Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Trends Plant Sci ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39127600

RESUMEN

Precise agrochemical delivery to crops is vital for sustainable agricultural productivity. Recently, Liu et al. developed highly biocompatible smart microcarriers for precise agrochemical delivery to plants that can effectively provide nutrition while reducing runoff. This innovative and precise agrochemical delivery system represents a significant advancement in efficient and eco-friendly crop cultivation practices.

2.
Int J Biol Macromol ; 271(Pt 2): 132511, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772471

RESUMEN

Green Tea polyphenols (GTP) are important bioactive compounds with excellent physiological regulation functions. However, they are easily destroyed by the gastric environment during digestion. In this work, a sodium alginate (SA)-gellan gum (GG) interpenetrating network (IPN) hydrogel was synthesized to protect and delivery GTP. The ratio of SA/GG significantly affects the network structure of IPN hydrogels and the performance of delivering GTP. The hydrogel formed by interpenetrating 20 % GG with 80 % SA as the main network had the highest water uptake (55 g/g), holding capacity (950 mg/g), and freeze-thaw stability, with springiness reaching 0.933 and hardness reaching 1300 g, which due to the filling effect and non-covalent interaction. Rheological tests showed that the crosslink density of IPN hydrogel in SA-dominated network was improved by the addition of GG to make it better bound to GTP, and the higher water uptake meant that the system could absorb more GTP-containing solution. This IPN hydrogel maintained 917.3 mg/g encapsulation efficiency at the highest loading capacity (1080 mg/g) in tests as delivery system. In in vitro digestion simulations, owing to the pH responsiveness, the IPN hydrogel reduced the loss of GTP in gastric fluid, achieving a bioaccessibility of 71.6 % in the intestinal tract.


Asunto(s)
Disponibilidad Biológica , Hidrogeles , Polifenoles , , Hidrogeles/química , Polifenoles/química , Polifenoles/farmacocinética , Té/química , Alginatos/química , Polisacáridos Bacterianos/química , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Reología , Portadores de Fármacos/química
3.
Plants (Basel) ; 12(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375973

RESUMEN

Fertilizer boron (B) and molybdenum (Mo) were provided to contrasting cultivars of subirrigated pot chrysanthemums at approximately 6-100% of current industry standards in an otherwise balanced nutrient solution during vegetative growth, and then all nutrients were removed during reproductive growth. Two experiments were conducted for each nutrient in a naturally lit greenhouse using a randomized complete block split-plot design. Boron (0.313-5.00 µmol L-1) or Mo (0.031-0.500 µmol L-1) was the main plot, and cultivar was the sub-plot. Petal quilling was observed with leaf-B of 11.3-19.4 mg kg-1 dry mass (DM), whereas Mo deficiency was not observed with leaf-Mo of 1.0-3.7 mg kg-1 DM. Optimized supplies resulted in leaf tissue levels of 48.8-72.5 mg B kg-1 DM and 1.9-4.8 mg Mo kg-1 DM. Boron uptake efficiency was more important than B utilization efficiency in sustaining plant/inflorescence growth with decreasing B supply, whereas Mo uptake and utilization efficiencies appeared to have similar importance in sustaining plant/inflorescence growth with decreasing Mo supply. This research contributes to the development of a sustainable low-input nutrient delivery strategy for floricultural operations, wherein nutrient supply is interrupted during reproductive growth and optimized during vegetative growth.

4.
Sci Total Environ ; 881: 163316, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37028661

RESUMEN

Small particles of size ranging from 1 to 100 nm are referred to as nanoparticles. Nanoparticles have tremendous applications in various sectors, including the areas of food and pharmaceutics. They are being prepared from multiple natural sources widely. Lignin is one such source that deserves special mention due to its ecological compatibility, accessibility, abundance, and low cost. This amorphous heterogeneous phenolic polymer is the second most abundant molecule in nature after cellulose. Apart from being used as a biofuel source, lignin is less explored for its potential at a nano-level. In plants, lignin exhibits cross-linking structures with cellulose and hemicellulose. Numerous advancements have taken place in synthesizing nanolignins for manufacturing lignin-based materials to benefit from the untapped potential of lignin in high-value-added applications. Lignin and lignin-based nanoparticles have numerous applications, but in this review, we are mainly focusing on the applications in the food and pharmaceutical sectors. The exercise we undertake has great relevance as it helps scientists and industries gain valuable insights into lignin's capabilities and exploit its physical and chemical properties to facilitate the development of future lignin-based materials. We have summarized the available lignin resources and their potential in the food and pharmaceutical industries at various levels. This review attempts to understand various methods adopted for the preparation of nanolignin. Furthermore, the unique properties of nano-lignin-based materials and their applications in fields including the packaging industry, emulsions, nutrient delivery, drug delivery hydrogels, tissue engineering, and biomedical applications were well-discussed.


Asunto(s)
Nanopartículas , Nanoestructuras , Lignina/química , Celulosa , Nanopartículas/química , Hidrogeles/química
5.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R694-R699, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36094446

RESUMEN

In healthy near-term women, blood flow to the uteroplacental circulation is estimated as 841 mL/min, which is greater than in other mammalian species. We argue that as uterine venous Po2 sets the upper limit for O2 diffusion to the fetus, high uterine artery blood flow serves to narrow the maternal arterial-to-uterine venous Po2 gradient and thereby raise uterine vein Po2. In support, we show that the reported levels for uterine artery blood flow agree with what is required to maintain normal fetal growth. Although residence at high altitudes (>2,500 m) depresses fetal growth, not all populations are equally affected; Tibetans and Andeans have higher levels of uterine artery blood flow than newcomers and exhibit normal fetal growth. Estimates of uterine venous Po2 from the umbilical blood-gas data available from healthy Andean pregnancies indicate that their high levels of uterine artery blood flow are consistent with their reported, normal birth weights. Unknown, however, are the effects on placental gas exchange of the lower levels of uterine artery blood flow seen in high-altitude newcomers or hypoxia-associated pregnancy complications. We speculate that, by widening the maternal artery to uterine vein Po2 gradient, lower levels of uterine artery blood flow prompt metabolic changes that slow fetal growth to match O2 supply.


Asunto(s)
Placenta , Circulación Placentaria , Animales , Humanos , Embarazo , Femenino , Placenta/metabolismo , Arteria Uterina/metabolismo , Oxígeno , Desarrollo Fetal/fisiología , Mamíferos/metabolismo
6.
Gels ; 8(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36005118

RESUMEN

This study aimed to explore the effects and mechanisms of differently shaped aggregates of ovotransferrin (OVT) particles on oleogel-based Pickering emulsions (OPEs). Medium-chain triglyceride oil-based oleogels were constructed using beeswax, and their gel-sol melting temperatures were investigated. Atomic force microscopy confirmed that both OVT fibrils and OVT spheres were successfully prepared, and the three-phase contact angle measurements indicated that fibrous and spherical aggregates of OVT particles possessed great potential to stabilize the OPEs. Afterward, the oil-in-water OPEs were fabricated using oleogel as the oil phase and OVT fibrils/spheres as the emulsifiers. The results revealed that OPEs stabilized with OVT fibrils (FIB-OPEs) presented a higher degree of emulsification, smaller droplet size, better physical stability and stronger apparent viscosity compared with OPEs stabilized with OVT spheres (SPH-OPEs). The freeze-thaw stability test showed that the FIB-OPEs remained stable after three freeze-thaw cycles, while the SPH-OPEs could barely withstand one freeze-thaw cycle. An in vitro digestion study suggested that OVT fibrils conferred distinctly higher lipolysis (46.0%) and bioaccessibility (62.8%) of curcumin to OPEs.

7.
Adv Sci (Weinh) ; 9(26): e2200841, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35773238

RESUMEN

Nanoparticles are applied as versatile platforms for drug/gene delivery in many applications owing to their long-retention and specific targeting properties in living bodies. However, the delivery mechanism and the beneficial effect of nanoparticle-retention in many organisms remain largely uncertain. Here, the transport and metabolism of mineral nanoparticles in mammary gland during lactation are explored. It is shown that maternal intravenous administration of iron oxide nanoparticles (IONPs; diameter: ≈11.0 nm, surface charge: -29.1 mV, surface area: 1.05 m2 g-1 ) provides elevated iron delivery to mammary gland and increased iron secretion into breast milk, which is inaccessible by classical iron-ion transport approaches such as the transferrin receptor-mediated endocytic pathway. Mammary macrophages and neutrophils are found to play dominant roles in uptake and delivery of IONPs through an unconventional leukocyte-assisted iron secretion pathway. This pathway bypasses the tight iron concentration regulation of liver hepcidin-ferroportin axis and mammary epithelial cells to increase milk iron-ion content derived from IONPs. This work provides keen insight into the metabolic pathway of nanoparticles in mammary gland while offering a new scheme of nutrient delivery for neonate metabolism regulation by using nanosized nutrients.


Asunto(s)
Nanopartículas , Oligoelementos , Femenino , Humanos , Recién Nacido , Hierro/metabolismo , Leucocitos , Leche Humana/metabolismo , Oligoelementos/metabolismo
8.
ACS Nano ; 16(2): 2198-2208, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35142211

RESUMEN

To lower the risk of disease and improve health, many nutrients benefit from intestinal-targeted delivery. Here, we present a nutrient-delivery system based on a pH-responsive "wood scroll", in which nutrients are stored, protected, and controllably released through the rolled structure and natural microchannels of a flexible wood substrate, thus ensuring higher bioactivity as well as prolonged steady release of the nutrient load to the intestine. We loaded the wood's natural microchannels with probiotics as a proof-of-concept demonstration. The probiotic-loaded wood scrolls can survive the simulated conditions of the stomach with a high survival rate (95.40%) and exhibit prolonged release (8 h) of the probiotic load at a constant release rate (4.17 × 108 CFUs/h) in the simulated conditions of the intestine. Moreover, by modifying the macroscopic geometry and microstructures of the wood scrolls, both the nutrient loading and release behaviors can be tuned over a wide range for customized or personalized nutrient management. The wood scrolls can also deliver other types of nutrients, as we demonstrate for tea polyphenols and rapeseed oil. This wood scroll design illustrates a promising structurally controlled strategy for the delivery of enteric nutrients using readily available, low-cost, and biocompatible biomass materials that have a naturally porous structure for nutrient storage, protection, and controlled release.


Asunto(s)
Probióticos , Materiales Biocompatibles , Concentración de Iones de Hidrógeno , Intestinos , Nutrientes , Probióticos/química
9.
Carbohydr Polym ; 279: 119014, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980357

RESUMEN

Over the last 20 years, polysaccharide-based materials have garnered attention in the enhanced efficiency fertilizers (EEFs) research. Biodegradability, non-toxicity, water-solubility, swellability, and ease of chemical modification make these polymers suitable for agricultural applications. In this review, the polysaccharides-based EEFs advances are summarized over the polymer and co-materials selection, the methods, and the chemical/structure aspects necessary for an appropriate production. We also briefly discuss terminologies, nutrient release mechanisms, biodegradation, and future trends. The most used polysaccharides are chitosan, starch, and alginate, and the non-Fickian model most describes the release mechanism. It is dependent on the relaxation of polymer chains by the matrix swelling followed by the nutrient diffusion. EEFs-polymers-based should be designed as more packed and less porous structures to avoid the immediate contact of the fertilizer with the surrounding water, improving fertilizer retention. Furthermore, the preparation methods will determine the scale-up of the material.


Asunto(s)
Fertilizantes , Polímeros/química , Polisacáridos/química , Biodegradación Ambiental , Polímeros/metabolismo , Polisacáridos/metabolismo , Suelo/química , Agua/química
10.
Adv Sci (Weinh) ; 9(2): e2103331, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34747140

RESUMEN

Nutrients play critical roles in maintaining core physiological functions and in preventing diseases. Technologies for delivering these nutrients and for monitoring their concentrations can help to ensure proper nutritional balance. Eccrine sweat is a potentially attractive class of biofluid for monitoring purposes due to the ability to capture sweat easily and noninvasively from nearly any region of the body using skin-integrated microfluidic technologies. Here, a miniaturized system of this type is presented that allows simple, rapid colorimetric assessments of the concentrations of multiple essential nutrients in sweat, simultaneously and without any supporting electronics - vitamin C, calcium, zinc, and iron. A transdermal patch integrated directly with the microfluidics supports passive, sustained delivery of these species to the body throughout a period of wear. Comparisons of measurement results to those from traditional lab analysis methods demonstrate the accuracy and reliability of this platform. On-body tests with human subjects reveal correlations between the time dynamics of concentrations of these nutrients in sweat and those of the corresponding concentrations in blood. Studies conducted before and after consuming certain foods and beverages highlight practical capabilities in monitoring nutritional balance, with strong potential to serve as a basis for guiding personalized dietary choices.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Piel/metabolismo , Sudor/química , Sudor/metabolismo , Vitaminas/administración & dosificación , Adulto , Técnicas Biosensibles/métodos , Colorimetría , Femenino , Humanos , Masculino , Nutrientes/administración & dosificación , Parche Transdérmico , Vitaminas/metabolismo , Adulto Joven
11.
Drug Deliv Transl Res ; 12(10): 2359-2384, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34845678

RESUMEN

For the past few years, there has been a surge in the use of nutraceuticals. The global nutraceuticals market in 2020 was USD 417.66 billion, and the market value is expected to increase by 8.9% compound annual growth rate from 2020 to 2028. This is because nutraceuticals are used to treat and prevent various diseases such as cancer, skin disorders, gastrointestinal, ophthalmic, diabetes, obesity, and central nervous system-related diseases. Nutritious food provides the required amount of nutrition to the human body through diet, whereas most of the bioactive agents present in the nutrients are highly lipophilic, with low aqueous solubility leading to poor dissolution and oral bioavailability. Also, the nutraceuticals like curcumin, carotenoids, anthocyanins, omega-3 fatty acids, vitamins C, vitamin B12, and quercetin have limitations such as poor solubility, chemical instability, bitter taste, and an unpleasant odor. Additionally, the presence of gastrointestinal (GIT) membrane barriers, varied pH, and reaction with GIT enzymes cause the degradation of some of the nutraceuticals. Nanotechnology-based nutrient delivery systems can be used to improve oral bioavailability by increasing nutraceutical stability in foods and GIT, increasing nutraceutical solubility in intestinal fluids, and decreasing first-pass metabolism in the gut and liver. This article has compiled the properties and applications of various nanocarriers such as polymeric nanoparticles, micelles, liposomes, niosomes, solid lipid nanocarriers, nanostructured lipid carrier, microemulsion, nanoemulsion, dendrimers in organic nanoparticles, and nanocomposites for effective delivery of bioactive molecules.


Asunto(s)
Antocianinas , Nanopartículas , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos , Humanos , Lípidos/química , Liposomas , Nutrientes
12.
Adv Mater ; 34(25): e2105009, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34668260

RESUMEN

Scarcity of natural resources, shifting demographics, climate change, and increasing waste are four major challenges in the quest to feed the exploding world population. These challenges serve as the impetus to harness novel technologies to improve agriculture, productivity, and sustainability. Urban farming has several advantages over conventional farming: higher productivity, improved sustainability, and the ability to provide fresh food all year round. Novel materials are key to accelerating the evolution of urban farming - with their ability to facilitate controlled release of nutrients and pesticides, improved seed health, substrates with better water retention capability, more efficient recycling of agricultural waste, and precise plant health monitoring. Materials science enables environmental sustainability and higher harvest yields in urban farms. Here, Singapore is used as an example of a land-scarce city where urban farming may be the solution for future food production. Potential research directions and challenges in urban farming are highlighted, and how material optimization and innovation drive the development of urban farming to meet national and global food demands is briefly discussed. This review serves as a guide for researchers and a reference for stakeholders of urban farms, policy makers, and other interested parties.


Asunto(s)
Agricultura , Ciudades , Granjas
13.
Front Nutr ; 8: 765589, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34796195

RESUMEN

Oil-in-water emulsions are widely encountered in the food and health product industries. However, the unsaturated fatty acids in emulsions are easily affected by light, oxygen, and heat, which leads to oxidation, bringing forward difficulties in controlling emulsion quality during transportation, storage, and retail. Proteins are commonly used as emulsifiers that can enhance the shelf, thermal and oxidation stability of emulsions. Polyphenols are commonly found in plants and members of the family have been reported to possess antioxidant, anticancer, and antimicrobial activities. Numerous studies have shown that binding of polyphenols to proteins can change the structure and function of the latter. In this paper, the formation of protein-polyphenol complexes (PPCs) is reviewed in relation to the latters' use as emulsifiers, using the (covalent or non-covalent) interactions between the two as a starting point. In addition, the effects polyphenol binding on the structure and function of proteins are discussed. The effects of proteins from different sources interacting with polyphenols on the emulsification, antioxidation, nutrient delivery and digestibility of oil-in-water emulsion are also summarized. In conclusion, the interaction between proteins and polyphenols in emulsions is complicated and still understudied, thereby requiring further investigation. The present review results in a critical appraisal of the relevant state-of-the-art with a focus on complexes' application potential in the food industry, including digestion and bioavailability studies.

14.
Nano Lett ; 20(10): 7220-7229, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32909757

RESUMEN

In the present study, we created a nanoscale platform that can deliver nutrients to pancreatic islets in a controlled manner. Our platform consists of a mesoporous silica nanoparticle (MSNP), which can be loaded with glutamine (G: an essential amino acid required for islet survival and function). To control the release of G, MSNPs were coated with a polydopamine (PD) layer. With the optimal parameters (0.5 mg/mL and 0.5 h), MSNPs were coated with a layer of PD, which resulted in a delay of G release from MSNPs over 14 d (57.4 ± 4.7% release). Following syngeneic renal subcapsule islet transplantation in diabetic mice, PDG-MSNPs improved the engraftment of islets (i.e., enhanced revascularization and reduced inflammation) as well as their function, resulting in re-establishment of glycemic control. Collectively, our data show that PDG-MSNPs can support transplanted islets by providing them with a controlled and sustained supply of nutrients.


Asunto(s)
Diabetes Mellitus Experimental , Islotes Pancreáticos , Nanopartículas , Animales , Diabetes Mellitus Experimental/terapia , Indoles , Ratones , Nutrientes , Polímeros , Porosidad , Dióxido de Silicio
15.
Front Plant Sci ; 11: 168, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174943

RESUMEN

Zinc oxide nanoparticles (ZnO-NPs) hold promise as novel fertilizer nutrients for crops. However, their ultra-small size could hinder large-scale field application due to potential for drift, untimely dissolution or aggregation. In this study, urea was coated with ZnO-NPs (1%) or bulk ZnO (2%) and evaluated in wheat (Triticum aestivum L.) in a greenhouse, under drought (40% field moisture capacity; FMC) and non-drought (80% FMC) conditions, in comparison with urea not coated with ZnO (control), and urea with separate ZnO-NP (1%) or bulk ZnO (2%) amendment. Plants were exposed to ≤ 2.17 mg/kg ZnO-NPs and ≤ 4.34 mg/kg bulk-ZnO, indicating exposure to a higher rate of Zn from the bulk ZnO. ZnO-NPs and bulk-ZnO showed similar urea coating efficiencies of 74-75%. Drought significantly (p ≤ 0.05) increased time to panicle initiation, reduced grain yield, and inhibited uptake of Zn, nitrogen (N), and phosphorus (P). Under drought, ZnO-NPs significantly reduced average time to panicle initiation by 5 days, irrespective of coating, and relative to the control. In contrast, bulk ZnO did not affect time to panicle initiation. Compared to the control, grain yield increased significantly, 51 or 39%, with ZnO-NP-coated or uncoated urea. Yield increases from bulk-ZnO-coated or uncoated urea were insignificant, compared to both the control and the ZnO-NP treatments. Plant uptake of Zn increased by 24 or 8% with coated or uncoated ZnO-NPs; and by 78 or 10% with coated or uncoated bulk-ZnO. Under non-drought conditions, Zn treatment did not significantly reduce panicle initiation time, except with uncoated bulk-ZnO. Relative to the control, ZnO-NPs (irrespective of coating) significantly increased grain yield; and coated ZnO-NPs enhanced Zn uptake significantly. Zn fertilization did not significantly affect N and P uptake, regardless of particle size or coating. Collectively, these findings demonstrate that coating urea with ZnO-NPs enhances plant performance and Zn accumulation, thus potentiating field-scale deployment of nano-scale micronutrients. Notably, lower Zn inputs from ZnO-NPs enhanced crop productivity, comparable to higher inputs from bulk-ZnO. This highlights a key benefit of nanofertilizers: a reduction of nutrient inputs into agriculture without yield penalities.

16.
Food Chem ; 306: 125632, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31606634

RESUMEN

In this study, we have developed a novel polyelectrolyte complex (PEC) hydrogel that could be easily prepared by self-assembly of two food-grade polysaccharides salecan and N,N,N-trimethyl chitosan (TMC). The electrostatic interactions between two polysaccharides were driving force in complexation processes and have been demonstrated by FTIR, XRD, XPS and TGA. The swelling capacity, morphology and rheological property of the hydrogels could be well tuned by controlling salecan/TMC ratio. Green tea polyphenols (GTP) was efficiently encapsulated into PEC hydrogels and liberated in a sustained pattern. The amount of GTP released in simulated intestinal fluid (SIF) was significantly higher than simulated gastric fluid (SGF). Increasing salecan/TMC ratio also markedly enhanced GTP release amount. Release exponent n obtained in SGF indicated a Fickian diffusion, while in SIF an anomalous transport occurred. The release mechanism was well-fitted with Ritger-Peppas model. Taken together, these PEC hydrogels could be suitable carriers for intestinal targeted nutrient delivery.


Asunto(s)
Polielectrolitos/química , Polifenoles/química , Polisacáridos/química , Té/química , Difusión , Hidrogeles/química , Concentración de Iones de Hidrógeno , beta-Glucanos/química
17.
Food Sci Biotechnol ; 28(1): 99-102, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30815299

RESUMEN

The objective of this study was to develop new drug delivery systems (DDS) and nutrient delivery systems (NDS), using starch as a carrier material for infusion technology. Corn, waxy rice, non-waxy rice, and potato starches were used as carrier materials. Sodium fluorescein was used as an infusion material for easy detection. Each starch suspension with sodium fluorescein was reacted in a water bath at 40, 50, and 60 °C for 30 min. After each reaction, the concentration of sodium fluorescein in the supernatant was measured using a fluorescence detector. Precipitated starch was observed using fluorescence microscopy. About 70% of sodium fluorescein infused in waxy rice and corn starches at 60 °C. Additionally, the granules of these two starches were luminous by green light when exposed to a fluorescence detector, suggesting that corn and waxy rice starches can be used as carrier materials in infusion technology for DDS and NDS.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 214: 269-276, 2019 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-30785047

RESUMEN

The non-invasive spectroscopic technique is capable to detect the biomolecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, no research has been reported on alteration of bioactive compounds/carbohydrate traits on physiochemical and structure spectral characteristics in faba pulse seeds. The objective of this study was to use non-invasive ATR-FTIR spectroscopy with uni- and multivariate analyses to reveal faba [VLF: VLF-1 = CDC snowdrop with low tannin and VLF-2 = FB9-4 with high tannin] CHO molecular spectral profile and CHO nutritional features in ruminant systems. The carbohydrates related major molecular spectral bands included: STCHO (structural carbohydrates, peaks area region and baseline: ca. 1482-1185 cm-1), CELC (cellulosic compounds, peak area centered at ca. 1238 cm-1 with region and baseline 1272-1185 cm-1), TCHO (total carbohydrates, peaks area region and baseline: ca. 1186-939 cm-1) with three peaks in the region centered at ca. 1147, 1075 and 1012 cm-1, respectively. The results showed that the high tannin VLF variety VLF-2 had the higher (P < 0.05) peak heights for both STCHO second and third peaks as well as the area of entire STCHO region than low tannin variety VLF-1. Similarly the peak height and area of cellulosic compounds were also higher (P < 0.05) in VLF-2 than VLF-1. Regarding the total carbohydrates spectral profiles, the height and area of all three peaks along with area of entire TCHO region were higher (P < 0.05) in VLF-2 than VLF-1 except the area of TCHO first peak. The multivariate molecular spectral analyses were also able to distinguish between VLF-1 and VLF-2 spectra almost in all respective region. The results of this study indicated that carbohydrates molecular nutrition and structure profiles differed between VLF varieties. This study showed that the alteration of internal traits by modern breeding technology impact molecular nutrition and molecular structure. Vibrational ATR-FTIR spectroscopy could be used as a potential rapid tool to evaluate impact of alternation of carbohydrate on interactive relationship between the molecular structures and nutrient supply and metabolism of carbohydrates in ruminant systems.


Asunto(s)
Alimentación Animal/análisis , Valor Nutritivo , Polisacáridos , Rumiantes/metabolismo , Vicia faba/química , Animales , Polisacáridos/análisis , Polisacáridos/química , Polisacáridos/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
19.
Semin Perinatol ; 42(6): 355-360, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30197028

RESUMEN

Conjoined twins represent an interesting nutritional challenge as nutrient delivery and absorption is greatly affected by anatomy and, therefore, unique to each twin pair. Nutritional support is essential to optimize growth and development in the neonatal period; however, very little data exists on the topic in this population. Conjoined twins require individualized nutritional assessment that focuses on the interaction between the metabolic rate, nutrient uptake, and nutrient delivery of each twin in the dyad. This report describes one center's experience with monitoring growth, establishing nutrient requirements, and determining substrate utilization in three sets of conjoined twins.


Asunto(s)
Adhesión a Directriz , Cuidado Intensivo Neonatal , Intubación Gastrointestinal/métodos , Nutrición Parenteral/métodos , Gemelos Siameses , Aumento de Peso/fisiología , Humanos , Fenómenos Fisiológicos Nutricionales del Lactante , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Cuidado Intensivo Neonatal/métodos , Evaluación Nutricional , Estado Nutricional , Gemelos Siameses/fisiopatología
20.
Water Res ; 142: 246-255, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29890473

RESUMEN

Nitrogen (N) and phosphorus (P) flows from land to sea in the Yangtze River basin were simulated for the period 1900-2010, by combining models for hydrology, nutrient input to surface water, and an in-stream retention. This study reveals that the basin-wide nutrient budget, delivery to surface water, and in-stream retention increased during this period. Since 2004, the Three Gorges Reservoir has contributed 5% and 7% of N and P basin-wide retention, respectively. With the dramatic rise in nutrient delivery, even this additional retention was insufficient to prevent an increase of riverine export from 337 Gg N yr-1 and 58 Gg P yr-1 (N:P molar ratio = 13) to 5896 Gg N yr-1 and 381 Gg P yr-1 (N:P molar ratio = 35) to the East China Sea and Yellow Sea (ECSYS). The midstream and upstream subbasins dominate the N and P exports to the ECSYS, respectively, due to various human activities along the river. Our spatially explicit nutrient source allocation can aid in the strategic targeting of nutrient reduction policies. We posit that these should focus on improving the agricultural fertilizer and manure use efficiency in the upstream and midstream and better urban wastewater management in the downstream subbasin.


Asunto(s)
Nitrógeno/análisis , Fósforo/análisis , Ríos/química , Agricultura , China , Monitoreo del Ambiente , Fertilizantes , Hidrología/métodos , Océanos y Mares , Análisis Espacio-Temporal , Contaminación del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA