ultimately resulting in increased nitric oxide (NO). Excessive or prolonged exposure to NO causes ß-cell dysfunction and failure associated with defects in mitochondrial respiration. Recent studies showed that inhibition of the bromodomain and extraterminal domain (BET) family of proteins, a druggable class of epigenetic reader proteins, prevents the onset and progression of T1D in the non-obese diabetic mouse model. We hypothesized that BET proteins co-activate transcription of cytokine-induced inflammatory gene targets in ß-cells and that selective, chemotherapeutic inhibition of BET bromodomains could reduce such transcription. Here, we investigated the ability of BET bromodomain small molecule inhibitors to reduce the ß-cell response to the proinflammatory cytokine interleukin 1 beta (IL-1ß). BET bromodomain inhibition attenuated IL-1ß-induced transcription of the inflammatory mediator NOS2 and consequent iNOS protein and NO production. Reduced NOS2 transcription is consistent with inhibition of NF-κB facilitated by disrupting the interaction of a single BET family member, BRD4, with the NF-κB subunit, p65. Using recently reported selective inhibitors of the first and second BET bromodomains, inhibition of only the first bromodomain was necessary to reduce the interaction of BRD4 with p65 in ß-cells. Moreover, inhibition of the first bromodomain was sufficient to mitigate IL-1ß-driven decreases in mitochondrial oxygen consumption rates and ß-cell viability. By identifying a role for the interaction between BRD4 and p65 in controlling the response of ß-cells to proinflammatory cytokines, we provide mechanistic information on how BET bromodomain inhibition can decrease inflammation. These studies also support the potential therapeutic application of more selective BET bromodomain inhibitors in attenuating ß-cell inflammation.


Asunto(s)
Diabetes Mellitus Tipo 1 , Proteínas Nucleares , Animales , Citocinas/metabolismo , Inflamación/metabolismo , Mediadores de Inflamación , Interleucina-1beta , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/efectos adversos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Chemistry ; 28(64): e202202293, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-35989226

RESUMEN

The pharmaceutical industry has a pervasive need for chiral specific molecules with optimal affinity for their biological targets. However, the mass production of such compounds is currently limited by conventional chemical routes, that are costly and have an environmental impact. Here, we propose an easy access to obtain new tetrahydroquinolines, a motif found in many bioactive compounds, that is rapid and cost effective. Starting from simple raw materials, the procedure uses a proline-catalyzed Mannich reaction followed by the addition of BF3 ⋅ OEt2 , which generates a highly electrophilic aza-ortho-quinone methide intermediate capable of reacting with different nucleophiles to form the diversely functionalized tetrahydroquinoline. Moreover, this enantioselective one-pot process provides access for the first time to tetrahydroquinolines with a cis-2,3 and trans-3,4 configuration. As proof of concept, we demonstrate that a three-step reaction sequence, from simple and inexpensive starting compounds and catalysts, can generate a BD2-selective BET bromodomain inhibitor with anti-inflammatory effect.


Asunto(s)
Antineoplásicos , Quinolinas , Estereoisomerismo , Catálisis
9.
Am J Prev Cardiol ; 11: 100372, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36039183

RESUMEN

Background: Nonalcoholic fatty liver disease (NAFLD) is common among patients with type 2 diabetes mellitus (T2DM) and is associated with increased risk for coronary atherosclerosis and acute cardiovascular (CV) events. We employed the validated, non-invasive Angulo NAFLD fibrosis score (FS) in an intervention study in patients with T2DM and recent acute coronary syndrome (ACS) to determine the association of FS with CV risk and treatment response to apabetalone. Apabetalone is a novel selective inhibitor of the second bromodomain of bromodomain and extra-terminal (BET) proteins, epigenetic regulators of gene expression. Methods: The Phase 3 BETonMACE trial compared apabetalone with placebo in 2,425 patients with T2DM and recent ACS. In this post hoc analysis, we evaluated the impact of apabetalone therapy on CV risk, defined as a composite of major adverse cardiovascular events (MACE: CV death, non-fatal myocardial infarction [MI], or stroke) and hospitalization for heart failure (HHF) in two patient categories of FS that reflect the likelihood of underlying NAFLD. Patients were initially classified into three mutually exclusive categories according to a baseline Angulo FS <-1.455 (F0-F2), -1.455 to 0.675 (indeterminant), and >0.675 (F3-F4), where F0 through F4 connote fibrosis severity none, mild, moderate, severe, and cirrhosis, respectively. The composite of ischemic MACE and HHF in the placebo group was higher in indeterminant and F3-F4 categories compared to the F0-F2 category (17.2% vs 15.0% vs 9.7%). Therefore, for the present analysis, the former two categories were combined into an elevated NAFLD CVD risk group (FS+) that was compared with the F0-F2 group (lower NAFLD risk, FS0-2). Results: In 73.7% of patients, FS was elevated and consistent with a moderate-to-high likelihood of advanced liver fibrosis (FS+); 26.3% of patients had a lower FS (FS0-2). In the placebo group, FS+ patients had a higher incidence of ischemic MACE and HHF (15.4%) than FS0-2 patients (9.7%). In FS+ patients, addition of apabetalone to standard of care treatment lowered the rate of ischemic MACE compared with placebo (HR = 0.79; 95% CI 0.60-1.05; p=0.10), HHF (HR = 0.53; 95% CI 0.33-0.86; p=0.01), and the composite of ischemic MACE and HHF (HR = 0.76; 95% CI 0.59-0.98; p=0.03). In contrast, there was no apparent benefit of apabetalone in FS0-2 patients (HR 1.24; 95% CI 0.75-2.07; p=0.40; HR 1.12; 95% CI 0.30-4.14; p=0.87; and HR 1.13; 95% CI 0.69-1.86; p=0.62, respectively). Over a median duration of 26.5 months, FS increased from baseline in both treatment groups, but the increase was smaller in patients assigned to apabetalone than to placebo (p=0.04). Conclusions: Amongst patients with T2DM, recent ACS, and a moderate-to-high likelihood of advanced liver fibrosis, apabetalone was associated with a significantly lower rate of ischemic MACE and HHF and attenuated the increase in hepatic FS over time.

10.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36015180

RESUMEN

BET proteins, which recognize and bind to acetylated histones, play a key role in transcriptional regulation. The development of chemical BET inhibitors in 2010 greatly facilitated the study of these proteins. BETs play crucial roles in cancer, inflammation, heart failure, and fibrosis. In particular, BETs may be involved in regulating metabolic processes, such as adipogenesis and metaflammation, which are under tight transcriptional regulation. In addition, acetyl-CoA links energy metabolism with epigenetic modification through lysine acetylation, which creates docking sites for BET. Given this, it is possible that the ambient energy status may dictate metabolic gene transcription via a BET-dependent mechanism. Indeed, recent studies have reported that various BET proteins are involved in both metabolic signaling regulation and disease. Here, we discuss some of the most recent information on BET proteins and their regulation of the metabolism in both cellular and animal models. Further, we summarize data from some randomized clinical trials evaluating BET inhibitors for the treatment of metabolic diseases.

11.
Acta Pharm Sin B ; 12(5): 2280-2299, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35646539

RESUMEN

Disturbance of macrophage-associated lipid metabolism plays a key role in atherosclerosis. Crosstalk between autophagy deficiency and inflammation response in foam cells (FCs) through epigenetic regulation is still poorly understood. Here, we demonstrate that in macrophages, oxidized low-density lipoprotein (ox-LDL) leads to abnormal crosstalk between autophagy and inflammation, thereby causing aberrant lipid metabolism mediated through a dysfunctional transcription factor EB (TFEB)-P300-bromodomain-containing protein 4 (BRD4) axis. ox-LDL led to macrophage autophagy deficiency along with TFEB cytoplasmic accumulation and increased reactive oxygen species generation. This activated P300 promoted BRD4 binding on the promoter regions of inflammatory genes, consequently contributing to inflammation with atherogenesis. Particularly, ox-LDL activated BRD4-dependent super-enhancer associated with liquid-liquid phase separation (LLPS) on the regulatory regions of inflammatory genes. Curcumin (Cur) prominently restored FCs autophagy by promoting TFEB nuclear translocation, optimizing lipid catabolism, and reducing inflammation. The consequences of P300 and BRD4 on super-enhancer formation and inflammatory response in FCs could be prevented by Cur. Furthermore, the anti-atherogenesis effect of Cur was inhibited by macrophage-specific Brd4 overexpression or Tfeb knock-out in Apoe knock-out mice via bone marrow transplantation. The findings identify a novel TFEB-P300-BRD4 axis and establish a new epigenetic paradigm by which Cur regulates autophagy, inhibits inflammation, and decreases lipid content.

12.
JHEP Rep ; 4(5): 100466, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35462859

RESUMEN

Alcohol-related liver disease (ARLD) is a primary cause of chronic liver disease in the United States. Despite advances in the diagnosis and management of ARLD, it remains a major public health problem associated with significant morbidity and mortality, emphasising the need to adopt novel approaches to the study of ARLD and its complications. Epigenetic changes are increasingly being recognised as contributing to the pathogenesis of multiple disease states. Harnessing the power of innovative technologies for the study of epigenetics (e.g., next-generation sequencing, DNA methylation assays, histone modification profiling and computational techniques like machine learning) has resulted in a seismic shift in our understanding of the pathophysiology of ARLD. Knowledge of these techniques and advances is of paramount importance for the practicing hepatologist and researchers alike. Accordingly, in this review article we will summarise the current knowledge about alcohol-induced epigenetic alterations in the context of ARLD, including but not limited to, DNA hyper/hypo methylation, histone modifications, changes in non-coding RNA, 3D chromatin architecture and enhancer-promoter interactions. Additionally, we will discuss the state-of-the-art techniques used in the study of ARLD (e.g. single-cell sequencing). We will also highlight the epigenetic regulation of chemokines and their proinflammatory role in the context of ARLD. Lastly, we will examine the clinical applications of epigenetics in the diagnosis and management of ARLD.

13.
Int J Biol Sci ; 17(15): 4474-4492, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803511

RESUMEN

BET bromodomain BRD4 and RAC1 oncogenes are considered important therapeutic targets for cancer and play key roles in tumorigenesis, survival and metastasis. However, combined inhibition of BRD4-RAC1 signaling pathways in different molecular subtypes of breast cancer including luminal-A, HER-2 positive and triple-negative breast (TNBC) largely remains unknown. Here, we demonstrated a new co-targeting strategy by combined inhibition of BRD4-RAC1 oncogenic signaling in different molecular subtypes of breast cancer in a context-dependent manner. We show that combined treatment of JQ1 (inhibitor of BRD4) and NSC23766 (inhibitor of RAC1) suppresses cell growth, clonogenic potential, cell migration and mammary stem cells expansion and induces autophagy and cellular senescence in molecular subtypes of breast cancer cells. Mechanistically, JQ1/NSC23766 combined treatment disrupts MYC/G9a axis and subsequently enhances FTH1 to exert antitumor effects. Furthermore, combined treatment targets HDAC1/Ac-H3K9 axis, thus suggesting a role of this combination in histone modification and chromatin modeling. C-MYC depletion and co-treatment with vitamin-C sensitizes different molecular subtypes of breast cancer cells to JQ1/NSC23766 combination and further reduces cell growth, cell migration and mammosphere formation. Importantly, co-targeting RAC1-BRD4 suppresses breast tumor growth in vivo using xenograft mouse model. Clinically, RAC1 and BRD4 expression positively correlates in breast cancer patient's samples and show high expression patterns across different molecular subtypes of breast cancer. Both RAC1 and BRD4 proteins predict poor survival in breast cancer patients. Taken together, our results suggest that combined inhibition of BRD4-RAC1 pathways represents a novel and potential therapeutic approach in different molecular subtypes of breast cancer and highlights the importance of co-targeting RAC1-BRD4 signaling in breast tumorigenesis via disruption of C-MYC/G9a/FTH1 axis and down regulation of HDAC1.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ferritinas/metabolismo , Antígenos de Histocompatibilidad/metabolismo , Histona Desacetilasa 1/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Oxidorreductasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Aminoquinolinas/farmacología , Animales , Azepinas/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Femenino , Ferritinas/genética , Regulación Neoplásica de la Expresión Génica , Antígenos de Histocompatibilidad/genética , Histona Desacetilasa 1/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Ratones , Ratones Desnudos , Oxidorreductasas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Pirimidinas/farmacología , Factores de Transcripción/genética , Triazoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína de Unión al GTP rac1/genética
14.
Front Oncol ; 11: 760789, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722316

RESUMEN

Acute graft-versus-host disease (GVHD) is the leading cause of non-relapse mortality following allogeneic hematopoietic cell transplantation. The majority of patients non-responsive to front line treatment with steroids have an estimated overall 2-year survival rate of only 10%. Bromodomain and extra-terminal domain (BET) proteins influence inflammatory gene transcription, and therefore represent a potential target to mitigate inflammation central to acute GVHD pathogenesis. Using potent and selective BET inhibitors Plexxikon-51107 and -2853 (PLX51107 and PLX2853), we show that BET inhibition significantly improves survival and reduces disease progression in murine models of acute GVHD without sacrificing the beneficial graft-versus-leukemia response. BET inhibition reduces T cell alloreactive proliferation, decreases inflammatory cytokine production, and impairs dendritic cell maturation both in vitro and in vivo. RNA sequencing studies in human T cells revealed that BET inhibition impacts inflammatory IL-17 and IL-12 gene expression signatures, and Chromatin Immunoprecipitation (ChIP)-sequencing revealed that BRD4 binds directly to the IL-23R gene locus. BET inhibition results in decreased IL-23R expression and function as demonstrated by decreased phosphorylation of STAT3 in response to IL-23 stimulation in human T cells in vitro as well as in mouse donor T cells in vivo. Furthermore, PLX2853 significantly reduced IL-23R+ and pathogenic CD4+ IFNγ+ IL-17+ double positive T cell infiltration in gastrointestinal tissues in an acute GVHD murine model. Our findings identify a role for BET proteins in regulating the IL-23R/STAT3/IL-17 pathway. Based on our preclinical data presented here, PLX51107 will enter clinical trial for refractory acute GVHD in a Phase 1 safety, biological efficacy trial.

15.
Cancers (Basel) ; 13(14)2021 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-34298684

RESUMEN

Gemcitabine is used to treat pancreatic cancer (PC), but is not curative. We sought to determine whether gemcitabine + a BET bromodomain inhibitor was superior to gemcitabine, and identify proteins that may contribute to the efficacy of this combination. This study was based on observations that cell cycle dysregulation and DNA damage augment the efficacy of gemcitabine. BET inhibitors arrest cells in G1 and allow increases in DNA damage, likely due to inhibition of expression of DNA repair proteins Ku80 and RAD51. BET inhibitors (JQ1 or I-BET762) + gemcitabine were synergistic in vitro, in Panc1, MiaPaCa2 and Su86 PC cell lines. JQ1 + gemcitabine was more effective in vivo than either drug alone in patient-derived xenograft models (P < 0.01). Increases in the apoptosis marker cleaved caspase 3 and DNA damage marker γH2AX paralleled antitumor efficacy. Notably, RNA-seq data showed that JQ1 + gemcitabine selectively inhibited HMGCS2 and APOC1 ~6-fold, compared to controls. These proteins contribute to cholesterol biosynthesis and lipid metabolism, and their overexpression supports tumor cell proliferation. IPA data indicated that JQ1 + gemcitabine selectively inhibited the LXR/RXR activation pathway, suggesting the hypothesis that this inhibition may contribute to the observed in vivo efficacy of JQ1 + gemcitabine.

16.
Acta Pharm Sin B ; 11(5): 1286-1299, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34094834

RESUMEN

The bromodomain and extraterminal (BET) family member BRD4 is pivotal in the pathogenesis of cardiac hypertrophy. BRD4 induces hypertrophic gene expression by binding to the acetylated chromatin, facilitating the phosphorylation of RNA polymerases II (Pol II) and leading to transcription elongation. The present study identified a novel post-translational modification of BRD4: poly(ADP-ribosyl)ation (PARylation), that was mediated by poly(ADP-ribose)polymerase-1 (PARP1) in cardiac hypertrophy. BRD4 silencing or BET inhibitors JQ1 and MS417 prevented cardiac hypertrophic responses induced by isoproterenol (ISO), whereas overexpression of BRD4 promoted cardiac hypertrophy, confirming the critical role of BRD4 in pathological cardiac hypertrophy. PARP1 was activated in ISO-induced cardiac hypertrophy and facilitated the development of cardiac hypertrophy. BRD4 was involved in the prohypertrophic effect of PARP1, as implied by the observations that BRD4 inhibition or silencing reversed PARP1-induced hypertrophic responses, and that BRD4 overexpression suppressed the anti-hypertrophic effect of PARP1 inhibitors. Interactions of BRD4 and PARP1 were observed by co-immunoprecipitation and immunofluorescence. PARylation of BRD4 induced by PARP1 was investigated by PARylation assays. In response to hypertrophic stimuli like ISO, PARylation level of BRD4 was elevated, along with enhanced interactions between BRD4 and PARP1. By investigating the PARylation of truncation mutants of BRD4, the C-terminal domain (CTD) was identified as the PARylation modification sites of BRD4. PARylation of BRD4 facilitated its binding to the transcription start sites (TSS) of hypertrophic genes, resulting in enhanced phosphorylation of RNA Pol II and transcription activation of hypertrophic genes. The present findings suggest that strategies targeting inhibition of PARP1-BRD4 might have therapeutic potential for pathological cardiac hypertrophy.

17.
Eur Urol ; 80(1): 71-81, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33785255

RESUMEN

CONTEXT: In addition to genetic alterations, epigenetic alterations play a crucial role during prostate cancer progression. A better understanding of the epigenetic factors that promote prostate cancer progression may lead to the design of rational therapeutic strategies to target prostate cancer more effectively. OBJECTIVE: To systematically review recent literature on the role of epigenetic factors in prostate cancer and highlight key preclinical and translational data with epigenetic therapies. EVIDENCE ACQUISITION: We performed a systemic literature search in PubMed. At the request of the editors, we limited our search to articles published between January 2015 and August 2020 in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Clinical trials targeting epigenetic factors were retrieved from clinicaltrials.gov. EVIDENCE SYNTHESIS: We retrieved 1451 articles, and 62 were finally selected for review. Twelve additional foundational studies outside this time frame were also included. Findings from both preclinical and clinical studies were reviewed and summarized. We also discuss 12 ongoing clinical studies with epigenetic targeted therapies. CONCLUSIONS: Epigenetic mechanisms impact prostate cancer progression. Understanding the role of specific epigenetic factors is critical to determine how we may improve prostate cancer treatment and modulate resistance to standard therapies. Recent preclinical studies and ongoing or completed clinical studies with epigenetic therapies provide a useful roadmap for how to best deploy epigenetic therapies clinically to target prostate cancer. PATIENT SUMMARY: Epigenetics is a process by which gene expression is regulated without changes in the DNA sequence itself. Oftentimes, epigenetic changes influence cellular behavior and contribute to cancer development or progression. Understanding how epigenetic changes occur in prostate cancer is the first step toward therapeutic targeting in patients. Importantly, laboratory-based studies and recently completed and ongoing clinical trials suggest that drugs targeting epigenetic factors are promising. More work is necessary to determine whether this class of drugs will add to our existing treatment arsenal in prostate cancer.


Asunto(s)
Preparaciones Farmacéuticas , Neoplasias de la Próstata , Biomarcadores , Metilación de ADN , Epigénesis Genética , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética
18.
Front Immunol ; 12: 626255, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717143

RESUMEN

Natural killer (NK) cells are innate lymphocytes that play a pivotal role in the immune surveillance and elimination of transformed or virally infected cells. Using a chemo-genetic approach, we identify BET bromodomain containing proteins BRD2 and BRD4 as central regulators of NK cell functions, including direct cytokine secretion, NK cell contact-dependent inflammatory cytokine secretion from monocytes as well as NK cell cytolytic functions. We show that both BRD2 and BRD4 control inflammatory cytokine production in NK cells isolated from healthy volunteers and from rheumatoid arthritis patients. In contrast, knockdown of BRD4 but not of BRD2 impairs NK cell cytolytic responses, suggesting BRD4 as critical regulator of NK cell mediated tumor cell elimination. This is supported by pharmacological targeting where the first-generation pan-BET bromodomain inhibitor JQ1(+) displays anti-inflammatory effects and inhibit tumor cell eradication, while the novel bivalent BET bromodomain inhibitor AZD5153, which shows differential activity towards BET family members, does not. Given the important role of both cytokine-mediated inflammatory microenvironment and cytolytic NK cell activities in immune-oncology therapies, our findings present a compelling argument for further clinical investigation.


Asunto(s)
Inflamación/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Azepinas/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinas , Voluntarios Sanos , Compuestos Heterocíclicos con 2 Anillos/farmacología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Piperazinas/farmacología , Pirazoles/farmacología , Piridazinas/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Triazoles/farmacología
19.
Acta Pharm Sin B ; 11(1): 156-180, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33532187

RESUMEN

This study was aimed to design the first dual-target small-molecule inhibitor co-targeting poly (ADP-ribose) polymerase-1 (PARP1) and bromodomain containing protein 4 (BRD4), which had important cross relation in the global network of breast cancer, reflecting the synthetic lethal effect. A series of new BRD4 and PARP1 dual-target inhibitors were discovered and synthesized by fragment-based combinatorial screening and activity assays that together led to the chemical optimization. Among these compounds, 19d was selected and exhibited micromole enzymatic potencies against BRD4 and PARP1, respectively. Compound 19d was further shown to efficiently modulate the expression of BRD4 and PARP1. Subsequently, compound 19d was found to induce breast cancer cell apoptosis and stimulate cell cycle arrest at G1 phase. Following pharmacokinetic studies, compound 19d showed its antitumor activity in breast cancer susceptibility gene 1/2 (BRCA1/2) wild-type MDA-MB-468 and MCF-7 xenograft models without apparent toxicity and loss of body weight. These results together demonstrated that a highly potent dual-targeted inhibitor was successfully synthesized and indicated that co-targeting of BRD4 and PARP1 based on the concept of synthetic lethality would be a promising therapeutic strategy for breast cancer.

20.
Cell Rep ; 34(7): 108749, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33596420

RESUMEN

Aberrant expression of nuclear transporters and deregulated subcellular localization of their cargo proteins are emerging as drivers and therapeutic targets of cancer. Here, we present evidence that the nuclear exporter exportin-6 and its cargo profilin-1 constitute a functionally important and frequently deregulated axis in cancer. Exportin-6 upregulation occurs in numerous cancer types and is associated with poor patient survival. Reducing exportin-6 level in breast cancer cells triggers antitumor effects by accumulating nuclear profilin-1. Mechanistically, nuclear profilin-1 interacts with eleven-nineteen-leukemia protein (ENL) within the super elongation complex (SEC) and inhibits the ability of the SEC to drive transcription of numerous pro-cancer genes including MYC. XPO6 and MYC are positively correlated across diverse cancer types including breast cancer. Therapeutically, exportin-6 loss sensitizes breast cancer cells to the bromodomain and extra-terminal (BET) inhibitor JQ1. Thus, exportin-6 upregulation is a previously unrecognized cancer driver event by spatially inhibiting nuclear profilin-1 as a tumor suppressor.


Asunto(s)
Carioferinas/metabolismo , Neoplasias/metabolismo , Profilinas/antagonistas & inhibidores , Profilinas/metabolismo , Animales , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Carioferinas/genética , Células MCF-7 , Ratones , Ratones Desnudos , Neoplasias/genética , Profilinas/genética , Análisis de Supervivencia , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA