Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
bioRxiv ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38659791

RESUMEN

Identifying associations between phenotype and genotype is the fundamental basis of genetic analyses. Inspired by frequentist probability and the work of R.A. Fisher, genome-wide association studies (GWAS) extract information using averages and variances from genotype-phenotype datasets. Averages and variances are legitimated upon creating distribution density functions obtained through the grouping of data into categories. However, as data from within a given category cannot be differentiated, the investigative power of such methodologies is limited. Genomic Informational Field Theory (GIFT) is a method specifically designed to circumvent this issue. The way GIFT proceeds is opposite to that of GWAS. Whilst GWAS determines the extent to which genes are involved in phenotype formation (bottom-up approach), GIFT determines the degree to which the phenotype can select microstates (genes) for its subsistence (top-down approach). Doing so requires dealing with new genetic concepts, a.k.a. genetic paths, upon which significance levels for genotype-phenotype associations can be determined. By using different datasets obtained in ovis aries related to bone growth (Dataset-1) and to a series of linked metabolic and epigenetic pathways (Dataset-2), we demonstrate that removing the informational barrier linked to categories enhances the investigative and discriminative powers of GIFT, namely that GIFT extracts more information than GWAS. We conclude by suggesting that GIFT is an adequate tool to study how phenotypic plasticity and genetic assimilation are linked.

2.
Front Genet ; 15: 1366917, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482385

RESUMEN

Mapping genetic variations to phenotypic variations poses a significant challenge, as mutations often combine unexpectedly, diverging from assumed additive effects even in the same environment. These interactions are known as epistasis or genetic interactions. Sign epistasis, as a specific type of epistasis, involves a complete reversal of mutation effects within altered genetic backgrounds, presenting a substantial hurdle to phenotype prediction. Despite its importance, there is a limited systematic overview of the mechanistic causes of sign epistasis. This review explores the mechanistic causes, highlighting its occurrence in signalling cascades, peaked fitness landscapes, and physical interactions. Moving beyond theoretical discussions, we delve into the practical applications of sign epistasis in agriculture, evolution, and antibiotic resistance. In conclusion, this review aims to enhance the comprehension of sign epistasis and molecular dynamics, anticipating future endeavours in systematic biology engineering that leverage the knowledge of sign epistasis.

3.
Cell Rep ; 43(1): 113519, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38142398

RESUMEN

The critical role of the intestinal microbiota in human health and disease is well recognized. Nevertheless, there are still large gaps in our understanding of the functions and mechanisms encoded in the genomes of most members of the gut microbiota. Genome-scale libraries of transposon mutants are a powerful tool to help us address this gap. Recent advances in barcoded transposon mutagenesis have dramatically lowered the cost of mutant fitness determination in hundreds of in vitro and in vivo experimental conditions. In an accompanying review, we discuss recent advances and caveats for the construction of pooled and arrayed barcoded transposon mutant libraries in human gut commensals. In this review, we discuss how these libraries can be used across a wide range of applications, the technical aspects involved, and expectations for such screens.


Asunto(s)
Elementos Transponibles de ADN , Humanos , Mutagénesis Insercional/genética , Elementos Transponibles de ADN/genética , Biblioteca de Genes
4.
Bio Protoc ; 13(11): e4685, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37323637

RESUMEN

Gene deletion is one of the standard approaches in genetics to investigate the roles and functions of target genes. However, the influence of gene deletion on cellular phenotypes is usually analyzed sometime after the gene deletion was introduced. Such lags from gene deletion to phenotype evaluation could select only the fittest fraction of gene-deleted cells and hinder the detection of potentially diverse phenotypic consequences. Therefore, dynamic aspects of gene deletion, such as real-time propagation and compensation of deletion effects on cellular phenotypes, still need to be explored. To resolve this issue, we have recently introduced a new method that combines a photoactivatable Cre recombination system and microfluidic single-cell observation. This method enables us to induce gene deletion at desired timings in single bacterial cells and to monitor their dynamics for prolonged periods. Here, we detail the protocol for estimating the fractions of gene-deleted cells based on a batch-culture assay. The duration of blue light exposure significantly affects the fractions of gene-deleted cells. Therefore, gene-deleted and non-deleted cells can coexist in a cellular population by adjusting the duration of blue light exposure. Single-cell observations under such illumination conditions allow the comparison of temporal dynamics between gene-deleted and non-deleted cells and unravel phenotypic dynamics provoked by gene deletion.

5.
ArXiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37064526

RESUMEN

Causal discovery of genome-scale networks is important for identifying pathways from genes to observable traits -e.g. differences in cell function, disease, drug resistance and others. Causal learners based on graphical models rely on interventional samples to orient edges in the network. However, these models have not been shown to scale up the size of the genome, which are on the order of 103-104 genes. We introduce a new learner, SP-GIES, that jointly learns from interventional and observational datasets and achieves almost 4x speedup against an existing learner for 1,000 node networks. SP-GIES achieves an AUC-PR score of 0.91 on 1,000 node networks, and scales up to 2,000 node networks - this is 4x larger than existing works. We also show how SP-GIES improves downstream optimal experimental design strategies for selecting interventional experiments to perform on the system. This is an important step forward in realizing causal discovery at scale via autonomous experimental design.

6.
Front Genet ; 14: 1087267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36713072

RESUMEN

Unveiling how genetic variations lead to phenotypic variations is one of the key questions in evolutionary biology, genetics, and biomedical research. Deep mutational scanning (DMS) technology has allowed the mapping of tens of thousands of genetic variations to phenotypic variations efficiently and economically. Since its first systematic introduction about a decade ago, we have witnessed the use of deep mutational scanning in many research areas leading to scientific breakthroughs. Also, the methods in each step of deep mutational scanning have become much more versatile thanks to the oligo-synthesizing technology, high-throughput phenotyping methods and deep sequencing technology. However, each specific possible step of deep mutational scanning has its pros and cons, and some limitations still await further technological development. Here, we discuss recent scientific accomplishments achieved through the deep mutational scanning and describe widely used methods in each step of deep mutational scanning. We also compare these different methods and analyze their advantages and disadvantages, providing insight into how to design a deep mutational scanning study that best suits the aims of the readers' projects.

7.
Biology (Basel) ; 11(8)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36009845

RESUMEN

Advances in genetics and developmental biology are revealing the relationship between genotype and dental phenotype (G:P), providing new approaches for how paleontologists assess dental variation in the fossil record. Our aim was to understand how the method of trait definition influences the ability to reconstruct phylogenetic relationships and evolutionary history in the Cercopithecidae, the Linnaean Family of monkeys currently living in Africa and Asia. We compared the two-dimensional assessment of molar size (calculated as the mesiodistal length of the crown multiplied by the buccolingual breadth) to a trait that reflects developmental influences on molar development (the inhibitory cascade, IC) and two traits that reflect the genetic architecture of postcanine tooth size variation (defined through quantitative genetic analyses: MMC and PMM). All traits were significantly influenced by the additive effects of genes and had similarly high heritability estimates. The proportion of covariate effects was greater for two-dimensional size compared to the G:P-defined traits. IC and MMC both showed evidence of selection, suggesting that they result from the same genetic architecture. When compared to the fossil record, Ancestral State Reconstruction using extant taxa consistently underestimated MMC and PMM values, highlighting the necessity of fossil data for understanding evolutionary patterns in these traits. Given that G:P-defined dental traits may provide insight to biological mechanisms that reach far beyond the dentition, this new approach to fossil morphology has the potential to open an entirely new window onto extinct paleobiologies. Without the fossil record, we would not be able to grasp the full range of variation in those biological mechanisms that have existed throughout evolution.

8.
Am J Med Genet A ; 185(8): 2507-2513, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33988295

RESUMEN

Neonatal Marfan syndrome is a severe, early onset presentation of pathogenic variants in FBN1. Because of the significant cardiac involvement and early mortality, nearly all reported cases have been de novo, and the disorder has not been documented to be inherited from a symptomatic parent. Here, we present a female infant with neonatal Marfan syndrome who was born to a father with Marfan syndrome. Prior to the birth of his daughter, the father had been found to have an FBN1 missense variant of uncertain clinical significance. Initial familial variant testing of the infant did not reveal the same missense variant, but Sanger sequencing of FBN1 subsequently identified a pathogenic splice site variant. The father was then found to have 10%-20% mosaicism for the same splice site variant.


Asunto(s)
Fibrilina-1/genética , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Mosaicismo , Mutación , Sitios de Empalme de ARN , Adulto , Alelos , Ecocardiografía , Resultado Fatal , Femenino , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Recién Nacido , Masculino , Linaje , Fenotipo , Análisis de Secuencia de ADN , Evaluación de Síntomas
9.
Am J Bot ; 107(2): 250-261, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31762012

RESUMEN

PREMISE: Despite myriad examples of local adaptation, the phenotypes and genetic variants underlying such adaptive differentiation are seldom known. Recent work on freezing tolerance and local adaptation in ecotypes of Arabidopsis thaliana from Italy and Sweden provides an essential foundation for uncovering the genotype-phenotype-fitness map for an adaptive response to a key environmental stress. METHODS: We examined the consequences of a naturally occurring loss-of-function (LOF) mutation in an Italian allele of the gene that encodes the transcription factor CBF2, which underlies a major freezing-tolerance locus. We used four lines with a Swedish genetic background, each containing a LOF CBF2 allele. Two lines had introgression segments containing the Italian CBF2 allele, and two contained deletions created using CRISPR-Cas9. We used a growth chamber experiment to quantify freezing tolerance and gene expression before and after cold acclimation. RESULTS: Freezing tolerance was lower in the Italian (11%) compared to the Swedish (72%) ecotype, and all four experimental CBF2 LOF lines had reduced freezing tolerance compared to the Swedish ecotype. Differential expression analyses identified 10 genes for which all CBF2 LOF lines, and the IT ecotype had similar patterns of reduced cold responsive expression compared to the SW ecotype. CONCLUSIONS: We identified 10 genes that are at least partially regulated by CBF2 that may contribute to the differences in cold-acclimated freezing tolerance between the Italian and Swedish ecotypes. These results provide novel insight into the molecular and physiological mechanisms connecting a naturally occurring sequence polymorphism to an adaptive response to freezing conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Aclimatación , Frío , Congelación , Regulación de la Expresión Génica de las Plantas , Suecia
10.
J R Soc Interface ; 16(160): 20190332, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31690233

RESUMEN

Cancers are complex dynamic systems that undergo evolution and selection. Personalized medicine approaches in the clinic increasingly rely on predictions of tumour response to one or more therapies; these predictions are complicated by the inevitable evolution of the tumour. Despite enormous amounts of data on the mutational status of cancers and numerous therapies developed in recent decades to target these mutations, many of these treatments fail after a time due to the development of resistance in the tumour. The emergence of these resistant phenotypes is not easily predicted from genomic data, since the relationship between genotypes and phenotypes, termed the genotype-phenotype (GP) mapping, is neither injective nor functional. We present a review of models of this mapping within a generalized evolutionary framework that takes into account the relation between genotype, phenotype, environment and fitness. Different modelling approaches are described and compared, and many evolutionary results are shown to be conserved across studies despite using different underlying model systems. In addition, several areas for future work that remain understudied are identified, including plasticity and bet-hedging. The GP-mapping provides a pathway for understanding the potential routes of evolution taken by cancers, which will be necessary knowledge for improving personalized therapies.


Asunto(s)
Algoritmos , Evolución Molecular , Genotipo , Modelos Genéticos , Fenotipo
11.
BMC Syst Biol ; 10(1): 97, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27769243

RESUMEN

BACKGROUND: Biological systems are rife with examples of pre-adaptations or exaptations. They range from the molecular scale - lens crystallins, which originated from metabolic enzymes - to the macroscopic scale, such as feathers used in flying, which originally served thermal insulation or waterproofing. An important class of exaptations are novel and useful traits with non-adaptive origins. Whether such origins could be frequent cannot be answered with individual examples, because it is a question about a biological system's potential for exaptation. We here take a step towards answering this question by analyzing central carbon metabolism, and novel traits that allow an organism to survive on novel sources of carbon and energy. We have previously applied flux balance analysis to this system and predicted the viability of 1015 metabolic genotypes on each of ten different carbon sources. RESULTS: We here use this exhaustive genotype-phenotype map to ask whether a central carbon metabolism that is viable on a given, focal carbon source C - the equivalent of an adaptation in our framework - is usually or rarely viable on one or more other carbon sources C new - a potential exaptation. We show that most metabolic genotypes harbor potential exaptations, that is, they are viable on one or more carbon sources C new . The nature and number of these carbon sources depends on the focal carbon source C itself, and on the biochemical similarity between C and C new . Moreover, metabolisms that show a higher biomass yield on C, and that are more complex, i.e., they harbor more metabolic reactions, are viable on a greater number of carbon sources C new . CONCLUSIONS: A high potential for exaptation results from correlations between the phenotypes of different genotypes, and such correlations are frequent in central carbon metabolism. If they are similarly abundant in other metabolic or biological systems, innovations may frequently have non-adaptive ("exaptive") origins.


Asunto(s)
Carbono/metabolismo , Biología Computacional , Evolución Molecular , Adaptación Fisiológica , Biomasa , Genotipo , Fenotipo
12.
Mol Biol Evol ; 33(1): 268-80, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26446903

RESUMEN

The quantitative characterization of mutational landscapes is a task of outstanding importance in evolutionary and medical biology: It is, for example, of central importance for our understanding of the phenotypic effect of mutations related to disease and antibiotic drug resistance. Here we develop a novel inference scheme for mutational landscapes, which is based on the statistical analysis of large alignments of homologs of the protein of interest. Our method is able to capture epistatic couplings between residues, and therefore to assess the dependence of mutational effects on the sequence context where they appear. Compared with recent large-scale mutagenesis data of the beta-lactamase TEM-1, a protein providing resistance against beta-lactam antibiotics, our method leads to an increase of about 40% in explicative power as compared with approaches neglecting epistasis. We find that the informative sequence context extends to residues at native distances of about 20 Å from the mutated site, reaching thus far beyond residues in direct physical contact.


Asunto(s)
Proteínas de Escherichia coli/genética , Evolución Molecular , Mutación/genética , beta-Lactamasas/genética , Mapeo Cromosómico , Análisis Mutacional de ADN , ADN Bacteriano/análisis , ADN Bacteriano/genética , Epistasis Genética , Modelos Genéticos
13.
ACS Synth Biol ; 4(11): 1244-53, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26478262

RESUMEN

The reliable engineering of biological systems requires quantitative mapping of predictable and context-independent expression over a broad range of protein expression levels. However, current techniques for modifying expression levels are cumbersome and are not amenable to high-throughput approaches. Here we present major improvements to current techniques through the design and construction of E. coli genome-wide libraries using synthetic DNA cassettes that can tune expression over a ∼10(4) range. The cassettes also contain molecular barcodes that are optimized for next-generation sequencing, enabling rapid and quantitative tracking of alleles that have the highest fitness advantage. We show these libraries can be used to determine which genes and expression levels confer greater fitness to E. coli under different growth conditions.


Asunto(s)
Escherichia coli/genética , Ingeniería Genética , Genoma Bacteriano , Biología Sintética
14.
Genetics ; 197(4): 1357-63, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24899162

RESUMEN

Although pleiotropy, the capability of a gene to affect multiple phenotypes, has been well known as one of the common gene properties, a quantitative estimation remains a great challenge, simply because of the phenotype complexity. Not surprisingly, it is hard for general readers to understand how, without counting phenotypes, gene pleiotropy can be effectively estimated from the genetics data. In this article we extensively discuss the Gu-2007 method that estimated pleiotropy from the protein sequence analysis. We show that this method is actually to estimate the rank (K) of genotype-phenotype mapping that can be concisely written as K = min(r, Pmin), where Pmin is the minimum pleiotropy among all legitimate measures including the fitness components, and r is the rank of mutational effects of an amino acid site. Together, the effective gene pleiotropy (Ke) estimated by the Gu-2007 method has the following meanings: (i) Ke is an estimate of K = min(r, Pmin), the rank of a genotype-phenotype map; (ii) Ke is an estimate for the minimum pleiotropy Pmin only if Pmin < r; (iii) the Gu-2007 method attempted to estimate the pleiotropy of amino acid sites, a conserved proxy to the true gene pleiotropy; (iv) with a sufficiently large phylogeny such that the rank of mutational effects at an amino acid site is r → 19, one can estimate Pmin between 1 and 19; and (v) Ke is a conserved estimate of K because those slightly affected components in fitness have been effectively removed by the estimation procedure. In addition, we conclude that mutational pleiotropy (number of traits affected by a single mutation) cannot be estimated without knowing the phenotypes.


Asunto(s)
Mapeo Cromosómico , Estudios de Asociación Genética/métodos , Pleiotropía Genética , Animales , Simulación por Computador , Bases de Datos Genéticas , Genotipo , Humanos , Ratones , Modelos Genéticos , Mutación , Fenotipo , Filogenia , Análisis de Secuencia de ADN
15.
Trends Plant Sci ; 19(5): 292-303, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24709144

RESUMEN

Systems biology-inspired genotype-phenotype mapping models are increasingly being used to study the evolutionary properties of molecular biological systems, in particular the general emergent properties of evolving systems, such as modularity, robustness, and evolvability. However, the level of abstraction at which many of these models operate might not be sufficient to capture all relevant intricacies of biological evolution in sufficient detail. Here, we argue that in particular gene and genome duplications, both evolutionary mechanisms of potentially major importance for the evolution of molecular systems and of special relevance to plant evolution, are not adequately accounted for in most GPM modeling frameworks, and that more fine-grained mechanistic models may significantly advance understanding of how gen(om)e duplication impacts molecular systems evolution.


Asunto(s)
Genoma de Planta/genética , Modelos Biológicos , Plantas/genética , Biología de Sistemas , Evolución Molecular , Duplicación de Gen , Genotipo , Fenotipo
16.
Bioessays ; 35(8): 696-705, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23681824

RESUMEN

Evolutionary systems biology (ESB) is a rapidly growing integrative approach that has the core aim of generating mechanistic and evolutionary understanding of genotype-phenotype relationships at multiple levels. ESB's more specific objectives include extending knowledge gained from model organisms to non-model organisms, predicting the effects of mutations, and defining the core network structures and dynamics that have evolved to cause particular intracellular and intercellular responses. By combining mathematical, molecular, and cellular approaches to evolution, ESB adds new insights and methods to the modern evolutionary synthesis, and offers ways in which to enhance its explanatory and predictive capacities. This combination of prediction and explanation marks ESB out as a research manifesto that goes further than its two contributing fields. Here, we summarize ESB via an analysis of characteristic research examples and exploratory questions, while also making a case for why these integrative efforts are worth pursuing.


Asunto(s)
Evolución Molecular , Biología de Sistemas , Animales , Evolución Biológica , Ecología , Epistasis Genética , Escherichia coli/genética , Estudios de Asociación Genética , Ingeniería Genética , Humanos , Mutación , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA