Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; 63(19): 3704-3715, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34702101

RESUMEN

The study of bioactive compounds like food antioxidants is getting huge attention and curiosity by researchers and other relevant stakeholders (e.g., food and pharmaceutical industries) due to their health benefits. However, the currently available protocols to estimate the antioxidant activity of foods are time-consuming, destructive, require complex procedures for sample preparation, need technical persons, and not possible for real-time application, which are very important for large-scale or industrial applications. On the other hand, fluorescence spectroscopy and imaging techniques are relatively new, fast, mostly nondestructive, and possible to apply real-time to detect the antioxidants of foods. However, there is no review article on fluorescence techniques for estimating antioxidants in agricultural produces. Therefore, the present review comprehensively summarizes the overview of fluorescence phenomena, techniques (i.e., spectroscopy and computer vision), and their potential to monitor antioxidants in fruits and vegetables. Finally, opportunities and challenges of fluorescence techniques are described toward developing next-generation protocols for antioxidants measurement. Fluorescence techniques (both spectroscopy and imaging) are simpler and faster than available traditional methods of antioxidants measurement. Moreover, the fluorescence imaging technique has the potential to apply in real-time antioxidant identification in agricultural produce such as fruits and vegetables. Therefore, this technique might be used as a next-generation protocol for qualitative and quantitative antioxidants measurement after improvements like new material technologies for sensor (detector) and light sources for higher sensitivity and reduce the cost of implementing real-world applications.


Asunto(s)
Antioxidantes , Verduras , Antioxidantes/análisis , Verduras/química , Frutas/química , Análisis Espectral
2.
Front Mol Neurosci ; 14: 721749, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720872

RESUMEN

Huntington's disease is a dominantly inherited neurodegenerative disorder caused by the expansion of a CAG repeat, encoding for the amino acid glutamine (Q), present in the first exon of the protein huntingtin. Over the threshold of Q39 HTT exon 1 (HTTEx1) tends to misfold and aggregate into large intracellular structures, but whether these end-stage aggregates or their on-pathway intermediates are responsible for cytotoxicity is still debated. HTTEx1 can be separated into three domains: an N-terminal 17 amino acid region, the polyglutamine (polyQ) expansion and a C-terminal proline rich domain (PRD). Alongside the expanded polyQ, these flanking domains influence the aggregation propensity of HTTEx1: with the N17 initiating and promoting aggregation, and the PRD modulating it. In this study we focus on the first 11 amino acids of the PRD, a stretch of pure prolines, which are an evolutionary recent addition to the expanding polyQ region. We hypothesize that this proline region is expanding alongside the polyQ to counteract its ability to misfold and cause toxicity, and that expanding this proline region would be overall beneficial. We generated HTTEx1 mutants lacking both flanking domains singularly, missing the first 11 prolines of the PRD, or with this stretch of prolines expanded. We then followed their aggregation landscape in vitro with a battery of biochemical assays, and in vivo in novel models of C. elegans expressing the HTTEx1 mutants pan-neuronally. Employing fluorescence lifetime imaging we could observe the aggregation propensity of all HTTEx1 mutants during aging and correlate this with toxicity via various phenotypic assays. We found that the presence of an expanded proline stretch is beneficial in maintaining HTTEx1 soluble over time, regardless of polyQ length. However, the expanded prolines were only advantageous in promoting the survival and fitness of an organism carrying a pathogenic stretch of Q48 but were extremely deleterious to the nematode expressing a physiological stretch of Q23. Our results reveal the unique importance of the prolines which have and still are evolving alongside expanding glutamines to promote the function of HTTEx1 and avoid pathology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA