Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Infect Genet Evol ; 123: 105629, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936527

RESUMEN

Hydatigera kamiyai (H. kamiyai) is a new species within Hydatigera that has recently been resurrected. Voles and cats are hosts of H. kamiyai and have a certain impact on its health and economy. Moreover, the Qinghai-Tibetan plateau (QTP) is a research hotspot representing Earth's biodiversity, as its unique geographical environment and climatic conditions support the growth of a variety of mammals and provide favorable conditions for various parasites to complete their life history. The aim of this study was to reveal the phylogenetic relationships and divergence times of H. kamiyai strains isolated from Neodon fuscus on the QTP using morphological and molecular methods. In this study, we morphologically observed H. kamiyai and sequenced the whole mitochondrial genome. Then, we constructed phylogenetic trees with the maximum likelihood (ML) and Bayesian inference (BI) methods. The GTR alternative model was selected for divergence time analysis. These data demonstrated that the results were consistent with the general morphological characteristics of Hydatigera. The whole genome of H. kamiyai was 13,822 bp in size, and the A + T content (73%) was greater than the G + C content (27%). The Ka/Ks values were all <1, indicating that all 13 protein-coding genes (13 PCGs) underwent purifying selection during the process of evolution. The phylogenetic tree generated based on the 13 PCGs, cytochrom oxidase subunit I (COI), 18S rRNA and 28S rRNA revealed close phylogenetic relationships between H. kamiyai and Hydatigera, with high node support for the relationship. The divergence time based on 13 PCGs indicated that H. kamiyai diverged approximately 11.3 million years ago (Mya) in the Miocene. Interestingly, it diverged later than the period of rapid uplift in the QTP. We also speculated that H. kamiyai differentiation was caused by host differentiation due to the favorable living conditions brought about by the uplift of the QTP. As there have been relatively few investigations on the mitochondrial genome of H. kamiyai, our study could provide factual support for further studies of H. kamiyai on the QTP. We also emphasized the importance of further studies of its hosts, Neodon fuscus and cats, which will be important for further understanding the life cycle of H. kamiyai.

2.
Microbiol Spectr ; 12(5): e0236723, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38572997

RESUMEN

Species delimitation based on lineage definition has become increasingly popular. However, these methods have been limited, especially for species that lack genomic data and are morphologically similar. The trickiest part for the species identification is that the interspecific and intraspecific boundaries are vague. Taking Prorocentrum (Dinophyta) as an example, analysis of cell morphology, growth, and toxin synthesis in both species of P. lima and P. arenarium does not provide a reliable basis for species delineation. However, through phylogenetic and genetic distance analyses of their ITS and LSU sequences, establishment of evolutionary tree based on orthologous gene sequences, and combining the results of automatic barcode gap discovery and Poisson tree processes models, it was sustained that P. arenarium does not belong to the P. lima complex and should be considered as an independent species. Interspecies genetic evolution analysis revealed that P. lima and P. arenarium may contribute to evolutionary direction that favors combating reverse environmental factors. In P. lima, viral invasion may be one of the reasons for its large genome size. In the study, P. lima complex has been selected as an example to enhance the taxonomic identification of microalgae through molecular and genetic evolution, offering valuable insights into refining taxonomic identification and promoting microbial biodiversity research in other species.IMPORTANCEMicroalgae, especially the species known as Prorocentrum, have received significant attention due to their ability to trigger harmful algal blooms and produce toxins. However, the boundaries between species and within species are ambiguous. Clear and comprehensive species delineation indicates that Prorocentrum arenarium should be considered as an independent species, separate from the Prorocentrum lima complex. Improving the classification and identification of microalgae through molecular and genetic evolution will provide reference points for other cryptic species. Prorocentrum occupy multiple ecological niches in marine environments, and studying their evolutionary direction contributes to understanding their ecological adaptations and community succession.


Asunto(s)
Dinoflagelados , Evolución Molecular , Microalgas , Filogenia , Microalgas/genética , Microalgas/clasificación , Dinoflagelados/genética , Dinoflagelados/clasificación , Código de Barras del ADN Taxonómico
3.
Evol Bioinform Online ; 18: 11769343221134400, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36404992

RESUMEN

Vibrio vulnificus is an emergent marine pathogen and is the cause of a deadly septicemia. However, the evolution mechanism of antibiotic-resistant genes (ARGs) is still unclear. Twenty-two high-quality complete genomes of V. vulnificus were obtained and grouped into 16 clinical isolates and 6 environmental isolates. Genomic annotations found 23 ARG orthologous genes, among which 14 ARGs were shared by V. vulnificus and other Vibrio members. Furthermore, those ARGs were located in their chromosomes, rather than in the plasmids. Phylogenomic reconstruction based on single-copy orthologous protein sequences and ARG protein sequences revealed that clinical and environmental V. vulnificus isolates were in a scattered distribution. The calculation of non-synonymous and synonymous substitutions indicated that most of ARGs evolved under purifying selection with the Ka/Ks ratios lower than one, while h-ns, rsmA, and soxR in several clinical isolates evolved under the positive selection with Ka/Ks ratios >1. Our result indicated that V. vulnificus antibiotic-resistant armory was not only confined to clinical isolates, but to environmental ones as well and clinical isolates inclined to accumulate beneficial non-synonymous substitutions that could be retained to improve competitiveness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA