Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 973
Filtrar
1.
Chemosphere ; : 142808, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992443

RESUMEN

The design of hydrophilic polyvinylidene fluoride (PVDF) membranes with anti-fouling properties has been explored for decades. Surface modification and blending are typical strategies to tailor the hydrophilicity of PVDF membranes. Herein, cyclodextrin was used to improve the antifouling performance of PVDF membranes. Cyclodextrin-modified PVDF membranes were prepared by coupling PVDF amination (blending with branched polyethyleneimine) and activated cyclodextrin grafting. The blending of PEI in the PVDF casting solution preliminarily aminated the PVDF, resulting in PEI-crosslinked/grafted PVDF membranes after phase inversion. Aldehydes groups on cyclodextrin, introduced by oxidation, endow cyclodextrin to be grafted on the aminated PVDF membrane by the formation of imines. Borch reduction performed on the activated cyclodextrin-grafted PVDF membrane converted the imine bonds to secondary amines, ensuring the membrane stability. The resulting membranes possess excellent antifouling performance, with a lower protein adsorption capacity (5.7 µg/cm2, indicated by Bovine Serum Albumin (BSA)), and a higher water flux recovery rate (FRR=96%). The proposed method provides a facial strategy to prepare anti-fouling PVDF membranes.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38963623

RESUMEN

Manganese oxide is a potential agent in the field of energy storage owing to its changeable redox characteristics, high theoretical specific capacitance and valence shells for charge transfer. On the other hand, due to huge surface area, affordability, customisable composition, layered structure and high theoretical specific capacitance, layered double hydroxides, or LDHs, have drawn a lot of interest. This study employs a three-electrode setup to investigate the supercapacitive performance of λ-manganese dioxide/Cu-Al LDH composite at different compositional ratios. To enhance the adhesive and conductivity capabilities, 10% of CNT additive and PVDF binder are added for the composites. Out of all the composites, the one with the greatest weight percentage of λ-manganese dioxide shows the best electrode performance with a superior specific capacitance of 164 F/g at a scan rate of 10 mV/s. Additionally, using a symmetrical two-electrode setup, the best-performing electrode is examined. The result shows an exceptional potential window of 2.7 V in a basic electrolyte, a power density of 4.04 kW/kg at 3 A/g, an energy density of 20.32 Wh/kg at 1 A/g, and a specific capacitance of 37 F/g.

3.
Sci Rep ; 14(1): 15969, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987324

RESUMEN

Photocatalytic membranes are effective in removing organic dyes, but their low UV resistance poses a challenge. To address this, self-protected photocatalytic PVDF membranes were developed using polyaniline (PANI) and polydopamine (PDA), whaich are anti-oxidation polymers, as interlayers between the membrane and TiO2. PVDF membranes were first modified by a self-polymerization layer of either PANI or PDA and then coated with titanium dioxide (TiO2). The TiO2 remained firmly attached to the PANI and PDA layer, regardless of sonication and prolonged usage. The PANI and PDA layers enhanced the durability of PVDF membrane under UV/TiO2 activation. After 72 h of irradiation, PVDF-PDA-TiO2 and PVDF-PANI-TiO2 membranes exhibited no significant change. This process improved both separation and photocatalytic activity in dye wastewater treatment. The PVDF-PDA-TiO2 and PVDF-PANI-TiO2 membranes showed enhanced membrane hydrophilicity, aiding in the rejection of organic pollutants and reducing fouling. The modified membranes exhibited a significant improvement in the flux recovery rate, attributed to the synergistic effects of high hydrophilicity and photocatalytic activity. Specially, the flux recovery rate increased from 17.7% (original PVDF) to 56.3% and 37.1% for the PVDF-PDA-TiO2 membrane and PVDF-PANI-TiO2 membrane. In dye rejection tests, the PVDF‒PDA‒TiO2 membrane achieved 88% efficiency, while the PVDF‒PANI‒TiO2 reached 95.7%. Additionally, the photodegradation of Reactive Red 239 (RR239) by these membranes further improved dye removal. Despite an 11% reduction in flux, the PVDF-PDA-TiO2 membrane demonstrated greater durability and longevity. The assistance of PANI and PDA in TiO2 coating also improved COD removal (from 33 to 58-68%) and provided self-protection for photocatalytic membranes, indicating that these photocatalytic membranes can contribute to more sustainable wastewater treatment processes.

4.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998995

RESUMEN

Polytetrafluoroethylene (PTFE) and, by extension, fluoropolymers are ubiquitous in science, life, and the environment as perfluoroalkyl pollutants (PFAS). In all cases, it is difficult to transform these materials due to their chemical inertness. Herein, we report a direct amination process of PTFE and some fluoropolymers such as polyvinylidene fluoride (PVDF) and Nafion by lithium alkylamide salts. Synthesizing these reactants extemporaneously between lithium metal and an aliphatic primary di- or triamine that also serves as a solvent leads to the rapid nucleophilic substitution of fluoride by an alkylamide moiety when in contact with the fluoropolymer. Moreover, lithium alkylamides dissolved in suitable solvents other than amines can react with fluoropolymers. This highly efficient one-pot process opens the way for further surface or bulk modification if needed, providing an easy, inexpensive, and fast experiment protocol on large scales.

5.
Acta Biomater ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950807

RESUMEN

The precise mechanisms underlying the cellular response to static electric cues remain unclear, limiting the design and development of biomaterials that utilize this parameter to enhance specific biological behaviours. To gather information on this matter we have explored the interaction of collagen type-I, the most abundant mammalian extracellular protein, with poly(vinylidene fluoride) (PVDF), an electroactive polymer with great potential for tissue engineering applications. Our results reveal significant differences in collagen affinity, conformation, and interaction strength depending on the electric charge of the PVDF surface, which subsequently affects the behaviour of mesenchymal stem cells seeded on them. These findings highlight the importance of surface charge in the establishment of the material-protein interface and ultimately in the biological response to the material. STATEMENT OF SIGNIFICANCE: The development of new tissue engineering strategies relies heavily on the understanding of how biomaterials interact with biological tissues. Although several factors drive this process and their driving principles have been identified, the relevance and mechanism by which the surface potential influences cell behaviour is still unknown. In our study, we investigate the interaction between collagen, the most abundant component of the extracellular matrix, and poly(vinylidene fluoride) with varying surface charges. Our findings reveal substantial variations in the binding forces, structure and adhesion of collagen on the different surfaces, which collectively explain the differential cellular responses. By exposing these differences, our research fills a critical knowledge gap and paves the way for innovations in material design for advanced tissue regeneration strategies.

6.
Nanotechnology ; 35(39)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38949268

RESUMEN

The emergence of piezoelectric nanogenerators (PENGs) presents a promising alternative to supply energy demands within the realms of portable and miniaturized devices. In this article, the role of 2D transition metal dichalcogenide tungsten sulfide (WS2) and conductive rGO sheets as filler materials inside the polyvinylidene fluoride (PVDF) matrix on piezoelectric performances has been investigated extensively. The strong electrostatic interaction between C-F and C-H monomer bonds of PVDF interacted with the large surface area of the WS2nanosheets, increasing the electroactive polar phases and resulting in enhanced ferroelectricity in the PVDF/WS2nanocomposite. Further, the inclusion of rGO sheets in the PVDF/WS2composite allows mobile charge carriers to move freely through the conductive network provided by the rGO basal planes, which improves the internal polarization of the PVDF/WS2/rGO nanocomposites and increases the electrical performance of the PENGs. The PVDF/WS2/0.3rGO nanocomposite-based PENG exhibits maximum piezoresponses with ∼8.1 times enhancements in the output power density than the bare PVDF-based PENG. The mechanism behind the enhanced piezoresponses in the PVDF/WS2/rGO nanocomposites has been discussed.

7.
J Environ Manage ; 365: 121603, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38963967

RESUMEN

Water treatment has turned out to be more important in most societies due to the expansion of most economies and to advancement of industrialization. Developing efficient materials and technologies for water treatment is of high interest. Thin film nanocomposite membranes are regarded as the most effective membranes available for salts, hydrocarbon, and environmental pollutants removal. These membranes improve productivity while using less energy than conventional asymmetric membranes. Here, the polyvinylidene fluoride (PVDF) membranes have been successfully modified via dip single-step coating by silica-aminopropyl triethoxysilane/trimesic acid/melamine nanocomposite (Si-APTES-TA-MM). The developed membranes were evaluated for separating the emulsified oil/water mixture, the surface wettability of the membrane materials is therefore essential. During the conditioning step, that is when the freshwater was introduced, the prepared membrane reached a flux of about 27.77 L m-2 h-1. However, when the contaminated water was introduced, the flux reached 18 L m-2 h-1, alongside an applied pressure of 400 kPa. Interestingly, during the first 8 h of the filtration test, the membrane showed 90 % rejection for ions including Mg2+, and SO42- and ≈100 % for organic pollutants including pentane, isooctane, toluene, and hexadecane. Also, the membrane showed 98 % rejection for heavy metals including strontium, lead, and cobalt ions. As per the results, the membrane could be recommended as a promising candidate to be used for a mixture of salt ions, hydrocarbons, and mixtures of heavy metals from wastewater.

8.
Nanomaterials (Basel) ; 14(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38869526

RESUMEN

In recent years, conductive polymer nanocomposites have gained significant attention due to their promising thermoresistive and Joule heating properties across a range of versatile applications, such as heating elements, smart materials, and thermistors. This paper presents an investigation of semi-crystalline polyvinylidene fluoride (PVDF) nanocomposites with 6 wt.% carbon-based nanofillers, namely graphene nanoplatelets (GNPs), multi-walled carbon nanotubes (MWCNTs), and a combination of GNPs and MWCNTs (hybrid). The influence of the mono- and hybrid fillers on the crystalline structure was analyzed by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). It was found that the nanocomposites had increased amorphous fraction compared to the neat PVDF. Furthermore, nanocomposites enhanced the ß phase of the PVDF by up to 12% mainly due to the presence of MWCNTs. The resistive properties of the nanocompositions were weakly affected by the temperature in the analyzed temperature range of 25-100 °C; nevertheless, the hybrid filler composites were proven to be more sensitive than the monofiller ones. The Joule heating effect was observed when 8 and 10 V were applied, and the compositions reached a self-regulating effect at around 100-150 s. In general, the inclusion in PVDF of nanofillers such as GNPs and MWCNTs, and especially their hybrid combinations, may be successfully used for tuning the self-regulated Joule heating properties of the nanocomposites.

9.
Sensors (Basel) ; 24(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38894295

RESUMEN

This study presents a comprehensive investigation into the design and optimization of capacitive pressure sensors (CPSs) for their integration into capacitive touch buttons in electronic applications. Using the Finite Element Method (FEM), various geometries of dielectric layers were meticulously modeled and analyzed for their capacitive and sensitivity parameters. The flexible elastomer polydimethylsiloxane (PDMS) is used as a diaphragm, and polyvinylidene fluoride (PVDF) is a flexible material that acts as a dielectric medium. The Design of Experiment (DoE) techniques, aided by statistical analysis, were employed to identify the optimal geometric shapes of the CPS model. From the prediction using the DoE approach, it is observed that the cylindrical-shaped dielectric medium has better sensitivity. Using this optimal configuration, the CPS was further examined across a range of dielectric layer thicknesses to determine the capacitance, stored electrical energy, displacement, and stress levels at uniform pressures ranging from 0 to 200 kPa. Employing a 0.1 mm dielectric layer thickness yields heightened sensitivity and capacitance values, which is consistent with theoretical efforts. At a pressure of 200 kPa, the sensor achieves a maximum capacitance of 33.3 pF, with a total stored electric energy of 15.9 × 10-12 J and 0.468 pF/Pa of sensitivity for 0.1 dielectric thickness. These findings underscore the efficacy of the proposed CPS model for integration into capacitive touch buttons in electronic devices and e-skin applications, thereby offering promising advancements in sensor technology.

10.
Polymers (Basel) ; 16(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38932087

RESUMEN

Fouling and biofouling remain significant challenges in seawater desalination plants. One practical approach to address these issues is to develop anti-biofouling membranes. Therefore, novel hybrid zinc phthalocyanine/polyvinylidene fluoride-co-hexafluoropropylene (Zn(4-PPOx)4Pc/PVDF-HFP) membranes were prepared by electrospinning to evaluate their properties against biofouling. The hybrid nanofiber membrane was characterized by atomic force microscopy (AFM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and contact angle measurements. The theoretical calculations of PVDF-HFP, Zn(4-PPOx)4Pc), and Zn(4-PPOx)4Pc/PVDF-HFP nanofibers were performed using a hybrid functional RB3LYP and the 6-31 G (d,p) basis set, employing Gaussian 09. DFT calculations illustrated that the calculated physical and electronic parameters ensured the feasibility of the interaction of PVDF-HFP with Zn(4-PPOx)4Pc via a halogen-hydrogen bond, resulting in a highly stable and remarkably reactive structure. Moreover, molecular electrostatic potential (MEP) maps were drawn to identify the reactive regions of the Zn(4-PPOx)4Pc and PVDF-HFP/Zn(4-PPOx)4Pc nanofibers. Molecular docking analysis revealed that Zn(4-PPOx)4Pc has highest binding affinity (-8.56 kcal/mol) with protein from S. aureus (1N67) mainly with ten amino acids (ASP405, LYS374, GLU446, ASN406, ALA441, TYR372, LYS371, TYR448, LYS374, and ALA442). These findings highlight the promising potential of Zn(4-PPOx) 4Pc/PVDF-HFP nanocomposite membranes in improving the efficiency of water desalination by reducing biofouling and providing antibacterial properties.

11.
Polymers (Basel) ; 16(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38932078

RESUMEN

With the increasing application of electrospun PVDF webs in piezoelectric sensors and energy-harvesting devices, it is crucial to understand their responses under complex mechanical excitations. However, the dependence of the piezoelectric effect on mechanical excitation properties is not fully comprehended. This study aims to investigate the piezoelectric output of randomly oriented electrospun PVDF nanofiber webs fabricated through different electrospinning processes at various mechanical excitation frequencies. The electrospun PVDF web was sandwiched between two textile electrodes, and its piezoelectric output as a full-textile sensor was measured across a frequency range from 0.1 Hz to 10 Hz. The experimental results revealed that the piezoelectric output of the electrospun PVDF web exhibited a nearly linear increase at excitation frequencies below 1.0 Hz and then reached an almost constant value thereafter up to 10 Hz, which is different from the hybrid PVDF or its copolymer web. Furthermore, the dependency of the piezoelectric output on the excitation frequency was found to be influenced by the specific electrospinning process employed, which determined the crystalline structure of electrospun PVDF nanofibers. These findings suggest that determining an appropriate working frequency for randomly oriented electrospun PVDF nanofiber webs is essential before practical implementation, and the piezoelectric response mode in different mechanical activation frequency ranges can be used to detect different human physiological behaviors.

12.
ACS Appl Mater Interfaces ; 16(26): 33428-33438, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38899571

RESUMEN

Solid electrolytes may be the answer to overcome many obstacles in developing the next generation of renewable batteries. A novel composite solid electrolyte (CSE) composed of a poly(vinylidene fluoride) (PVDF) base with an active nanofiber filler of aluminum-doped garnet Li ceramic, Li salt lithium bis-(trifluoromethanesulfonyl)imide (LiTFSI), Li fluoride (LiF) stabilizing additive, and plasticizer sulfolane was fabricated. In a Li|CSE|LFP cell with this CSE, a high capacity of 168 mAh g-1 with a retention of 98% after 200 cycles was obtained, representing the best performance to date of a solid electrolyte with a PVDF base and a garnet inorganic filler. In a Li metal cell with Si and Li, it yielded a discharge capacity of 2867 mAh g-1 and was cycled 60 times at a current density of 100 mAh g-1, a significant step forward in utilizing a solid electrolyte of any kind with the desirable Si anode. In producing this CSE, the components and fabrication process were chosen to have a lower cost and improved safety and environmental impact compared with the current state-of-the-art Li-ion battery.

13.
Nanotechnology ; 35(36)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38861959

RESUMEN

Here we report the liquid-solid interaction in droplet-based triboelectric nanogenerators (TENG) for estimation of human Na+/K+levels. The exploitation of PVDF-HFP encapsulated WS2as active layer in the droplet-based TENG (DTENG) leads to the generation of electrical signal during the impact of water droplet. Comparison over the control devices indicates that surface quality and dielectric nature of the PVDF-HFP/WS2composite largely dictates the performance of the DTENG. The demonstration of excellent sensitivity of the DTENG towards water quality indicates its promising application towards water testing. In addition, the alteration in output signal with slightest variation in ionic concentration (Na+or K+) in water has been witnessed and is interpreted with charge transfer and ion transfer processes during liquid-solid interaction. The study reveals that the ion mobility largely affects the ion adsorption process on the active layer of PVDF-HFP/WS2and thus generates distinct output profiles for diverse ions like Na+and K+. Following that, the DTENG characteristics have been exploited to artificial urine where the varying output signals have been recorded for variation in urinary Na+ion concentration. Therefore, the deployment of PVDF-HFP/WS2in DTENG holds promising application towards the analyse of ionic characteristics of body fluids.


Asunto(s)
Nanoestructuras , Polímeros de Fluorocarbono/química , Polivinilos/química , Nanoestructuras/química , Cápsulas , Compuestos de Tungsteno/química , Sulfuros/química , Electricidad , Potasio/química , Iones/química , Cloro/química
14.
Water Sci Technol ; 89(9): 2468-2482, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747961

RESUMEN

17α-methyltestosterone (MT) hormone is a synthetic androgenic steroid hormone utilized to induce Nile tilapia transitioning for enhanced production yield. This study specifically focuses on the removal of MT through the utilization of photocatalytic membrane reactor (PMR), which employs an in-house polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with 1% nanomaterials (either TiO2 or α-Fe2O3). The molecular weight cut-off (MWCO) of the in-house membrane falls within the ultrafiltration range. Under UV95W radiation, the PMR with PVDF/TiO2 and PVDF/α-Fe2O3 membranes achieved 100% MT removal at 140 and 160 min, respectively. The MT removal by the commercial NF03 membrane was only at 50%. In contrast, without light irradiation, the MT removal by all the membranes remained unchanged after 180 min, exhibiting lower performance. The incorporation of TiO2 and α-Fe2O3 enhanced water flux and MT removal of the membrane. Notably, the catalytic activity was limited by the distribution and concentration of the catalyst at the membrane surface. The water contact angle did not correlate with the water flux for the composited membrane. The degradation of MT aligned well with Pseudo-first-order kinetic models. Thus, the in-house ultrafiltration PMR demonstrated superior removal efficiency and lower operational costs than the commercial nanofiltration membrane, attributable to its photocatalytic activities.


Asunto(s)
Membranas Artificiales , Metiltestosterona , Ultrafiltración , Contaminantes Químicos del Agua , Ultrafiltración/métodos , Contaminantes Químicos del Agua/química , Metiltestosterona/química , Catálisis , Purificación del Agua/métodos , Titanio/química
15.
ChemSusChem ; : e202400596, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38797710

RESUMEN

Over the last years, solid-state electrolytes made of an ionic liquid (IL) confined in a solid (inorganic or polymer) matrix, also known as ionogels, have been proposed to solve the leakage problems occurring at high temperatures in classical electrical double-layer capacitors (EDLCs) with an organic electrolyte, and thereof improve the safety. However, making ionogel-based EDLCs perform with reasonable power at low temperature is still a major challenge due to the high melting point of the confined IL. To overcome these limitations, the present contribution discloses ionogel films prepared in a totally oxygen/moisture-free atmosphere by encapsulating 70 wt % of an equimolar mixture of 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide and 1-ethyl-3-methylimidazolium tetrafluoroborate - [EMIm][BF4]0.5[FSI]0.5 - into a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) network. The further called "binary ionogel" films demonstrated a high flexibility and a good ionic conductivity of 5.8 mS cm-1 at 20 °C. Contrary to the ionogels prepared from either [EMIm][FSI] or [EMIm][BF4], displaying melting at Tm=-16 °C and -7 °C, respectively, the crystallization of confined [EMIm][BF4]0.5[FSI]0.5 is quenched in the binary ionogel, which shows only a glass transition at -101 °C. This quenching enables an increased ionicity and ionic diffusion at the interface with the PVdF host network, leading the binary ionogel membrane to display higher ionic conductivity below -20 °C than the parent binary [EMIm][BF4]0.5[FSI]0.5 liquid. Laminate EDLCs were built with a 100 µm thick binary ionogel separator and electrodes made from a hierarchical micro-/mesoporous MgO-templated carbon containing a reasonable proportion of mesopores to enhance the mass transport of ions, especially at low temperature where the ionic diffusion noticeably decreases. The EDLCs operated up to 3.0 V with ideal EDL characteristics from -40 °C to room temperature. Their output specific energy under a discharge power of 1 kW kg-1 is ca. 4 times larger than with a cell implementing the same carbon electrodes together with the binary [EMIm][BF4]0.5[FSI]0.5 liquid. Hence, this binary ionogel electrolyte concept paves the road for developing safe and flexible solid-state energy storage devices operating at subambient temperatures in extreme environments.

16.
Talanta ; 276: 126289, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38776779

RESUMEN

Aggregation-induced emission (AIE) has been widely used in research on electrochemiluminescence (ECL) due to its excellent luminescence intensity. In this work, copper superparticles (Cu SPs) were used to construct ECL biosensor to detect the microRNA-103a (miRNA-103a) in triple-negative breast cancer (TNBC) tumor tissues. Firstly, GSH-capped copper clusters were used as precursors to prepare Cu SPs by the AIE effect. Compared with clusters, Cu SPs possessed higher luminescence performance and energy stability, making them an ideal choice for ECL nanoprobe. The film of PVDF-HFP/CeVO4 NPs was constructed and modified with CPBA and GSH as the sensing interface (PCCG). The PCCG film displayed good conductivity and hydrophilicity, and desirable mechanical stability. Moreover, the PCCG film can induce high carrier mobility rates and dissociate large amounts of the co-reactant K2S2O8 to enhance the ECL intensity of Cu SPs. As a result, the prepared ECL sensor with the catalyzed hairpin assembly (CHA) strategy was employed to quantify miRNA-103a in the range of 100 fM to 100 nM. The biosensor provided a novel analytical approach for the clinical diagnosis of TNBC.


Asunto(s)
Técnicas Biosensibles , Cobre , MicroARNs , MicroARNs/análisis , Cobre/química , Humanos , Técnicas Biosensibles/métodos , Polivinilos/química , Mediciones Luminiscentes/métodos , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Límite de Detección , Neoplasias de la Mama Triple Negativas/genética
17.
Sci Rep ; 14(1): 11622, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773177

RESUMEN

This study is the first application of a PVDF-HFP-based polymer inclusion membrane incorporating the poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and di(2-ethylhexyl)phosphoric acid (D2EHPA) as the base polymer and extractant for the extraction of bismuth(III), respectively. It is demonstrated that the PIM comprised of 60 wt% PVDF-HFP and 40 wt% D2EHPA is the most effective in the extraction of bismuth(III) from feed solution containing 20 mg L-1 bismuth(III) and 0.2 mol L-1 sulfate adjusted to pH 1.4. The extracted bismuth(III) ions are back-extracted quantitatively to the receiving solution containing 1 mol L-1 sulfuric acid. The stoichiometry experiments reveal that the Bi: D2EHPA ratio in the bismuth(III) extracted complex is 1:6, and D2EHPA is dimer. Moreover, it is shown that the studied PIM has high selectivity in the extraction of bismuth(III) over other interfering ions such as Mo(VI), Cr(III), Al(III), Fe(III), Ni(II), Zn(II), Cd(II), Co(II), Cu(II), and Mn(II). The interference of Fe(III) is also eliminated by masking with fluoride, leading finally to a nearly pure extraction of bismuth(III).

18.
Polymers (Basel) ; 16(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732670

RESUMEN

A passive cooling method with great potential to lower space-cooling costs, counteract the urban heat island effect, and slow down worldwide warming is radiant cooling. The solutions available frequently require complex layered structures, costly products, or a reflective layer of metal to accomplish daytime radiative cooling, which restricts their applications in many avenues. Furthermore, single-layer paints have been used in attempts to accomplish passive daytime radiative cooling, but these usually require a compact coating or only exhibit limited cooling in daytime. In our study, we investigated and evaluated in daytime the surrounding cooling outcome with aid of one layer coating composed of BaSO4/TiO2 microparticles in various concentrations implanted in the PVDF-HF polymers on a concrete substrate. The 30% BaSO4/TiO2 microparticle in the PVDF-HF coating shows less solar absorbance and excessive emissivity. The value of solar reflectance is improved by employing micro-pores in the structure of PVDF polymers without noticeable effect on thermal emissivity. The 30% BaSO4/TiO2/PVDF coating is accountable for the hydrophobicity and proportionate solar reflection in the UV band, resulting in efficient solar reflectivity of about 95.0%, with emissivity of 95.1% and hydrophobicity exhibiting a 117.1° water contact angle. Also, the developed coating could cool to about 5.1 °C and 3.9 °C below the surrounding temperature beneath the average solar irradiance of 900 W/m-2. Finally, the results demonstrate that the 30% BaSO4/TiO2/PVDF-HF microparticle coating illustrates a typical figure of merit of 0.60 and is also capable of delivering outstanding dependability and harmony with the manufacturing process.

19.
Micromachines (Basel) ; 15(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38793232

RESUMEN

Hypertension is a common cause of cardiovascular diseases, closely associated with the high mortality and disability rates of cardiovascular diseases such as stroke and coronary heart disease. Therefore, developing a comfortable and sustainable device for monitoring human pulse signals holds practical significance for the prevention and treatment of hypertension and cardiovascular diseases. PVDF flexible pressure sensors possess the characteristics of high sensitivity, good flexibility, and strong biocompatibility, thereby demonstrating extensive application potential in areas such as health monitoring, wearable devices, and electronic skins. This paper focuses on the development of a modified piezoelectric polymer and its application in an intelligent blood pressure monitoring system, demonstrating its outstanding performance and feasibility through a series of experiments. This research provides innovative material choices for the development of intelligent medical devices and offers beneficial guidance for the design and application of future intelligent health monitoring systems.

20.
Small ; : e2402538, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770748

RESUMEN

Solving the problem of oil and water pollution is an important topic in environmental protection. The separation of oil-water emulsion with high efficiency and low consumption has been the direction of social efforts. Membrane separation technology combined with surface wettability and pore size screening is considered to be one of the most promising ways to separate oil-water emulsions. In this paper, the polyvinylidene difluoride (PVDF) membrane is prepared by combining the two methods of blending and coating modification as a double barrier. The prepared PVDF membrane can completely wet water, achieve superhydrophilic in air, and superoleophobic underwater. The separation efficiency and flux are 99.57% and 678 L h-1 m-2 bar-1, respectively, for toluene emulsions containing surfactants with an average particle size of 1.7 µm. At the same time, it can also effectively separate different kinds of light/heavy oils. After three cycles of testing still maintain high efficiency of separation. The results show that the prepared PVDF membrane can effectively separate the emulsion containing surfactant with smaller particle size distribution of oil droplets. This method provides a new strategy for the separation of oil-water emulsions and has broad application prospects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA