Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Food Chem ; 460(Pt 1): 140552, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39047476

RESUMEN

The quality of surimi, widely used in processed seafood, is compromised by freeze-thaw cycles, leading to protein denaturation and oxidative degradation. The objective of this study is to explore the effects of adding natural whey peptide hydrolysate (WPH) on the myofibrillar proteins of repeatedly freeze-thawed surimi. Results indicated surimi treated with 15% WPH exhibited only a 128% increase in surface hydrophobicity and a maximum peroxide value of 7.84 µg/kg, significantly lower than the control group. Additionally, salt-soluble protein content, emulsification activity, and stability decreased with the increase in freeze-thaw cycles. With a 15% WPH offering the most significant protective effect, evidenced by reductions of only 25.02%, 42.52% and 37.02% in salt-soluble protein content, emulsification activity, and stability, respectively. These outcomes demonstrate that WPH effectively reduces protein denaturation during repeated freeze-thaw processes. Future research should explore the molecular mechanisms underlying WPH's protective effects and evaluate their applicability in other food systems.

2.
Food Chem ; 449: 139329, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615634

RESUMEN

Cured Spanish mackerel has a promising market owing to its nutritious nature as well as ease of transportation and preservation. However, the nutritional and flavor formation mechanism of Spanish mackerel after curing and drying is unclear. To overcome this problem, the effects of different processing conditions on the free amino acid, microbial community, and flavor of Spanish mackerel were explored. Staphylococcus and Cobetia are the main microorganisms in cured mackerel and are closely associated with the formation of their quality. Compared with fresh mackerel, cured mackerel contains increased levels of protein, fat, and chloride, contributing to its distinctive flavor. The contents of free amino acids in the BA64 group were substantially higher than those in other groups, particularly the contents of threonine, glycine, and tyrosine. These findings will contribute to the development of high-quality cured Spanish mackerel products and cured aquatic products.


Asunto(s)
Aminoácidos , Microbiota , Perciformes , Animales , Aminoácidos/análisis , Aminoácidos/metabolismo , Aminoácidos/química , Perciformes/microbiología , Perciformes/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Manipulación de Alimentos , Gusto , Productos Pesqueros/análisis , Productos Pesqueros/microbiología , Desecación , Conservación de Alimentos/métodos
3.
Mar Pollut Bull ; 201: 116281, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520998

RESUMEN

Anthropogenic activities have increased the discharge of marine contaminants threatening marine life. Small gulfs, such as the Arabian Gulf, are vulnerable to accumulating potentially toxic elements in marine species due to slow water exchange. The concentration of 21 elements was determined in the tissues of Scomberomorus commerson from Umm Al Quwain (United Arab Emirates) and Bandar Abbas (Iran). Chromium, Copper, and Iron exceeded internationally established maximum permissible limits. Sites could not be distinguished based on Principle Component Analyses of elements. Elevated Cu and Cr in muscle are of concern to marine species as well as humans. Metal Pollution Index showed a significant difference between sites, with 20.34 % and 100 % of individuals suffering high metal toxicity and poor body conditions, respectively. The Arabian Gulf is experiencing an increase in discharge of industrial wastes. Implementation of strict policies to reduce discharge of toxic substances is required to protect marine organisms and humans.


Asunto(s)
Metales Pesados , Perciformes , Contaminantes Químicos del Agua , Humanos , Animales , Metales Pesados/análisis , Peces , Cobre/análisis , Residuos Industriales/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
4.
Food Chem X ; 21: 101126, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38292676

RESUMEN

This study investigated the quality changes of dry salted mackerel during curing and drying process and the relationship between flavor substances and microorganisms. The results showed that the thiobarbituric acid reactive substances (TBARS) values increased gradually with the increase of salt concentration and treatment time. The total volatile base nitrogen (TVB-N) values and total viable counts (TVC) values showed the same trend. Under 3% condition, the TVB-N values exceeded the standard and was not suitable for consumption. A total of 61 volatile flavor substances were identified by Gas chromatography-ion mobility spectrometry (GC-IMS), among which aldehydes contributed the most. Staphylococcus and Cobetia were the most abundant by High-throughput sequencing (HTS). There was significant correlation between TOP15 microorganisms and TOP20 flavor substances. Staphylococcus and Cobetia were positively correlated with 13 volatile flavor substances, which contributed to the formation of flavor in naturally fermented Spanish mackerel.

5.
Foods ; 12(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37372558

RESUMEN

Putrescine is a low-molecular-weight organic compound that is widely found in pickled foods. Although the intake of biogenic amines is beneficial to humans, an excessive intake can cause discomfort. In this study, the ornithine decarboxylase gene (ODC) was involved in putrescine biosynthesis. After cloning, expression and functional verification, it was induced and expressed in E. coli BL21 (DE3). The relative molecular mass of the recombinant soluble ODC protein was 14.87 kDa. The function of ornithine decarboxylase was analyzed by determining the amino acid and putrescine content. The results show that the ODC protein could catalyze the decarboxylation of ornithine to putrescine. Then, the three-dimensional structure of the enzyme was used as a receptor for the virtual screening of inhibitors. The binding energy of tea polyphenol ligands to the receptor was the highest at -7.2 kcal mol-1. Therefore, tea polyphenols were added to marinated fish to monitor the changes in putrescine content and were found to significantly inhibit putrescine production (p < 0.05). This study lays the foundation for further research on the enzymatic properties of ODC and provides insight into an effective inhibitor for controlling the putrescine content in pickled fish.

6.
Food Sci Nutr ; 11(2): 1013-1023, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36789073

RESUMEN

In this study, dry-cured Spanish mackerel (Scomberomorus niphonius, DCSM) was prepared via three different methods (hot-air drying, cold-air drying, and sun drying). The content of 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE) derived from lipid oxidation in whole processes was investigated by HPLC-MS/MS. The changes in fatty acid composition were detected by GC-MS, and the degree of lipid oxidation was evaluated by the levels of acid values (AV), peroxide values (POV), and thiobarbituric acid-reactive substances (TBARS). The results showed that the drying process significantly accelerated lipid oxidation in DCSM. The contents of HHE and HNE were significantly increased after processing. The content of HHE was higher by 18.44-, 13.45-, and 16.32-folds compared with that of HNE after three different processes, respectively. The HHE and HNE contents fluctuated upward during the hot-air and cold-air drying process. However, the contents of HHE and HNE increased time-dependent during the sun drying process, with the highest values of 86.33 ± 10.54 and 5.29 ± 0.54 mg/kg fish among the three different processes. Besides, there was a significant positive correlation between HHE contents and n-3 fatty acids content in hot-air drying and sun drying processes (Pearson's r = .991/.996), and HNE occurrence was closely related to n-6 fatty acid content in sun drying process (Pearson's r = .989). Regression analysis indicated that the content of HHE and TOTOXTBA values in DCSM showed good linear relationships (R 2 value = .907), which suggested that the content of HHE could be used to estimate the oxidative deterioration of dry-cured fish products.

7.
Toxins (Basel) ; 14(8)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-36006196

RESUMEN

To begin to understand the impact of food chain dynamics on ciguatera risk, we used published data to model the transfer of ciguatoxins across four trophic levels of a marine food chain in Platypus Bay, Australia. The data to support this first attempt to conceptualize the scale of each trophic transfer step was limited, resulting in broad estimates. The hypothetical scenario we explored generated a low-toxicity 10 kg Spanish mackerel (Scomberomorus commerson) with a flesh concentration of 0.1 µg/kg of Pacific-ciguatoxin-1 (P-CTX-1, also known as CTX1B) from 19.5-78.1 µg of P-CTX-1 equivalents (eq.) that enter the marine food chain from a population of 12-49 million benthic dinoflagellates (Gambierdiscus sp.) producing 1.6 × 10-12 g/cell of the P-CTX-1 precursor, P-CTX-4B. This number of Gambierdiscus could be epiphytic on 22-88 kg of the benthic macroalgae (Cladophora) that carpets the bottom of much of Platypus Bay, with the toxin transferred to an estimated 40,000-160,000 alpheid shrimps in the second trophic level. This large number of shrimps appears unrealistic, but toxic shrimps would likely be consumed by a school of small, blotched javelin fish (Pomadasys maculatus) at the third trophic level, reducing the number of shrimps consumed by each fish. The Spanish mackerel would accumulate a flesh concentration of 0.1 µg/kg P-CTX-1 eq. by preying upon the school of blotched javelin and consuming 3.6-14.4 µg of P-CTX-1 eq. However, published data indicate this burden of toxin could be accumulated by a 10 kg Spanish mackerel from as few as one to three blotched javelin fish, suggesting that much greater amounts of toxin than modelled here must at certain times be produced and transferred through Platypus Bay food chains. This modelling highlights the need for better quantitative estimates of ciguatoxin production, biotransformation, and depuration through marine food chains to improve our understanding and management of ciguatera risk.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Perciformes , Animales , Intoxicación por Ciguatera/epidemiología , Ciguatoxinas/metabolismo , Ciguatoxinas/toxicidad , Dinoflagelados/metabolismo , Peces/metabolismo , Cadena Alimentaria , Perciformes/metabolismo
8.
Toxins (Basel) ; 13(8)2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34437386

RESUMEN

We review and develop conceptual models for the bio-transfer of ciguatoxins in food chains for Platypus Bay and the Great Barrier Reef on the east coast of Australia. Platypus Bay is unique in repeatedly producing ciguateric fishes in Australia, with ciguatoxins produced by benthic dinoflagellates (Gambierdiscus spp.) growing epiphytically on free-living, benthic macroalgae. The Gambierdiscus are consumed by invertebrates living within the macroalgae, which are preyed upon by small carnivorous fishes, which are then preyed upon by Spanish mackerel (Scomberomorus commerson). We hypothesise that Gambierdiscus and/or Fukuyoa species growing on turf algae are the main source of ciguatoxins entering marine food chains to cause ciguatera on the Great Barrier Reef. The abundance of surgeonfish that feed on turf algae may act as a feedback mechanism controlling the flow of ciguatoxins through this marine food chain. If this hypothesis is broadly applicable, then a reduction in herbivory from overharvesting of herbivores could lead to increases in ciguatera by concentrating ciguatoxins through the remaining, smaller population of herbivores. Modelling the dilution of ciguatoxins by somatic growth in Spanish mackerel and coral trout (Plectropomus leopardus) revealed that growth could not significantly reduce the toxicity of fish flesh, except in young fast-growing fishes or legal-sized fishes contaminated with low levels of ciguatoxins. If Spanish mackerel along the east coast of Australia can depurate ciguatoxins, it is most likely with a half-life of ≤1-year. Our review and conceptual models can aid management and research of ciguatera in Australia, and globally.


Asunto(s)
Ciguatoxinas , Peces , Cadena Alimentaria , Modelos Biológicos , Animales , Australia , Bahías , Ciguatoxinas/metabolismo , Peces/crecimiento & desarrollo , Peces/metabolismo
9.
J Food Prot ; 84(12): 2133-2142, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33984135

RESUMEN

ABSTRACT: Sun-dried Spanish mackerel is a common food in Dalian and made by adding salt and sun drying, which has special physical, chemical, and microbiological properties. In this study, the physicochemical properties and microbial composition of commercially available sun-dried Spanish mackerel in Dalian were assessed, and some Lactobacillus strains were screened as a biopreservative for sun-dried Spanish mackerel preparation. The results showed that the total volatile base nitrogen content in the traditional sun-dried Spanish mackerel samples from Dalian was within 30 mg/100 g, the histamine content was 7 to 17 mg/kg, and the dominant bacteria at the genus level were Lactobacillus, Psychrobacter, and Ralstonia. A strain with biopreservative potential was isolated from a sun-dried Spanish mackerel sample, identified as L. plantarum species by 16S rDNA sequencing, and assigned as L. plantarum X23. Fresh Spanish mackerel flesh was treated with 16% brine and L. plantarum X23 at a dose of 107 CFU/mL and then dried in the sun. The sun-dried Spanish mackerel flesh treated with 16% brine and L. plantarum X23 showed a decreased histamine and acid value, increased free amino acid content, and a higher sensory score compared with the sun-dried Spanish mackerel without L. plantarum X23 treatment (P < 0.05). In conclusion, the sun-dried Spanish mackerel purchased from the supermarkets in Dalian were safely edible, and L. plantarum X23 can significantly reduce the content of histamine and putrescine in self-made, low-salt, sun-dried Spanish mackerel and has potential as a biopreservative for sun-dried Spanish mackerel preparation.


Asunto(s)
Lactobacillus plantarum , Perciformes , Animales , Bacterias , Microbiología de Alimentos , Lactobacillus
10.
Foods ; 10(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466563

RESUMEN

In this study, we investigated the effects of different frying conditions on the quality characteristics of fried Spanish mackerel (Scaberulous niphonius) to address the food quality degradation of self-heating fish products after frying, sterilization, and reheating. Furthermore, the effect of different moisture contents (65%, 60%, 55%, and 50%) of fried Spanish mackerel on texture, color, and microstructure after sterilization and self-heating were examined. The flavor fingerprints of different frying temperatures (140 °C, 160 °C, 180 °C, and 200 °C) coupled with the optimal moisture content were identified; furthermore, volatile organic compounds (VOCs) were studied using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) with principal component analysis (PCA). The results indicated that the shear force value significantly increased, while the hardness and chewiness significantly decreased simultaneously with decreasing moisture content. Samples containing 65% moisture content showed the highest L*, a*, and W values, while their b* value was the lowest, and the most clearly visible fibrous veins with tiny cracks could be observed in them. Samples fried at 160 °C and 65% moisture content exhibited the richest VOCs, with a greasy or fried aroma. Based on the PCA, there were significant differences in the sample VOCs under different frying conditions. In summary, among all treatments, frying at 160 °C with 65% moisture content resulted in the highest food quality of fish filets. The results of this study could provide a theoretical basis for improving the food quality of self-heated fish products.

11.
Food Chem ; 342: 128381, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33097327

RESUMEN

The key aroma compounds of six commercially available dry-cured Spanish mackerel (Scomberomorus niphonius, DCSM) were identified using electronic nose (E-nose), gas chromatography-olfactometry (GC-O), and two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS). A total of 38-55 aroma compounds were identified, and 21-26 of them, which presented high flavor dilution factors based on aroma extract dilution analysis, were quantified. Lastly, 9-14 key aroma compounds with high odor-active value, including 3-methyl-1-butanal, octanal, 1-octen-3-ol, nonanal, cis-4-decenal, ethyl caproate, (E)-2-octenal, (Z)-2-nonenal decanal, 3-methyl-1-butanol, 1-heptanol, 3-octanone, 2-octanol, and 6-methyl-5-hepten-2-one, were identified as the key aroma contributors in DCSM. Results also indicated that a longer dry-curing time would promote the generation of aroma compounds. The metabolism analysis implied that the auto-oxidation/oxidation of unsaturated fatty acids, such as oleic and linoleic acid, and the enzymatic degradation of l-leucine might be potential metabolic mechanisms.


Asunto(s)
Alimentos en Conserva/análisis , Perciformes/metabolismo , Compuestos Orgánicos Volátiles/análisis , Animales , China , Nariz Electrónica , Aromatizantes/análisis , Manipulación de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Análisis de Componente Principal
12.
Biol Trace Elem Res ; 199(9): 3497-3509, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33180263

RESUMEN

The contamination of seafood like narrow-barred Spanish mackerel (Scomberomorus commerson) fillets by potentially toxic elements (PTEs) has converted to worldwide health concerns. In this regard, the related citations regarding the concentration of PTEs in fillets of narrow-barred Spanish mackerel were collected through some of the international databases such as Scopus, Cochrane, PubMed, and Scientific Information Database (SID) up to 10 March 2020. The concentration of PTEs in fillets of narrow-barred Spanish mackerel fish was meta-analyzed and the health risk (non-carcinogenic risk) was estimated by the total target hazard quotient (TTHQ). The meta-analysis of data indicated that the rank order of PTEs in fillet of narrow-barred Spanish mackerel was Fe (10,853.29 µg/kg-ww) > Zn (4007.00 µg/kg-ww) > Cu (1005.66 µg/kg-ww) > total Cr (544.14 µg/kg-ww) > Mn (515.93 µg/kg-ww) > Ni (409.90 µg/kg-ww) > Pb (180.99 µg/kg-ww) > As (93.11 µg/kg-ww) > methyl Hg (66.60 µg/kg-ww) > Cd (66.03 µg/kg-ww). The rank order of health risk assessment based on the country by the aid of TTHQ for adult consumers was Malaysia (0.22251) > Philippines (0.21912) > Egypt (0.08684) > Taiwan (0.07430) > Bahrain (0.04893) > Iran (0.03528) > China (0.00620) > Pakistan (0.00316) > Yemen (0.00157) > India (0.00073). In addition, the rank order of health risk assessment based on the country by the aid of TTHQ for child consumers was Malaysia (1.03838) > Philippines (1.02257) > Egypt (0.40523) > Taiwan (0.34674) > Bahrain (0.22832) > Iran (0.16466) > China (0.02892) > Pakistan (0.01474) > Yemen (0.00731) > India (0.00340). Therefore, the children in Malaysia and the Philippines were at considerable non-carcinogenic risk. Hence, approaching the recommended control plans in order to decrease the non-carcinogenic risk associated with the ingestion of PTEs via the consumption of narrow-barred Spanish mackerel fish fillets is crucial.


Asunto(s)
Metales Pesados , Perciformes , Contaminantes del Suelo , Adulto , Animales , Niño , China , Egipto , Monitoreo del Ambiente , Humanos , India , Irán , Malasia , Metales Pesados/análisis , Pakistán , Medición de Riesgo , Contaminantes del Suelo/análisis , Taiwán
13.
Mol Biol Rep ; 47(12): 10005-10014, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33170425

RESUMEN

Spanish mackerel S. commerson belonging to family Scombridae, represent a group of highly commercial marine fisheries with an ever-growing demand world over. Analysing the genetic diversity of this species is of utmost importance and necessary for conservation purposes. Microsatellites are molecular tools with advantages that are ideal for population analyses. This study provides the first multiplex panel set of species-specific microsatellite loci for S. commerson that can be applied when assessing both intra- and inter population genetic variation. Microsatellite marker panels were developed in S. commerson, using Third Generation Sequencing technology in PacBio RSII, based on Single-Molecule Real-Time (SMRT). Thirty- two microsatellite loci were isolated and characterized for S. commerson, by genotyping 20 individuals each obtained from the Kochi and Veraval in the Arabian sea and Chennai along Bay of Bengal coast (n = 3). The number of alleles per locus in S. commerson varied from 4 to 17, while the mean observed and expected heterozygosities ranged from 0.656 to 0.753. The Polymorphic Information Content (PIC) were highly informative, 85% loci with PIC value 0 > 0.75. This suite of markers provides the first species specific nuclear multiplex microsatellite marker panels (32 loci) for S. commerson and thus allows assessment of different populations structures of the species across its distribution range, with more specificity. These newly developed loci have also been validated for cross transferability in another scomberid fish Scomberomorus guttatus.


Asunto(s)
Conservación de los Recursos Naturales , Genética de Población , Repeticiones de Microsatélite , Perciformes/genética , Animales , Heterocigoto , Océano Índico , Polimorfismo Genético , Especificidad de la Especie
14.
Food Sci Nutr ; 8(7): 3957-3968, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32724656

RESUMEN

Japanese Spanish Mackerel (JSM) Scomberomorus niphonius (Cuvier 1832) is an important commercial fish species in South Korea. The postharvest handling, preservation, and storage of JSM have not been clearly understood, and therefore, it is very often oxidized to produce off-flavor while marketed as the raw or frozen state. To overcome these problems, the present study was designed to adapt the hot smoke processing technique for improving the sensorial, physicochemical, and microbial qualities of JSM with extended shelf life. The hot smoking (70°C) with different sawdusts at the different smoke times (0, 20, 25, and 30 min) was applied to process JSM fillet. The smoked JSM obtained higher sensory attributes (appearance, odor, taste, color, texture, and overall preferences) and suppressed bacterial growth, pH, volatile base nitrogen, thiobarbituric acid-reactive species, and trimethylamine N-oxide at an optimum smoking time of 25 min using oak sawdust. Moreover, it possessed higher nutritional value and beneficial polyunsaturated fatty acids such as docosahexaenoic acid (DHA), 4.19 g/100 g, and eicosapentaenoic acid (EPA), 1.82 g/100 g. The smoked JSM product extended shelf life up to 42 days at 10°C storage temperature. The overall findings indicate that the hot smoking technology with JSM could be effective in achieving good sensorial, nutritional, and functional attributes to the consumer.

15.
Foods ; 9(3)2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32245181

RESUMEN

The states of protons within food items are highly related to their physical attributes. In this study, the effect of cooking methods including boiling, steaming, roasting and frying on proton dynamics, physicochemical parameters and microstructure of Spanish mackerel was assessed by low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) techniques. The treatment of cooking resulted in a significant reduction of proton mobility and declined freedom of protons. The state changes of protons can be monitored easily in an intuitive and non-destructive manner during various cooking process. The treatments of boiling, steaming, roasting and frying resulted in different cooking loss and similar water-holding capability. A significant increase of total carbonyl content and thiobarbituric acid reactive substances was found, while a decrease of the values for free thiols and surface hydrophobicity was observed. The analysis of circular dichroism spectroscopy and cryo-scanning electron microscopy showed significant structural change. The correlation coefficients of Rcal2 and Rcv2 from partial least squares (PLS) regression models were more than 0.980, suggesting good correlation between LF-NMR data and hardness, resilience, springiness, chewiness, gumminess, and adhesiveness. Good recoveries and a relatively small coefficient of variation (CV) were obtained from the PLS regression models, indicating good reliability and accuracy in predicting texture parameters for mackerel samples.

16.
Foods ; 9(3)2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182816

RESUMEN

Exploring the spoilage mechanism of Spanish mackerel is important to reduce the waste of Spanish mackerel and extend its shelf life. Cold chain logistics are commonly used to maintain the high quality and prolong the shelf life of aquatic products in circulation and storage. We assessed the sensory (body surface, odor, fish gills, fish elasticity, eyes, and overall assessment), chemical (total volatile base nitrogen (TVB-N), pH and 2-thiobarbituric acid (TBA)), and microbial characteristics (total viable counts (TVCs) and lactic acid bacteria) of Spanish mackerel combined with high-throughput sequencing at frequent intervals to determine their freshness and specific spoilage organisms (SSOs) during 0 °C cold chain logistics. Results showed that TVB-N, TBA, and TVCs correlated well (R2 > 0.90) with the sensory scores with prolonged circulation and storage time. The SSOs of Spanish mackerel were Proteobacteria in phylum and Pseudomonas in genus. The shelf life of mackerel under the 0 °C ice-stored cold chain system was approximately seven days, which is roughly three days longer compared with the traditional low-temperature storage method. These findings indicated that the freshness evaluation of Spanish mackerel in cold-chain circulation could be achieved by selecting appropriate chemical, microbial, and sensory indices. The study contributes to extend the shelf life of cold-chain Spanish mackerel by inhibiting the growth of dominant bacteria and provides a basis for the development of methods and tools to predict the shelf life of Spanish mackerel.

17.
J Food Prot ; 82(11): 1931-1937, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31633424

RESUMEN

The effect of polyethylene packaging (PEP) in air cushion and vacuum packaging (VP) on histamine related to the quality of Japanese Spanish mackerel (JS mackerel) was studied with samples stored at -20, 4, 15, and 25°C. The aerobic plate count (APC), total volatile basic nitrogen (TVBN), and histamine concentrations of the PEP and VP samples stored at 25°C increased as the storage time continued. The PEP and VP samples stored at temperatures below 15°C showed lower levels of APC, TVBN, and histamine, with VP samples having considerably lower levels of APC, TVBN, and histamine than PEP samples. For the frozen JS mackerel stored at -20°C for 2 months and then thawed and stored at 25°C, the VP treatment delayed the increases of TVBN and histamine longer than did the PEP treatment. Thus, the storage of VP JS mackerel at temperatures below 4°C could prevent quality deterioration and extend shelf life.


Asunto(s)
Embalaje de Alimentos , Histamina , Perciformes , Temperatura , Animales , Embalaje de Alimentos/normas , Histamina/análisis , Histamina/metabolismo , Japón , Perciformes/microbiología , Vacio
18.
J Food Prot ; 82(10): 1643-1649, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31524539

RESUMEN

An incident of foodborne poisoning causing illness in seven victims due to ingestion of fried Japanese Spanish mackerel (JS mackerel; Scomberomorus niphonius) meat occurred in September 2014 in Hualien County, eastern Taiwan. Of the two suspected fish meats, one raw sample contained 3,318 ppm of histamine and one fried sample contained 1,906 ppm of histamine, levels which are greater than the potential hazard action level (500 ppm) in most illness cases. Given the allergy-like symptoms of the victims and the high histamine content in the suspected fish samples, this foodborne poisoning was strongly suspected to be caused by histamine intoxication. In addition, five histamine-producing bacterial strains isolated from suspected raw fish samples, capable of producing 152 to 1,020 ppm of histamine in Trypticase soy broth supplemented with 1.0% l-histidine, were identified as Hafnia alvei (one strain), Enterobacter aerogenes (two strains), Raoultella ornithinolytica (one strain), and Morganella morganii (one strain) by 16S rDNA sequencing with PCR amplification. Moreover, 12 raw fish samples and 39 fried fish samples from retail stores were collected and tested to determine the occurrence of histamine. Two of 12 commercial raw fish samples (16.7%) had histamine levels greater than the U.S. Food and Drug Administration guideline for decomposition of 50 ppm for scombroid fish or product or a combination of both. To our knowledge, this is the first report in Taiwan to demonstrate that the JS mackerel meat products could cause histamine intoxication.


Asunto(s)
Bacterias , Microbiología de Alimentos , Enfermedades Transmitidas por los Alimentos , Histamina , Perciformes , Animales , Bacterias/metabolismo , Enfermedades Transmitidas por los Alimentos/microbiología , Histamina/análisis , Histamina/metabolismo , Histamina/toxicidad , Japón , Carne/análisis , Taiwán
19.
Mar Drugs ; 17(9)2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31547415

RESUMEN

For the full use of Spanish mackerel (Scomberomorous niphonius) muscle to produce antioxidant peptides, the proteins of Spanish mackerel muscle were separately hydrolyzed under five kinds of enzymes and in vitro gastrointestinal digestion, and antioxidant peptides were isolated from the protein hydrolysate using ultrafiltration and multiple chromatography methods. The results showed that the hydrolysate (SMPH) prepared using in vitro GI digestion showed the highest degree of hydrolysis (27.45 ± 1.76%) and DPPH radical scavenging activity (52.58 ± 2.68%) at the concentration of 10 mg protein/mL among the six protein hydrolysates, and 12 peptides (SMP-1 to SMP-12) were prepared from SMPH. Among them, SMP-3, SMP-7, SMP-10, and SMP-11 showed the higher DPPH radical scavenging activities and were identified as Pro-Glu-Leu-Asp-Trp (PELDW), Trp-Pro-Asp-His-Trp (WPDHW), and Phe-Gly-Tyr-Asp-Trp-Trp (FGYDWW), and Tyr-Leu-His-Phe-Trp (YLHFW), respectively. PELDW, WPDHW, FGYDWW, and YLHFW showed high scavenging activities on DPPH radical (EC50 1.53, 0.70, 0.53, and 0.97 mg/mL, respectively), hydroxyl radical (EC50 1.12, 0.38, 0.26, and 0.67 mg/mL, respectively), and superoxide anion radical (EC50 0.85, 0.49, 0.34, and 1.37 mg/mL, respectively). Moreover, PELDW, WPDHW, FGYDWW, and YLHFW could dose-dependently inhibit lipid peroxidation in the linoleic acid model system and protect plasmid DNA (pBR322DNA) against oxidative damage induced by H2O2 in the tested model systems. In addition, PELDW, WPDHW, FGYDWW, and YLHFW could retain their high activities when they were treated under a low temperature (<60 °C) and a moderate pH environment (pH 5-9). These present results indicate that the protein hydrolysate, fractions, and isolated peptides from Spanish mackerel muscle have strong antioxidant activity and might have the potential to be used in health food products.


Asunto(s)
Antioxidantes/farmacología , Productos Pesqueros , Péptidos/farmacología , Perciformes , Hidrolisados de Proteína/química , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Fraccionamiento Químico/métodos , Cromatografía/métodos , Peroxidación de Lípido/efectos de los fármacos , Músculos/química , Estrés Oxidativo/efectos de los fármacos , Péptidos/química , Péptidos/aislamiento & purificación , Estabilidad Proteica , Ultrafiltración/métodos
20.
Mar Drugs ; 17(4)2019 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-31013895

RESUMEN

A previous report indicated that collagen hydrolysate fraction (F7) from Spanish mackerel (Scomberomorous niphonius) skins showed high reducing power and radical scavenging activities on 2,2-Diphenyl-1-picrylhydrazyl (DPPH) (EC50 value of 1.57 mg/mL) and hydroxyl (EC50 value of 1.20 mg/mL). In this work, eight peptides were isolated from F7 and identified as Gly-Pro-Tyr (GPY, 335.31 Da), Gly-Pro-Thr-Gly-Glu (GPTGE, 459.47 Da), Pro-Phe-Gly-Pro-Asp (PFGPD, 531.52 Da), Gly-Pro-Thr-Gly-Ala-Lys (GPTGAKG, 586.65 Da), Pro-Tyr-Gly-Ala-Lys-Gly (PYGAKG, 591.69 Da), Gly-Ala-Thr-Gly-Pro-Gln-Gly (GATGPQG, 586.61 Da), Gly-Pro-Phe-Gly-Pro-Met (GPFGPM, 604.73 Da), and Tyr-Gly-Pro-Met (YGPM, 466.50 Da), respectively. Among them, PFGPD, PYGAKG, and YGPM exhibited strong radical scavenging activities on DPPH (EC50 values of 0.80, 3.02, and 0.72 mg/mL for PFGPD, PYGAKG, and YGPM, respectively), hydroxyl (EC50 values of 0.81, 0.66, and 0.88 mg/mL for PFGPD, PYGAKG, and YGPM, respectively), superoxide anion (EC50 values of 0.91, 0.80, and 0.73 mg/mL for PFGPD, PYGAKG, and YGPM, respectively), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) cation (EC50 values of 0.86, 1.07, and 0.82 mg/mL for PFGPD, PYGAKG, and YGPM, respectively) in a positive concentration-activity relationship. Furthermore, PFGPD, PYGAKG, and YGPM could effectively reduce Fe3+ to Fe2+ and inhibit lipid peroxidation. Hence, eight collagen peptides from hydrolysate of Spanish mackerel skins might be served as antioxidant candidates for various industrial applications.


Asunto(s)
Antioxidantes/química , Colágeno/química , Colágeno/farmacología , Péptidos/química , Péptidos/farmacología , Perciformes/metabolismo , Piel/química , Animales , Antioxidantes/farmacología , Peroxidación de Lípido/efectos de los fármacos , Hidrolisados de Proteína/metabolismo , Superóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA