Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.245
Filtrar
1.
Adv Sci (Weinh) ; : e2405848, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119886

RESUMEN

Dual-mode readout platforms with colorimetric and electrochemiluminescence (ECL) signal enhancement are proposed for the ultrasensitive and flexible detection of the monkeypox virus (MPXV) in different scenes. A new nanotag, Ru@U6-Ru/Pt NPs is constructed for dual-mode platforms by integrating double-layered ECL luminophores and the nanozyme using Zr-MOF (UiO-66-NH2) as the carrier, which not only generates enhanced ECL and colorimetric signals but also provide greater stability than that of commonly used nanotags. Dual-mode platforms are used within 15 min from the "sample in" to the "result out" steps, without nucleic acid amplification. The colorimetric mode allows the screening of MPXV with the visual limit of detection (vLOD) of 0.1 pM (6 × 108 copies µL-1) and the ECL mode supports quantitative detection of MPXV with an LOD as low as 10 aM (6 copies·µL-1), resulting in a broad sensing range of 60 to 3 × 1011 copies·µL-1 (10 orders of magnitude). Validation is conducted using 50 clinical samples, which is 100% concordant to those of quantitative polymerase chain reaction (qPCR), indicating that Ru@U6-Ru/Pt NPs-based dual-mode sensing platforms showed great promise as rapid, sensitive, and accurate tools for diagnosis of the nucleic acid of MPXV and other infectious pathogens.

2.
Bioelectrochemistry ; 160: 108787, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098083

RESUMEN

A sandwich-type electrochemical immunosensor was proposed for the ultra-sensitive detection of CD44, a potential biomarker for breast cancer. In this design, a customized template-based ionic liquid (1-butyl-2,3-dimethylimidazolium tetrafluoroborate) carbon paste electrode (CILE) served as the sensing platform, and thionine/Au nanoparticles/covalent-organic frameworks (THI/Au/COF) were used as the signal label. Moreover, an enzyme-free signal amplification strategy was introduced by involving H2O2 and phosphotungstate (PW12) with peroxidase-like activity. Under optimized conditions, the linear range is as wide as six orders of magnitude, and the detection limit is as low as 0.71 pg mL-1 (estimated based on S/N = 3). Average recoveries range from 98.16 %-100.1 %, with a relative standard deviation (RSD) of 1.42-8.27 % in mouse serum, and from 98.44 %-99.06 %, with an RSD of 1.14-4.84 % (n = 3) in artificial saliva. Furthermore, the immunosensor exhibits excellent specificity toward CD44, good stability, and low cost, indicating great potential for application in clinical trials.

3.
Bioelectrochemistry ; 160: 108793, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39128408

RESUMEN

Estrogen receptor alpha (ERα) serves as a crucial biomarker for early breast cancer diagnosis. In this study, we proposed an electrochemical aptasensor with nanomaterial carbon nanohorns/gold nanoparticle composites (1-AP-CNHs/AuNPs) as the substrate, and the primary amine groups on the antibody initiated the ring-opening polymerization (ROP) of monomer amino acid-ferrocene (NCA-Fc) on the electrode surface for ultrasensitive detection of ERα. The composite of 1-AP-CNHs/AuNPs not only possessed more active sites, but also increased the specific surface area of the electrode and allowed a large amount of ferrocene polymer long chains to be grafted onto the electrode surface to achieve signal amplification. Under optimal conditions, the detection limit of the method was 11.995 fg mL-1 with a detection range of 100 fg mL-1-100 ng mL-1. In addition, the biotin-streptavidin system was used to further improve the sensitivity of the sensor. Importantly, this approach could be applied for the practical detection of ERα in real samples.

4.
Chemistry ; : e202402566, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145432

RESUMEN

As a post transcriptional regulator of gene expression, miRNA is closely related to many major human diseases, especially cancer. Therefore, its precise detection is very important for disease diagnosis and treatment. With the advancement of fluorescent dye and imaging technology, the focus has shifted from in vitro microRNAs (miRNA) detection to in vivo miRNA imaging. This concept review summarizes signal amplification strategies including DNAzyme catalytic reaction, hybrid chain reaction (HCR), catalytic hairpin assembly (CHA) to enhance detection signal of lowly expressed miRNAs; external stimuli of ultraviolet (UV) light or near-infrared region (NIR) light, and internal stimuli such as adenosine triphosphate (ATP), glutathione (GSH), protease and cell membrane protein to prevent nonspecific activation for the avoidance of false positive signal; and the development of fluorescent probes with emission in NIR for in vivo miRNA imaging; as well as rare earth nanoparticle based the second near-infrared window (NIR-II) nanoprobes with excellent tissue penetration and depth for in vivo miRNA imaging. The concept review also indicated current challenges for in vivo miRNA imaging including the dynamic monitoring of miRNA expression change and simultaneous in vivo imaging of multiple miRNAs.

5.
World J Clin Cases ; 12(21): 4726-4741, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39070802

RESUMEN

BACKGROUND: Malignant tumors are one of the leading causes of death worldwide, imposing a substantial economic and social burden. Early detection is the key to improving cure rates and reducing mortality rates, which requires the development of sensitive early detection technologies. Signal amplification techniques play a crucial role in aptamer-based early detection of tumors and are increasingly garnering attention from researchers. AIM: To investigate the current research status, developmental trajectories, and hotspots in signal amplification for aptamer-based tumor detection through bibliometric analysis. METHODS: English publications pertaining to signal amplification in aptamer-based tumor detection were retrieved from the Web of Science Core Collection database. VOSviewer and CiteSpace software were employed to analyze various information within this field, including countries, institutions, authors, co-cited authors, journals, co-cited journals, cited references, and keywords. RESULTS: A total of 757 publications were included in this study. China accounted for 85.47% of all publications, with Nanjing University (China) emerging as the institution with the highest publication output. The most influential authors and journals were Hasanzadeh M. from Iran and "Biosensors and Bioelectronics", respectively. Exosomes and carcinoembryonic antigen (CEA) stood out as the most researched tumor-related molecules. Currently, the predominant signal amplification technique, nanomaterial, and signal transduction method were identified as hybridization chain reactions, gold nanoparticles, and electrochemical methods, respectively. Over the past 3 years, exosomes, CEA, electrochemical biosensors, and nanosheets have emerged as research hotspots, exhibiting a robust burst of intensity. CONCLUSION: This study is the first bibliometric analysis of literature on signal amplification in aptamer-based tumor detection and elucidates the current status, hotspots, and prospective research directions within this realm. Additionally, it provides an important reference for researchers.

6.
Small ; : e2404167, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011971

RESUMEN

Nucleic acids are important biomarkers in cancer and viral diseases. However, their ultralow concentration in biological/clinical samples makes direct target detection challenging, because it leads to slow hybridization kinetics with the probe and its insufficient signal-to-noise ratio. Therefore, RNA target detection is done by molecular (target) amplification, notably by RT-PCR, which is a tedious multistep method that includes nucleic acid extraction and reverse transcription. Here, a direct method based on ultrabright dye-loaded polymeric nanoparticles in a sandwich-like hybridization assay with magnetic beads is reported. The ultrabright DNA-functionalized nanoparticle, equivalent to ≈10 000 strongly emissive rhodamine dyes, is hybridized with the magnetic bead to the RNA target, providing the signal amplification for the detection. This concept (magneto-fluorescent sandwich) enables high-throughput detection of DNA and RNA sequences of varied lengths from 48 to 1362 nt with the limit of detection down to 0.3 fm using a plate reader (15 zeptomoles), among the best reported for optical sandwich assays. Moreover, it allows semi-quantitative detection of SARS-CoV-2 viral RNA directly in clinical samples without a dedicated RNA extraction step. The developed technology, combining ultrabright nanoparticles with magnetic beads, addresses fundamental challenges in RNA detection; it is expected to accelerate molecular diagnostics of diseases.

7.
Food Chem ; 460(Pt 1): 140362, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39047485

RESUMEN

Aflatoxin B1 is highly mutagenic in humans, and long-term exposure can impair immunity and increase the risk of cancer. It is imperative to develop immunoassays with convenient operation and high sensitivity to detect aflatoxin B1. This study presents a polystyrene microcolumn-mediated magnetic relaxation switching immunosensor based on a tyramine signal amplification strategy for detecting aflatoxin B1. An environmentally friendly hand-held polystyrene microcolumn was designed as an effective immunoreaction carrier, remaining 91% efficiency after 12 repeated uses. And the microcolumn provides a user-friendly procedure for rapid separation and reagent switching within 3 s by simple stirring in solution. The combination of a strong anti-interference magnetic relaxation switching biosensing and an efficient tyramine signal amplification enables the quantitative detection of aflatoxin B1 in the range of 0.01-10 ng/mL, with a limit of detection of 0.006 ng/mL. This method has potential application in the rapid detection of trace food contaminants.

8.
Talanta ; 278: 126565, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39018762

RESUMEN

Bacteria infections pose a serious threat to public health, and it is urgent to develop facile and accurate detection methods. To meet the important need, a potable and high-sensitive surface enhanced Raman scattering (SERS) biosensor based on aptamer recognition and catalytic hairpin assembly (CHA) signal amplification was proposed for point-of-care detection of Staphylococcus aureus (S. aureus). The SERS biosensor contains three parts: recognition probes, SERS sensing chip, and SERS tags. The feasibility of the strategy was verified by gel electrophoresis, and the one-step test route was optimized. The bacteria SERS biosensor has a good linear relationship ranging from 10 to 107 CFU mL-1 with high sensitivity low to 5 CFU mL-1, and shows excellent specificity, uniformity, and repeatability on S. aureus identification and enumeration, which can distinguish S. aureus from other bacteria. The SERS biosensor shows a good recovery rate (95.73 %-109.65 %) for testing S. aureus spiked in milk, and has good practicability for detecting S. aureus infected mouse wound, which provides a facile and reliable approach for detection of trace bacteria in the real samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Espectrometría Raman , Staphylococcus aureus , Staphylococcus aureus/aislamiento & purificación , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Espectrometría Raman/métodos , Animales , Leche/microbiología , Leche/química , Límite de Detección , Ratones , Nanopartículas del Metal/química , Catálisis , Oro/química , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/microbiología
9.
Biosens Bioelectron ; 262: 116543, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963951

RESUMEN

Early detection of cancer markers is critical for cancer diagnosis and cancer therapy since these markers may indicate cancer risk, incidence, and disease prognosis. Carcinoembryonic antigen (CEA) is a type of non-specific and broad-spectrum cancer biomarker commonly utilized for early cancer diagnosis. Moreover, it serves as an essential tool to assess the efficacy of cancer treatment and monitor tumor recurrence as well as metastasis, thus garnering significant attention for precise and sensitive CEA detection. In recent years, photoelectrochemical (PEC) techniques have emerged as prominent methods in CEA detection due to the advantages of PEC, such as simple equipment requirements, cost-effectiveness, high sensitivity, low interference from background signals, and easy of instrument miniaturization. Different signal amplification methods have been reported in PEC sensors for CEA analysis. Based on these, this article reviews PEC sensors based on various signal amplification strategies for detection of CEA during the last five years. The advantages and drawbacks of these sensors were discussed, as well as future challenges.


Asunto(s)
Biomarcadores de Tumor , Técnicas Biosensibles , Antígeno Carcinoembrionario , Técnicas Electroquímicas , Neoplasias , Antígeno Carcinoembrionario/sangre , Antígeno Carcinoembrionario/análisis , Técnicas Biosensibles/instrumentación , Humanos , Técnicas Electroquímicas/métodos , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/análisis , Diseño de Equipo , Animales
10.
Food Res Int ; 191: 114727, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059923

RESUMEN

Phages are a class of viruses that specifically infect host bacteria. Compared to other recognition elements, phages offer several advantages such as high specificity, easy to obtain and good environmental tolerance, etc. These advantages underscore the potential of phages as recognition elements in the construction of biosensors. Therefore, the phage-based biosensors are currently garnering widespread attention for detecting pathogens in recent years. However, the test performance such as detection limit, sensitivity and stability of exicting phage-based biosensors require enhancement. In the design of sensors, the selection of various materials and construction methods significantly influences the test performance of the sensor, and employing appropriate signal amplification strategies and construction methods to devise biosensors based on different principles is an effective strategy to enhance sensor performance. The manuscript primarily focuses on the signal amplification strategies and construction methods employed in phage-based biosensors recent ten years, and summarizes the advantages and disadvantages of different signal amplification strategies and construction methods. Meanwhile, the manuscript discusses the relationship between sensor performance and various materials and construction methods, and reviews the application progress of phage-based electrochemical biosensors in the detection of foodborne bacteria. Furthermore, the manuscript points out the present limitations and the future research direction for the field of phage-based biosensors, so as to provide the reference for developing high-performance phage-based biosensors.


Asunto(s)
Bacteriófagos , Técnicas Biosensibles , Microbiología de Alimentos , Técnicas Biosensibles/métodos , Microbiología de Alimentos/métodos , Bacterias/virología , Bacterias/aislamiento & purificación , Técnicas Electroquímicas/métodos
11.
Nucl Med Biol ; 136-137: 108937, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38964257

RESUMEN

Immunorecognition provides an excellent basis for targeted imaging techniques covering a wide range from basic research to diagnostics and from single cells to whole organisms. Fluorescence- or radioisotope-labeled antibodies, antibody fragments or nanobodies enable a direct signal readout upon binding and allow for versatile imaging from microscopy to whole-body imaging. However, as the signal intensity directly correlates with the number of labeled antibodies bound to their epitopes (1:1 binding), sensitivity for low-expressing epitopes can be limiting for visualization. For the first time, we developed poly-epitope tags with multiple copies (1 to 7) of a short peptide epitope, specifically the MoonTag, that are recognized by a labeled nanobody and aimed at signal amplification in microscopy and cell-specific PET imaging. In transiently transfected HeLa cells or stably transduced A4573 cells we characterized complex formation and in vitro signal amplification. Indeed, using fluorescently and radioactively labeled nanobodies we found an approximately linear signal amplification with increasing numbers of epitope copies in vitro. To test the poly-epitope approach in vivo, A4573 tumor cells were injected subcutaneously into the shoulder of NSG mice, with A4573 tumor cells expressing a poly-epitope of 7 MoonTags on one side and WT cells on the other side. Using a [68Ga]-labeled NODAGA-conjugated MoonTag nanobody, we performed PET/CT imaging at day 8-9 after tumor implantation. Specific binding of a [68Ga]-labeled NODAGA-conjugated MoonTag nanobody was observed in 7xMoonTag tumors (1.7 ± 0.5%ID/mL) by PET imaging, showing significantly higher radiotracer accumulation compared to the WT tumors (1.1 ± 0.3%ID/mL; p < 0.01). Ex vivo gamma counter measurements confirmed significantly higher uptake in 7xMoonTag tumors compared to WT tumors (p < 0.001). In addition, MoonTag nanobody binding was detected by autoradiography which was spatially matched with histological analysis of the tumor tissues. In conclusion, we expect nanobody-based poly-epitope tag strategies to be widely applicable for multimodal imaging techniques given the advantageous properties of nanobodies and their amenability to genetic and chemical engineering.

12.
Bioelectrochemistry ; 160: 108771, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38972158

RESUMEN

MiRNA-21 is recognized as an important biological marker for the diagnosis, treatment, and prognosis of breast cancer. Here, we have created a nanochannel biosensor utilizing the duplex-specific nuclease (DSN) signal amplification strategy to achieve the detection of miRNAs. In this system, DNA as the capture probe was covalently immobilized on the surface of nanochannels, which hybridized with the target miRNA and forms RNA/DNA duplexes. DSN could cleave the probe DNA in RNA/DNA duplexes, recycling target miRNA, which may again hybridized with other DNA probes. After N cycles, most of the DNA probes had been cleaved, and the content of miRNA could be quantified by detecting changes in surface charge density. This biosensor can distinguish miR-21 from non-complementary miRNAs and one-base mismatched miRNAs, with reliable detection limits as low as 1 fM in PBS. In addition, we had successfully applied this method to analysis of total RNA samples in MCF-7 cells and HeLa cells, and the nanochannels had also shown excellent responsiveness and strong anti-interference ability. This new method is expected to contribute to miRNA detection in clinical diagnostics, providing a unique approach to detecting and distinguishing disease-associated molecules.

13.
Molecules ; 29(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38998952

RESUMEN

The sensitivity of immunoassays is generally limited by the low signal reporter/recognition element ratio. Nanomaterials serving as the carriers can enhance the loading number of signal reporters, thus improving the detection sensitivity. However, the general immobilization strategies, including direct physical adsorption and covalent coupling, may cause the random orientation and conformational change in proteins, partially or completely suppressing the enzymatic activity and the molecular recognition ability. In this work, we proposed a strategy to load recognition elements of antibodies and enzyme labels using boronic acid-modified metal-organic frameworks (MOFs) as the nanocarriers for signal amplification. The conjugation strategy was proposed based on the boronate ester interactions between the carbohydrate moieties in antibodies and enzymes and the boronic acid moieties on MOFs. Both enzymes and MOFs could catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2, therefore achieving dual signal amplification. To indicate the feasibility and sensitivity of the strategy, colorimetric immunoassays of prostate specific antigen (PSA) were performed with boronic acid-modified Cu-MOFs as peroxidase mimics to catalyze TMB oxidation and nanocarriers to load antibody and enzyme (horseradish peroxidase, HRP). According to the change in the absorbance intensity of the oxidized TMB (oxTMB), PSA at the concentration range of 1~250 pg/mL could be readily determined. In addition, this work presented a site-specific and oriented conjugation strategy for the modification of nanolabels with recognition elements and signal reporters, which should be valuable for the design of novel biosensors with high sensitivity and selectivity.


Asunto(s)
Ácidos Borónicos , Colorimetría , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Colorimetría/métodos , Ácidos Borónicos/química , Inmunoensayo/métodos , Humanos , Bencidinas/química , Oxidación-Reducción , Antígeno Prostático Específico/análisis , Peróxido de Hidrógeno/química , Anticuerpos/química , Técnicas Biosensibles/métodos , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo
14.
Mikrochim Acta ; 191(8): 453, 2024 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970675

RESUMEN

An electrochemical biosensor has been developed for detection of Escherichia coli O157 by integrating lateral flow with screen-printed electrodes. The screen-printed electrodes were attached under the lateral flow detection line, and organic-inorganic nanoflowers prepared from E. coli O157-specific antibodies as an organic component were attached to the lateral flow detection line. In the presence of E. coli O157, an organic-inorganic nanoflower-E. coli O157-antimicrobial peptide-labelled ferrocene sandwich structure is formed on the lateral flow detection line. Differential pulse voltammetry is applied using a smartphone-based device to monitor ferrocene on the detection line. The resulting electrochemical biosensor could specifically detect E. coli O157 with a limit of detection of 25 colony-forming units mL-1. Through substitution of antibodies of organic components in organic-inorganic nanoflowers, biosensors have great potential for the detection of other pathogens in biomedical research and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Escherichia coli O157 , Escherichia coli O157/aislamiento & purificación , Escherichia coli O157/inmunología , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Límite de Detección , Nanoestructuras/química , Electrodos , Compuestos Ferrosos/química , Anticuerpos Inmovilizados/inmunología , Metalocenos/química , Anticuerpos Antibacterianos/química , Anticuerpos Antibacterianos/inmunología , Péptidos Antimicrobianos/química
15.
Biosens Bioelectron ; 263: 116574, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029276

RESUMEN

In this work, a platinum-nickel based nanozyme is prepared and used as a coreaction accelerator in the luminol-H2O2 electrochemiluminescence (ECL) system to construct an ECL biosensor for dimethyl phthalate (DMP) detection. The PtNi/NC nanozyme possesses dispersed metal active sites, and the synergistic effect of Pt and Ni endows it with excellent catalytic performance, which effectively converts H2O2 into more superoxide anions, and then significantly enhances the ECL intensity of the luminol system. The ECL mechanism is investigated by combining cyclic voltammetry and ECL with different types of free radical scavengers. Simultaneously, an "off-on" biosensor is constructed by integrating 3D DNA walker with enzyme-free recycling amplification for ultrasensitive detection of DMP. The biosensor based on PtNi/NC nanozyme mediated luminol-H2O2 system and 3D DNA walker exhibits a linear range of 1 × 10-16 to 1 × 10-6 M with a detection limit of 4.3 × 10-17 M (S/N = 3), and displays good stability and specificity. This study demonstrates the advantages of PtNi/NC nanozyme in enhancing the luminol-H2O2 ECL system, providing new strategy for designing efficient ECL emitter and offering a new method for detecting phthalate esters.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Peróxido de Hidrógeno , Límite de Detección , Mediciones Luminiscentes , Luminol , Ácidos Ftálicos , Platino (Metal) , Técnicas Biosensibles/métodos , Luminol/química , Mediciones Luminiscentes/métodos , Técnicas Electroquímicas/métodos , Platino (Metal)/química , Peróxido de Hidrógeno/química , Ácidos Ftálicos/química , Níquel/química , Nanopartículas del Metal/química , ADN/química , ADN Catalítico/química
16.
Mikrochim Acta ; 191(8): 441, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954045

RESUMEN

A ratiometric SERS aptasensor based on catalytic hairpin self-assembly (CHA) mediated cyclic signal amplification strategy was developed for the rapid and reliable determination of Escherichia coli O157:H7. The recognition probe was synthesized by modifying magnetic beads with blocked aptamers, and the SERS probe was constructed by functionalizing gold nanoparticles (Au NPs) with hairpin structured DNA and 4-mercaptobenzonitrile (4-MBN). The recognition probe captured E. coli O157:H7 specifically and released the blocker DNA, which activated the CHA reaction on the SERS probe and turned on the SERS signal of 6-carboxyl-x-rhodamine (ROX). Meanwhile, 4-MBN was used as an internal reference to calibrate the matrix interference. Thus, sensitive and reliable determination and quantification of E. coli O157:H7 was established using the ratio of the SERS signal intensities of ROX to 4-MBN. This aptasensor enabled detection of 2.44 × 102 CFU/mL of E. coli O157:H7 in approximately 3 h without pre-culture and DNA extraction. In addition, good reliability and excellent reproducibility were observed for the determination of E. coli O157:H7 in spiked water and milk samples. This study offered a new solution for the design of rapid, sensitive, and reliable SERS aptasensors.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Escherichia coli O157 , Oro , Límite de Detección , Nanopartículas del Metal , Leche , Espectrometría Raman , Escherichia coli O157/aislamiento & purificación , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Oro/química , Leche/microbiología , Leche/química , Espectrometría Raman/métodos , Técnicas Biosensibles/métodos , Animales , Catálisis , Secuencias Invertidas Repetidas , Contaminación de Alimentos/análisis , Microbiología del Agua , Reproducibilidad de los Resultados
17.
Biosens Bioelectron ; 262: 116527, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38941687

RESUMEN

Programmed cell death-ligand 1 positive (PD-L1+) exosomes play a crucial role in the realm of cancer diagnosis and treatment. Nevertheless, due to the intricate nature of biological specimens, coupled with the heterogeneity, low refractive index (RI), and scant surface coverage density of exosomes, traditional surface plasmon resonance (SPR) sensors still do not meet clinical detection requirements. This study utilizes the exceptional electrical and optical attributes of single-walled carbon nanotubes (SWCNTs) as the substrate for SPR sensing, thereby markedly enhancing sensitivity. Furthermore, sp2 hybridized SWCNTs have the ability to load specific recognition elements. Additionally, through the coordination interaction of Ti with phosphate groups and the ferromagnetism of Fe3O4, efficient exosomes isolation and enrichment in complex samples are achievable with the aid of an external magnetic field. Owing to the high-quality and high-RI of Fe3O4@TiO2, the response signal experiences amplification, thus further improving the performance of the SPR biosensor. The linear range of the SPR biosensor constructed by this method is 1.0 × 103 to 1.0 × 107 particles/mL, with a limit of detection (LOD) of 31.9 particles/mL. In the analysis of clinical serum samples, cancer patients can be differentiated from healthy individuals with an Area Under Curve (AUC) of 0.9835. This study not only establishes a novel platform for exosomes direct detection but also offers new perspectives for the sensitive detection of other biomarkers.


Asunto(s)
Antígeno B7-H1 , Exosomas , Nanotubos de Carbono , Resonancia por Plasmón de Superficie , Titanio , Humanos , Antígeno B7-H1/sangre , Antígeno B7-H1/análisis , Antígeno B7-H1/aislamiento & purificación , Técnicas Biosensibles/métodos , Exosomas/química , Límite de Detección , Nanotubos de Carbono/química , Neoplasias/sangre , Resonancia por Plasmón de Superficie/métodos , Titanio/química
18.
Talanta ; 277: 126331, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823324

RESUMEN

Recognition and separation of chiral isomers are of great importance in both industrial and biological applications. However, owing to identical molecular formulas and chemical properties of enantiomers, signal transduction and amplification are still two major challenges in chiral sensing. In this study, we developed an enantioselective device by integrating chiral covalent organic framework nanosheets (CONs) with nanochannels for sensitive identification and quantification of enantiomers. Using 3,4-dihydroxyphenylalanine (DOPA) as the model analyte, the as-prepared chiral nanofluidic device exhibits a remarkable chiral recognition ability to l-DOPA than d-DOPA. More importantly, due to the chelation of DOPA with Fe3+ ions, it can efficiently block the ion transport through channel and shield the channel surface charge, which will amplify the difference in the electrochemical response of l-DOPA and d-DOPA. Therefore, a sensitive chiral recognition can be achieved using the present nanofluidic device coupled using electrochemical amplification strategy. Notably, using this method, an ultra-low concentration of l-DOPA (as low as 0.21 pM) can be facilely and successfully detected with a linear range of 1 pM-10 µM. This study provides a reliable and sensitive approach for achieving highly selective detection of chiral molecules.

19.
Chembiochem ; : e202400230, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825565

RESUMEN

Several major viral pandemics in history have significantly impacted the public health of human beings. The COVID-19 pandemic has further underscored the critical need for early detection and screening of infected individuals. However, current detection techniques are confronted with deficiencies in sensitivity and accuracy, restricting the capability of detecting trace amounts of viruses in human bodies and in the environments. The advent of DNA nanotechnology has opened up a feasible solution for rapid and sensitive virus determination. By harnessing the designability and addressability of DNA nanostructures, a range of rapid virus sensing platforms have been proposed. This review overviewed the recent progress, application, and prospect of DNA nanotechnology-based rapid virus detection platforms. Furthermore, the challenges and developmental prospects in this field were discussed.

20.
Luminescence ; 39(6): e4804, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38859763

RESUMEN

Early and sensitive detection of tobacco mosaic virus (TMV) is of great significance for improving crop yield and protecting germplasm resources. Herein, we constructed a novel fluorescence sensor to detect TMV RNA (tRNA) through double strand specific nuclease (DSN) cycle and activator regenerative electron transfer atom transfer radical polymerization (ARGET ATRP) dual signal amplification strategy. The hairpin DNA complementarily paired with tRNA was used as a recognition unit to specifically capture tRNA. By the double-stranded DNA hydrolyzed with DSN, tRNA is released to open more hairpin DNA, and more complementary DNA (cDNA) is bound to the surface of the magnetic beads (MBs) to achieve the first amplification. After binding with the initiator, the cDNA employed ARGET ATRP to attach more fluorescent signal molecules to the surface of MBs, thus achieving the second signal amplification. Under the optimal experimental conditions, the logarithm of fluorescence intensity versus tRNA concentration showed a good linear relationship in the range of 0.01-100 pM, with a detection limit of 1.03 fM. The limit of detection (LOD) was calculated according to LOD = 3 N/S. Besides, the sensor showed good reproducibility and stability, which present provided new method for early and highly sensitive detection for plant viruses.


Asunto(s)
ARN Viral , Virus del Mosaico del Tabaco , Virus del Mosaico del Tabaco/genética , Virus del Mosaico del Tabaco/química , ARN Viral/análisis , Fluorescencia , Límite de Detección , Técnicas Biosensibles/métodos , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA