Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Behav Neurosci ; 16: 990354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311865

RESUMEN

Anorexia nervosa is one of the most debilitating mental illnesses that emerges during adolescence, especially among females. Anorexia nervosa is characterized by severe voluntary food restriction and compulsive exercising, which combine to cause extreme body weight loss. We use activity-based anorexia (ABA), an animal model, to investigate the neurobiological bases of vulnerability to anorexia nervosa. This is a Mini-Review, focused on new ideas that have emerged based on recent findings from the Aoki Lab. Our findings point to the cellular and molecular underpinnings of three ABA phenomena: (1) age-dependence of ABA vulnerability; (2) individual differences in the persistence of ABA vulnerability during adolescence; (3) GABAergic synaptic plasticity in the hippocampus and the prefrontal cortex that contributes to the suppression of the maladaptive anorexia-like behaviors. We also include new data on the contribution to ABA vulnerability by cell type-specific knockdown of a GABA receptor subunit, α4, in dorsal hippocampus. Although the GABA system recurs as a key player in the gain of ABA resilience, the data predict why targeting the GABA system, singularly, may have only limited efficacy in treating anorexia nervosa. This is because boosting the GABAergic system may suppress the maladaptive behavior of over-exercising but could also suppress food consumption. We hypothesize that a sub-anesthetic dose of ketamine may be the magic bullet, since a single injection of this drug to mid-adolescent female mice undergoing ABA induction enhances food consumption and reduces wheel running, thereby reducing body weight loss through plasticity at excitatory synaptic inputs to both excitatory and inhibitory neurons. The same treatment is not as efficacious during late adolescence but multiple dosing of ketamine can suppress ABA vulnerability partially. This caveat underscores the importance of conducting behavioral, synaptic and molecular analyses across multiple time points spanning the developmental stage of adolescence and into adulthood. Since this is a Mini-Review, we recommend additional literature for readers seeking more comprehensive reviews on these subjects.

2.
Int J Mol Sci ; 23(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35628656

RESUMEN

Among types of trinucleotide repeats, there is some disproportion in the frequency of their occurrence in the human exome. This research presents new data describing the folding and thermodynamic stability of short, tandem RNA repeats of 23 types, focusing on the rare, yet poorly analyzed ones. UV-melting experiments included the presence of PEG or potassium and magnesium ions to determine their effect on the stability of RNA repeats structures. Rare repeats predominantly stayed single-stranded but had the potential for base pairing with other partially complementary repeat tracts. A coexistence of suitably complementary repeat types in a single RNA creates opportunities for interaction in the context of the secondary structure of RNA. We searched the human transcriptome for model RNAs in which different, particularly rare trinucleotide repeats coexist and selected the GABRA4 and CHIC1 RNAs to study intramolecular interactions between the repeat tracts that they contain. In vitro secondary structure probing results showed that the UAA and UUG repeat tracts, present in GABRA4 3' UTR, form a double helix, which separates one of its structural domains. For the RNA CHIC1 ORF fragment containing four short AGG repeat tracts and the CGU tract, we proved the formation of quadruplexes that blocked reverse transcription.


Asunto(s)
ARN , Repeticiones de Trinucleótidos , Emparejamiento Base , Humanos , ARN/química , ARN/genética , Termodinámica
3.
Noro Psikiyatr Ars ; 58(3): 171-175, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34526837

RESUMEN

INTRODUCTION: Autism spectrum disorder is a genetically and phenotypically heterogeneous group. Genetic studies carried out to date have suggested that both common and rare genetic variants play a role in the etiology of this disorder. In our study, we aimed to investigate the effect of FOXP2, GRIN2B, KATNAL2 and GABRA4 gene variants in the pathogenesis of autism spectrum disorder. METHOD: In our prospectively planned study, all exons and exon-intron junctions of FOXP2, GRIN2B, KATNAL2 and GABRA4 genes were screened by next generation sequencing analysis in 96 patients who diagnosed with autism spectrum disorder. RESULTS: In our study, the average age was 10.1 and the male/female ratio was 75/21. Pathogenic or likely pathogenic variants were not detected in FOXP2, GRIN2B, KATNAL2 and GABRA4 genes, however, 69 intronic variants of unknown clinical significance were detected in 50 cases (52%). Among those, 26 were in the GABRA4 gene, 22 in the FOXP2 gene, 13 in the KATNAL2 gene, and 8 in the GRIN2B gene. Twenty three of these 69 variants were novel that were not previously reported in the literature. CONCLUSION: In our study, we could not identify a relationship between the autism spectrum disorder and FOXP2, GRIN2B, KATNAL2 and GABRA4 genes. Identifying genetic risk factors that play a role in the etiopathogenesis of autism spectrum disorder will contribute significantly to understanding the molecular mechanisms of the disease and the development of new treatment strategies. In this context, comprehensive molecular genetic studies such as whole exome or whole genome sequencing are required with higher number of cases in different populations.

4.
Aging (Albany NY) ; 12(23): 24357-24370, 2020 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-33229622

RESUMEN

Premenstrual dysphoric disorder (PMDD), a form of premenstrual syndrome (PMS), is a severe health disturbance that affects a patient's emotions; it is caused by periodic psychological symptoms, and its pathogenesis remains unclear. As depression-like symptoms are found in a majority of clinical cases, a reliable animal model of premenstrual depression is indispensable to understand the pathogenesis. Herein, we describe a novel rat model of premenstrual depression, based on the forced swimming test, with a regular estrous cycle. The results showed that in the estrous cycle, the depression-like behavior of rats occurred in the non-receptive phase and disappeared in the receptive phase. Following ovariectomy, the depression-like symptoms disappeared and returned after a hormone priming regimen. Moreover, fluoxetine, an anti-depressant, could reverse the behavioral symptoms in these model rats with normal estrous cycle. Further, the model rats showed significant changes in the serum levels of estrogen and progesterone, hippocampal levels of allopregnanolone, 5-hydroxytryptamine, norepinephrine, and γ-aminobutyric acid (GABA), and in the expression of GABAA receptor 4α subunit, all of which were reversed to physiological levels by fluoxetine. Overall, we established a reliable and standardized rat model of premenstrual depression, which may facilitate the elucidation of PMS/PMDD pathogenesis and development of related therapies.


Asunto(s)
Antidepresivos de Segunda Generación/farmacología , Conducta Animal/efectos de los fármacos , Estradiol/sangre , Terapia de Reemplazo de Estrógeno , Ciclo Estral/efectos de los fármacos , Fluoxetina/farmacología , Hipocampo/efectos de los fármacos , Trastorno Disfórico Premenstrual/tratamiento farmacológico , Progesterona/sangre , Animales , Modelos Animales de Enfermedad , Ciclo Estral/sangre , Femenino , Hipocampo/metabolismo , Hipocampo/fisiopatología , Ovariectomía , Trastorno Disfórico Premenstrual/sangre , Trastorno Disfórico Premenstrual/fisiopatología , Trastorno Disfórico Premenstrual/psicología , Ratas Wistar , Natación
5.
Mol Autism ; 11(1): 13, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32033586

RESUMEN

Autism spectrum disorder (ASD) is a neuronal developmental disorder with impaired social interaction and communication, often with abnormal intelligence and comorbidity with epilepsy. Disturbances in synaptic transmission, including the GABAergic, glutamatergic, and serotonergic systems, are known to be involved in the pathogenesis of this disorder, yet we do not know if there is a common molecular mechanism. As mutations in the GABAergic receptor subunit gene GABRA4 are reported in patients with ASD, we eliminated the Gabra4 gene in mice and found that the Gabra4 knockout mice showed autistic-like behavior, enhanced spatial memory, and attenuated susceptibility to pentylenetetrazol-induced seizures, a constellation of symptoms resembling human high-functioning autism. To search for potential molecular pathways involved in these phenotypes, we performed a hippocampal transcriptome profiling, constructed a hippocampal interactome network, and revealed an upregulation of the NMDAR system at the center of the converged pathways underlying high-functioning autism-like and anti-epilepsy phenotypes.


Asunto(s)
Trastorno del Espectro Autista/genética , Epilepsia/genética , Aprendizaje , Receptores de GABA-A/genética , Receptores de N-Metil-D-Aspartato , Animales , Conducta Animal , Hipocampo/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Transcriptoma
6.
Eur J Med Genet ; 63(5): 103876, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32028044

RESUMEN

Chromosomal copy number variants (CNVs) are known contributors to neurodevelopmental conditions such as autism spectrum disorder (ASD). Both array comparative genomic hybridization and next-generation sequencing techniques have led to an increased detection of small CNVs and the identification of many candidate susceptibility genes for ASD. We report familial inheritance of two CNVs that include genes with known involvement in neurodevelopment. These CNVs are found in various combinations among four siblings with autism spectrum disorder, as well as in their neurodevelopmentally normal parents. We describe a 2.4 Mb duplication of 4p12 to 4p11 that includes GABRA4 (OMIM: 137141) and other GABA receptor genes, as well as a 246 kb deletion at 22q11.22 involving the TOP3B gene (OMIM: 603582). The maternally inherited 4p duplication was detected in three siblings, two of whom also had the paternally inherited 22q11.22 deletion. The fourth sibling only had the 22q11.22 deletion. These CNVs have rarely been reported in the literature. Upon review, a single publication was found describing a similar 4p duplication in three generations of a family with neurodevelopmental and neuropsychiatric disorders, as well as in an unrelated patient with autism (Polan et al., 2014). TOP3B falls within the distal 22q11.22 microdeletion syndrome and has been associated with schizophrenia, neurodevelopmental disorders including epilepsy, and cardiac defects. The identification of this family contributes to the understanding of specific genetic contributors to neurodevelopmental disorders and an emerging phenotype associated with proximal 4p duplication.


Asunto(s)
Trastorno Autístico/genética , ADN-Topoisomerasas de Tipo I/genética , Receptores de GABA-A/genética , Trastorno Autístico/patología , Preescolar , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Lactante , Masculino
7.
Mol Cell Neurosci ; 90: 33-48, 2018 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-29684457

RESUMEN

Activity-based anorexia (ABA) is an animal model of anorexia nervosa, a mental illness with highest mortality and with onset that is most frequently during adolescence. We questioned whether vulnerability of adolescent mice to ABA differs between sexes and whether individual differences in resilience are causally linked to α4ßδ-GABAAR expression. C57BL6/J WT and α4-KO adolescent male and female mice underwent ABA induction by combining wheel access with food restriction. ABA vulnerability was measured as the extent of food restriction-evoked hyperactivity on a running wheel and body weight losses. α4ßδ-GABAAR levels at plasma membranes of pyramidal cells in dorsal hippocampus were assessed by electron microscopic immunocytochemistry. Temporal patterns and extent of weight loss during ABA induction were similar between sexes. Both sexes also exhibited individual differences in ABA vulnerability. Correlation analyses revealed that, for both sexes, body weight changes precede and thus are likely to drive suppression of wheel running. However, the suppression was during the food-anticipatory hours for males, while for females, suppression was delayed by a day and during food-access hours. Correspondingly, only females adaptively increased food intake. ABA induced up-regulation of α4ßδ-GABAARs at plasma membranes of dorsal hippocampal pyramidal cells of females, and especially those females exhibiting resilience. Conversely, α4-KO females exhibited greater food restriction-evoked hyperactivity than WT females. In contrast, ABA males did not up-regulate α4ßδ-GABAARs, did not exhibit genotype differences in vulnerability, and exhibited no correlation between plasmalemmal α4ßδ-GABAARs and ABA resilience. Thus, food restriction-evoked hyperactivity is driven by anxiety but can be suppressed through upregulation of hippocampal α4ßδ-GABAARs for females but not for males. This knowledge of sex-related differences in the underlying mechanisms of resilience to ABA indicates that drugs targeting α4ßδ-GABAARs may be helpful for treating stress-induced anxiety and anorexia nervosa of females but not males.

8.
Neurogenetics ; 19(1): 17-26, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29151244

RESUMEN

Alterations of the gamma-aminobutyric acid (GABA) signaling system has been strongly linked to the pathophysiology of autism spectrum disorder (ASD). Genetic associations of common variants in GABA receptor subunits, in particular GABRA4 on chromosome 4p12, with ASD have been replicated by several studies. Moreover, molecular investigations have identified altered transcriptional and translational levels of this gene and protein in brains of ASD individuals. Since the genotyped common variants are likely not the functional variants contributing to the molecular consequences or underlying ASD phenotype, this study aims to examine rare sequence variants in GABRA4, including those outside the protein coding regions of the gene. We comprehensively re-sequenced the entire protein coding and noncoding portions of the gene and putative regulatory sequences in 82 ASD individuals and 55 developmentally typical pediatric controls, all homozygous for the most significant previously associated ASD risk allele (G/G at rs1912960). We identified only a single common, coding variant, and no association of any single marker or set of variants with ASD. Functional annotation of noncoding variants identified several rare variants in putative regulatory sites. Finally, a rare variant unique to ASD cases, in an evolutionary conserved site of the 3'UTR, shows a trend toward decreasing gene expression. Hence, GABRA4 rare variants in noncoding DNA may be variants of modest physiological effects in ASD etiology.


Asunto(s)
Trastorno del Espectro Autista/genética , Receptores de GABA-A/genética , Regiones no Traducidas 3' , Adolescente , Adulto , Alelos , Niño , Preescolar , Cromosomas Humanos Par 4/genética , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Polimorfismo de Nucleótido Simple , Subunidades de Proteína/genética , Población Blanca/genética , Adulto Joven
9.
Front Microbiol ; 8: 2408, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29255456

RESUMEN

Toxoplasma gondii, as a zoonotic protozoan parasite, develops sophisticated strategies to manipulate hosts for efficient intracellular survival. After successful invasion, T. gondii injects many effector proteins into host cells for various purposes. TgROP16 (T. gondii rhoptry protein 16), which is secreted from rhoptries into host cells, can activate the host STAT (signal transducer and activator of transcription) signaling pathway through phosphorylation of STAT3 and STAT6. However, whether there are other host proteins modulated by TgROP16 is currently unknown. In this study, yeast two-hybrid (Y2H) screen was used to look for additional host proteins interacting with TgROP16. Yeast cells expressing a mouse cDNA library cloned into the prey vector were used to mate with yeasts expressing ROP16 without signal peptide. Two mouse proteins, Dnaja1 (DnaJ heat shock protein family member A1) and Gabra4 (gamma-aminobutyric acid A receptor, subunit alpha 4) were identified to interact with ROP16 from this screen. Further analysis suggested that the Predomain of ROP16 played key roles in mediating interactions with these host proteins, whereas the contribution from the Kinase domain was minor. The interactions between Dnaja1 and different parts of ROP16 were also estimated in vivo by co-immunoprecipitation. The results showed that the Predomain of ROP16 was the major region to interact with Dnaja1, which is consistent with the Y2H results. Based on the gene ontology analysis, Dnaja1 is predicted to participate in stress response while Gabra4 is involved in the system development process. The discovery of new host proteins that interact with ROP16 of T. gondii will help us to further investigate the functions of this effector proteins during T. gondii infection.

10.
Brain Behav ; 5(8): e00355, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26357588

RESUMEN

BACKGROUND: Alcohol abuse and dependence are a serious public health problem. A large number of alcohol-regulated genes, (ARGs) are known to be influenced by alcohol use and withdrawal (AW), and recent evidence suggests that neuroadaptation to alcohol may be due in part to epigenetic changes in the expression of ARGs. Gabra4, which encodes the α4 subunit of GABAA receptors (GABAARs), is one of a number of ARGs that show remarkable plasticity in response to alcohol, being rapidly upregulated by acute alcohol exposure. This study addressed the effects of AW on changes in the expression of Gabra4 and related genes that encode other subunits of GABAARs, and the potential regulation of Gabra4 by microRNAs. METHODS: We studied gene and microRNAs expression, using RT-PCR and microRNA microarray in cultured cortical neurons treated with alcohol, which was then removed in order to simulate AW in vitro. We also used microRNA mimics or inhibitors, and a promoter-reporter construct carrying the 3'UTR of Gabra4. RESULTS: Eleven hours after removal of alcohol, Gabra4 was downregulated, with a modest increase in the expression of Gabrg2, but no change in the expression of Gabra1, Gabrd, or Gabrb2. microRNA profiling in neurons undergoing AW revealed upregulation in the expression of miR-155, miR-186, miR-24, and miR-375 after 8 h of AW. Transfection with molecular mimics of miR-186, miR-24, or miR-375 also downregulated Gabra4 expression, whereas transfection with the corresponding inhibitors of these microRNAs normalized Gabra4 expression in AW neurons to the level measured in control neurons. Promoter-reporter experiments supported the idea that miR-155, miR-186, miR-24, miR-27b, or miR-375 bind to the 3'UTR of Gabra4 and thereby inhibit protein production. CONCLUSIONS: Our data suggest that AW decreases Gabra4 expression, and that this may be mediated in part by the induction of specific microRNAs in cortical neurons during AW.


Asunto(s)
Corteza Cerebral/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Receptores de GABA-A/biosíntesis , Receptores de GABA-A/genética , Animales , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Etanol/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Síndrome de Abstinencia a Sustancias/genética , Síndrome de Abstinencia a Sustancias/metabolismo
11.
J Neurochem ; 133(4): 489-500, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25708312

RESUMEN

The homeostatic regulation of neuronal activity in glutamatergic and GABAergic synapses is critical for neural circuit development and synaptic plasticity. The induced expression of the transcription factor early growth response 1 (Egr-1) in neurons is tightly associated with many forms of neuronal activity, but the underlying target genes in the brain remained to be elucidated. This study uses a quantitative real-time PCR approach, in combination with in vivo chromatin immunoprecipitation, and reveals that GABAA receptor subunit, GABRA2 (α2), GABRA4 (α4), and GABRQ (θ) genes, are transcriptional targets of Egr-1. Transfection of a construct that over-expresses Egr-1 in neuroblastoma (Neuro2A) cells up-regulates the α2, α4, and θ subunits. Given that Egr-1 knockout mice display less GABRA2, GABRA4, and GRBRQ mRNA in the hippocampus, and that Egr-1 directly binds to their promoters and induces mRNA expression, the present findings support a role for Egr-1 as a major regulator for altered GABAA receptor composition in homeostatic plasticity, in a glutamatergic activity-dependent manner. The early growth response 1 (Egr-1) is an inducible transcription factor to mediate rapid gene expression by neuronal activity. However, its underlying molecular target genes and mechanisms are not fully understood. We suggest that GABAA receptor subunits, GABRA2 (α2), GABRA4 (α4), and GABRQ (θ) genes are transcriptional targets of Egr-1. Neuronal activity-dependent up-regulation of Egr-1 might lead to altered subtypes of GABAA receptors for the maintenance of homeostatic excitatory and inhibitory balance for the regulation of synaptic strength.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Regulación de la Expresión Génica/genética , Hipocampo/citología , Hipocampo/metabolismo , Neuronas/metabolismo , Receptores de GABA-A/metabolismo , Animales , Bicuculina/farmacología , Células Cultivadas , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/fisiología , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Receptores de GABA-A/genética , Bloqueadores de los Canales de Sodio/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Tetrodotoxina/farmacología , Valina/análogos & derivados , Valina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA