Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Mammary Gland Biol Neoplasia ; 29(1): 2, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289494

RESUMEN

In preclinical studies, accurate monitoring of tumor dynamics is crucial for understanding cancer biology and evaluating therapeutic interventions. Traditional methods like caliper measurements and bioluminescence imaging (BLI) have limitations, prompting the need for improved imaging techniques. This study introduces a fast-scan high-frequency ultrasound (HFUS) protocol for the longitudinal assessment of syngeneic breast tumor grafts in mice, comparing its performance with caliper, BLI measurements and with histological analysis. The E0771 mammary gland tumor cell line, engineered to express luciferase, was orthotopically grafted into immunocompetent C57BL/6 mice. Tumor growth was monitored longitudinally at multiple timepoints using caliper measurement, HFUS, and BLI, with the latter two modalities assessed against histopathological standards post-euthanasia. The HFUS protocol was designed for rapid, anesthesia-free scanning, focusing on volume estimation, echogenicity, and necrosis visualization. All mice developed tumors, only 20.6% were palpable at day 4. HFUS detected tumors as small as 2.2 mm in average diameter from day 4 post-implantation, with an average scanning duration of 47 s per mouse. It provided a more accurate volume assessment than caliper, with a lower average bias relative to reference tumor volume. HFUS also revealed tumor necrosis, correlating strongly with BLI in terms of tumor volume and cellularity. Notable discrepancies between HFUS and BLI growth rates were attributed to immune cell infiltration. The fast HFUS protocol enables precise and efficient tumor assessment in preclinical studies, offering significant advantages over traditional methods in terms of speed, accuracy, and animal welfare, aligning with the 3R principle in animal research.


Asunto(s)
Neoplasias Mamarias Animales , Animales , Ratones , Ratones Endogámicos C57BL , Análisis Costo-Beneficio , Ultrasonografía , Línea Celular Tumoral , Necrosis
2.
Methods Mol Biol ; 2442: 621-633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35320549

RESUMEN

Angiogenesis is a complex multi-step process involving various activities of endothelial cells. These activities are influenced in vivo by environmental conditions like interactions with other cell types and the microenvironment. Galectins play a role in several of these interactions and are therefore required for proper execution of in vivo angiogenesis. This chapter describes a method to study galectins during physiologic and pathophysiologic angiogenesis in vivo using the chicken chorioallantoic membrane (CAM) assay.


Asunto(s)
Galectinas , Neovascularización Patológica , Neovascularización Fisiológica , Animales , Bioensayo , Pollos , Membrana Corioalantoides , Células Endoteliales , Galectinas/fisiología , Neovascularización Patológica/fisiopatología , Neovascularización Fisiológica/fisiología
3.
Biofabrication ; 13(4)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34496353

RESUMEN

In the tumor microenvironment (TME), the extracellular matrix (ECM) provides a dynamic structure for cell adhesion and cancer cell motility, such as migration and invasion, as well as remodeling. Matrix metalloproteinases (MMPs) promote cancer cell motility, which contributes to inducing drug resistance and thereby acquiring aggressive features. The drug resistance-induced 3Din vitrotumor model can be an effective model for therapeutic strategies for anticancer drugs targeting aggressive cancer cells. Here, we describe highly drug-resistant multicellular tumoroids (MCTs)-ECM tumor grafts under a macroscale dense 3Din vitromodel through a combination of numerous MCTs and a collagen matrix. MCTs-ECM tumor grafts promote the high activity of MMP2 and MMP9 compared to general MCTs and induced cancer cell motility. Then, after the administration of anticancer drugs, the tumor grafts show increased drug resistance, with both the sporadic distribution of necrotic cells and the reduction of apoptotic portions, by activating cancer cell motility. MCTs-ECM tumor graft could be useful as a macroscale tumor graft model for inducing drug resistance by activating cancer cell motility and evaluating the efficacy of anticancer drugs targeting cancer with aggressive features.


Asunto(s)
Matriz Extracelular , Neoplasias , Muerte Celular , Resistencia a Medicamentos , Humanos , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
4.
Zebrafish ; 18(4): 293-296, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34030492

RESUMEN

Angiosarcoma is a clinically aggressive tumor with a high rate of mortality. It can arise in vascular or lymphatic tissues, involve any part of the body, and aggressively spread locally or metastasize. Angiosarcomas spontaneously develop in the tp53 deleted (tp53del/del) zebrafish mutant. However, established protocols for tumor dissection and transplantation of single cell suspensions of angiosarcoma tumors result in inferior implantation rates. To resolve these complications, we developed a new tumor grafting technique for engraftment of angiosarcoma and similar tumors in zebrafish, which maintains the tumor microenvironment and has superior rates of engraftment.


Asunto(s)
Hemangiosarcoma , Trasplante de Neoplasias , Pez Cebra , Animales , Modelos Animales de Enfermedad , Hemangiosarcoma/patología , Suspensiones , Microambiente Tumoral
5.
Exp Mol Pathol ; 103(2): 181-190, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28939161

RESUMEN

Previous studies of naturally occurring mouse papillomavirus (PV) MmuPV1-induced tumors in B6.Cg-Foxn1nu/nu mice suggest that T cell deficiency is necessary and sufficient for the development of such tumors. To confirm this, MmuPV1-induced tumors were transplanted from T cell-deficient mice into immunocompetent congenic mice. Consequently, the tumors regressed and eventually disappeared. The elimination of MmuPV1-infected skin/tumors in immunocompetent mice was consistent with the induction of antitumor T cell immunity. This was confirmed by adoptive cell experiments using hyperimmune splenocytes collected from graft-recipient mice. In the present study, such splenocytes were injected into T cell-deficient mice infected with MmuPV1, and they eliminated both early-stage and fully formed tumors. We clearly show that anti-tumor T cell immunity activated during tumor regression in immunocompetent mice effectively eliminates tumors developing in T cell-deficient congenic mice. The results corroborate the notion that PV-induced tumors are strongly linked to the immune status of the host, and that PV antigens are major anti-tumor antigens. Successful anti-PV T cell responses should, therefore, lead to effective anti-tumor immune therapy in human PV-infected patients.


Asunto(s)
Modelos Animales de Enfermedad , Inmunidad Celular/inmunología , Papillomaviridae/inmunología , Infecciones por Papillomavirus/complicaciones , Neoplasias Cutáneas/prevención & control , Linfocitos T/inmunología , Animales , Femenino , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Desnudos , Infecciones por Papillomavirus/virología , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA