Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.566
Filtrar
1.
J Neurochem ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960403

RESUMEN

Early-life stress (ES) induced by maternal separation (MS) remains a proven causality of anxiety and memory deficits at later stages of life. Emerging studies have shown that MS-induced gene expression in the hippocampus is operated at the level of transcription. However, the extent of involvement of non-coding RNAs in MS-induced behavioural deficits remains unexplored. Here, we have investigated the role of synapse-enriched long non-coding RNAs (lncRNAs) in anxiety and memory upon MS. We observed that MS led to an enhancement of expression of the lncRNA growth arrest specific 5 (Gas5) in the hippocampus; accompanied by increased levels of anxiety and deficits in spatial memory. Gas5 knockdown in early life was able to reduce anxiety and partially rescue the spatial memory deficits of maternally separated adult mice. However, the reversal of MS-induced anxiety and memory deficits is not attributed to Gas5 activity during neuronal development as Gas5 RNAi did not influence spine development. Gene Ontology analysis revealed that Gas5 exerts its function by regulating RNA metabolism and translation. Our study highlights the importance of MS-regulated lncRNA in anxiety and spatial memory.

2.
Front Genet ; 15: 1437522, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948359
3.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189153, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986720

RESUMEN

This review comprehensively investigates the intricate interplay between small non-coding RNAs (sncRNAs) and pancreatic ductal adenocarcinoma (PDAC), a devastating malignancy with limited therapeutic options. Our analysis reveals the pivotal roles of sncRNAs in various facets of PDAC biology, spanning diagnosis, pathogenesis, drug resistance, and therapeutic strategies. sncRNAs have emerged as promising biomarkers for PDAC, demonstrating distinct expression profiles in diseased tissues. sncRNA differential expression patterns, often detectable in bodily fluids, hold potential for early and minimally invasive diagnostic approaches. Furthermore, sncRNAs exhibit intricate involvement in PDAC pathogenesis, regulating critical cellular processes such as proliferation, apoptosis, and metastasis. Additionally, mechanistic insights into sncRNA-mediated pathogenic pathways illuminate novel therapeutic targets and interventions. A significant focus of this review is dedicated to unraveling sncRNA mechanisms underlying drug resistance in PDAC. Understanding these mechanisms at the molecular level is imperative for devising strategies to overcome drug resistance. Exploring the therapeutic landscape, we discuss the potential of sncRNAs as therapeutic agents themselves as their ability to modulate gene expression with high specificity renders them attractive candidates for targeted therapy. In summary, this review integrates current knowledge on sncRNAs in PDAC, offering a holistic perspective on their diagnostic, pathogenic, and therapeutic relevance. By elucidating the roles of sncRNAs in PDAC biology, this review provides valuable insights for the development of novel diagnostic tools and targeted therapeutic approaches, crucial for improving the prognosis of PDAC patients.

4.
Genes Dis ; 11(5): 101045, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38988321

RESUMEN

RNA N6-methyladenosine (m6A) methylation is the most abundant and conserved RNA modification in eukaryotes. It participates in the regulation of RNA metabolism and various pathophysiological processes. Non-coding RNAs (ncRNAs) are defined as small or long transcripts which do not encode proteins and display numerous biological regulatory functions. Similar to mRNAs, m6A deposition is observed in ncRNAs. Studying RNA m6A modifications on ncRNAs is of great importance specifically to deepen our understanding of their biological roles and clinical implications. In this review, we summarized the recent research findings regarding the mutual regulation between RNA m6A modification and ncRNAs (with a specific focus on microRNAs, long non-coding RNAs, and circular RNAs) and their functions. We also discussed the challenges of m6A-containing ncRNAs and RNA m6A as therapeutic targets in human diseases and their future perspective in translational roles.

5.
Transl Cancer Res ; 13(6): 3106-3125, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988908

RESUMEN

N6-methyladenosine (m6A) is one of the most common internal modifications in eukaryotic RNA. The presence of m6A on transcripts can affect a series of fundamental cellular processes, including mRNA splicing, nuclear transportation, stability, and translation. The m6A modification is introduced by m6A methyltransferases (writers), removed by demethylases (erasers), and recognized by m6A-binding proteins (readers). Current research has demonstrated that m6A methylation is involved in the regulation of malignant phenotypes in tumors by controlling the expression of cancer-related genes. Non-coding RNAs (ncRNAs) are a diverse group of RNA molecules that do not encode proteins and are widely present in the human genome. This group includes microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and PIWI interaction RNAs (piRNAs). They function as oncogenes or tumor suppressors through various mechanisms, regulating the initiation and progression of cancer. Previous studies on m6A primarily focused on coding RNAs, but recent discoveries have revealed the significant regulatory role of m6A in ncRNAs. Simultaneously, ncRNAs also exert their influence by modulating the stability, splicing, translation, and other biological processes of m6A-related enzymes. The interplay between m6A and ncRNAs collectively contributes to the occurrence and progression of malignant tumors in humans. This review provides an overview of the interactions between m6A regulatory factors and ncRNAs and their impact on tumors.

6.
Transl Cancer Res ; 13(6): 3046-3061, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988919

RESUMEN

Background: The long non-coding RNA (lncRNA) Opa interacting protein 5-antisense RNA 1 (OIP5-AS1) has been shown to participate in numerous biological and pathological processes, notably including oncogenesis. OIP5-AS1 modulates oncogenic or anti-tumor activities by controlling various microRNAs (miRs) in diverse cancer types. This study sought to examine the potential role of the lncRNA OIP5-AS1-mediated miR-455-3p/microfibril-associated protein 2 (MFAP2) axis and its influence on the progression of thyroid carcinoma. Methods: Cell proliferation, migration, and apoptosis were assessed through in vitro experimental measurements, which involved the use of Cell Counting Kit 8 (CCK8), transwell, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining techniques. The estimate algorithm was employed to examine the relationship between MFAP2 and the Stromal score, Immune score, and ESTIMATE score. Results: OIP5-AS1 expression was significantly more elevated in the thyroid carcinoma tissues and cell lines than the corresponding normal non-tumor tissues and cell lines. Following transfection with short-hairpin (sh)-OIP5-AS1, the CAL62 and SW1736 cells upregulated miR-455-3p and downregulated the MFAP2 expression levels. The downregulation of OIP5-AS1 expedited cellular apoptosis and hindered cellular proliferation and migration in the CAL62 and SW1736 cells. The in vitro experiments showed that both the suppression of MFAP2 and the increased expression of miR-455-3p exerted significant anti-cancer effects. In addition, the overexpression of MFAP2 counteracted the in vitro antineoplastic effects of the sh-OIP5-AS1 and miR-455-3p mimics. Conclusions: The results suggest that lncRNA OIP5-AS1 plays a crucial role in the advancement of thyroid carcinoma by inhibiting miR-455-3p to activate MFAP2.

7.
Transl Cancer Res ; 13(6): 2913-2937, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988945

RESUMEN

Background: Endometrial carcinoma (EC) is one of the most prevalent gynecologic malignancies and requires further classification for treatment and prognosis. Long non-coding RNAs (lncRNAs) and immunogenic cell death (ICD) play a critical role in tumor progression. Nevertheless, the role of lncRNAs in ICD in EC remains unclear. This study aimed to explore the role of ICD related-lncRNAs in EC via bioinformatics and establish a prognostic risk model based on the ICD-related lncRNAs. We also explored immune infiltration and immune cell function across prognostic groups and made treatment recommendations. Methods: A total of 552 EC samples and clinical data of 548 EC patients were extracted from The Cancer Genome Atlas (TCGA) database and University of California Santa Cruz (UCSC) Xena, respectively. A prognostic-related feature and risk model was developed using the least absolute shrinkage and selection operator (LASSO). Subtypes were classified with consensus cluster analysis and validated with t-Distributed Stochastic Neighbor Embedding (tSNE). Kaplan-Meier analysis was conducted to assess differences in survival. Infiltration by immune cells was estimated by single sample gene set enrichment analysis (ssGSEA), Tumor IMmune Estimation Resource (TIMER) algorithm. Quantitative polymerase chain reaction (qPCR) was used to detect lncRNAs expression in clinical samples and cell lines. A series of studies was conducted in vitro and in vivo to examine the effects of knockdown or overexpression of lncRNAs on ICD. Results: In total, 16 ICD-related lncRNAs with prognostic values were identified. Using SCARNA9, FAM198B-AS1, FKBP14-AS1, FBXO30-DT, LINC01943, and AL161431.1 as risk model, their predictive accuracy and discrimination were assessed. We divided EC patients into high-risk and low-risk groups. The analysis showed that the risk model was an independent prognostic factor. The prognosis of the high- and low-risk groups was different, and the overall survival (OS) of the high-risk group was lower. The low-risk group had higher immune cell infiltration and immune scores. Consensus clustering analysis divided the samples into four subtypes, of which cluster 4 had higher immune cell infiltration and immune scores. Conclusions: A prognostic signature composed of six ICD related-lncRNAs in EC was established, and a risk model based on this signature can be used to predict the prognosis of patients with EC.

8.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000292

RESUMEN

Latilactobacillus (L.) sakei is a species of lactic acid bacteria (LAB) mostly studied according to its application in food fermentation. Previously, L. sakei L3 was isolated by our laboratory and possessed the capability of high exopolysaccharide (EPS) yield during sucrose-added fermentation. However, the understanding of sucrose promoting EPS production is still limited. Here, we analyzed the growth characteristics of L. sakei L3 and alterations of its transcriptional profiles during sucrose-added fermentation. The results showed that L. sakei L3 could survive between pH 4.0 and pH 9.0, tolerant to NaCl (<10%, w/v) and urea (<6%, w/v). Meanwhile, transcriptomic analysis showed that a total of 426 differentially expressed genes and eight non-coding RNAs were identified. Genes associated with sucrose metabolism were significantly induced, so L. sakei L3 increased the utilization of sucrose to produce EPS, while genes related to uridine monophosphate (UMP), fatty acids and folate synthetic pathways were significantly inhibited, indicating that L. sakei L3 decreased self-growth, substance and energy metabolism to satisfy EPS production. Overall, transcriptome analysis provided valuable insights into the mechanisms by which L. sakei L3 utilizes sucrose for EPS biosynthesis. The study provided a theoretical foundation for the further application of functional EPS in the food industry.


Asunto(s)
Fermentación , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Latilactobacillus sakei , Polisacáridos Bacterianos , Sacarosa , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo , Sacarosa/metabolismo , Latilactobacillus sakei/metabolismo , Latilactobacillus sakei/genética , Transcriptoma , Concentración de Iones de Hidrógeno
9.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000381

RESUMEN

The RNA world is wide, and besides mRNA, there is a variety of other RNA types, such as non-coding (nc)RNAs, which harbor various intracellular regulatory functions. This review focuses on small interfering (si)RNA and micro (mi)RNA, which form a complex network regulating mRNA translation and, consequently, gene expression. In fact, these RNAs are critically involved in the function and phenotype of all cells in the human body, including malignant cells. In cancer, the two main targets for therapy are dysregulated cancer cells and dysfunctional immune cells. To exploit the potential of mi- or siRNA therapeutics in cancer therapy, a profound understanding of the regulatory mechanisms of RNAs and following targeted intervention is needed to re-program cancer cells and immune cell functions in vivo. The first part focuses on the function of less well-known RNAs, including siRNA and miRNA, and presents RNA-based technologies. In the second part, the therapeutic potential of these technologies in treating cancer is discussed, with particular attention on manipulating tumor-associated immune cells, especially tumor-associated myeloid cells.


Asunto(s)
Células Mieloides , Neoplasias , ARN no Traducido , Humanos , Neoplasias/terapia , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Células Mieloides/metabolismo , ARN no Traducido/genética , MicroARNs/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Animales , Regulación Neoplásica de la Expresión Génica
10.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000510

RESUMEN

Poplar coma, the fluff-like appendages of seeds originating from the differentiated surface cells of the placenta and funicle, aids in the long-distance dispersal of seeds in the spring. However, it also poses hazards to human safety and causes pollution in the surrounding environment. Unraveling the regulatory mechanisms governing the initiation and development of coma is essential for addressing this issue comprehensively. In this study, strand-specific RNA-seq was conducted at three distinct stages of coma development, revealing 1888 lncRNAs and 52,810 mRNAs. The expression profiles of lncRNAs and mRNAs during coma development were analyzed. Subsequently, potential target genes of lncRNAs were predicted through co-localization and co-expression analyses. Integrating various types of sequencing data, lncRNA-miRNA-TF regulatory networks related to the initiation of coma were constructed. Utilizing identified differentially expressed genes encoding kinesin and actin, lncRNA-miRNA-mRNA regulatory networks associated with the construction and arrangement of the coma cytoskeleton were established. Additionally, relying on differentially expressed genes encoding cellulose synthase, sucrose synthase, and expansin, lncRNA-miRNA-mRNA regulatory networks related to coma cell wall synthesis and remodeling were developed. This study not only enhances the comprehension of lncRNA but also provides novel insights into the molecular mechanisms governing the initiation and development of poplar coma.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs , Populus , ARN Largo no Codificante , ARN Mensajero , Populus/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , MicroARNs/genética , Perfilación de la Expresión Génica/métodos , Semillas/genética , Semillas/crecimiento & desarrollo
11.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39000605

RESUMEN

Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.


Asunto(s)
Neoplasias , ARN no Traducido , Humanos , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , División Celular/genética , Animales , Mitocondrias/metabolismo , Mitocondrias/genética , Regulación Neoplásica de la Expresión Génica , ARN Circular/genética , ARN Circular/metabolismo , Genoma Mitocondrial , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
12.
Reprod Toxicol ; : 108656, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39004383

RESUMEN

Bisphenol A (BPA) is a commonly used organic compound. Over the past decades, many studies have examined the mechanisms of BPA toxicity, with BPA-induced alterations in epigenetic modifications receiving considerable attention. Particularly in the male reproductive system, abnormal alterations in epigenetic markers can adversely affect reproductive function. Furthermore, these changes in epigenetic markers can be transmitted to offspring through the father. Here, we review the effects of BPA exposure on various epigenetic markers in the male reproductive system, including DNA methylation, histone modifications, and noncoding RNA, as well as associated changes in the male reproductive function. We also reviewed the effects of father's exposure to BPA on offspring epigenetic modification patterns.

13.
Gene ; 927: 148739, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38955307

RESUMEN

Pancreatic adenocarcinoma (PAAD) is a life-threatening cancer. Exploring new diagnosis and treatment targets helps improve its prognosis. tRNA-derived small non-coding RNAs (tsRNAs) are a novel type of gene expression regulators and their dysregulation is closely related to many human cancers. Yet the expression and functions of tsRNAs in PAAD are not well understood. Our study used RNA sequencing to identify tsRNA expression profiles in PAAD cells cultured in no or high glucose media and found tRF-18-8R6546D2 was an uncharacterized tsRNA, which has significantly high expression in PAAD cells and tissues. Clinically, tRF-18-8R6546D2 is linked to poor prognosis in PAAD patients and can be used to distinguish them from healthy populations. Functionally, in vitro and vivo, tRF-18-8R6546D2 over-expression promoted PAAD cell proliferation, migration and invasion, inhibited apoptosis, whereas tRF-18-8R6546D2 knock-down showed opposite effects. Mechanistically, tRF-18-8R6546D2 promoted PAAD malignancy partly by directly silencing ASCL2 and further regulating its downstream genes such as MYC and CASP3. These findings show that tRF-18-8R6546D2 is a novel oncogenic factor and can be a promising diagnostic or prognostic biomarker and therapeutic target for PAAD.

14.
Reprod Sci ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955937

RESUMEN

Recurrent implantation failure (RIF) is a complex and poorly understood clinical disorder characterized by failure to conceive after repeated embryo transfers. Endometrial receptivity (ER) is a prerequisite for implantation, and ER disorders are associated with RIF. However, little is known regarding the molecular mechanisms underlying ER in RIF. In the present study, RNA sequencing data from the mid-secretory endometrium of patients with and without RIF were analyzed to explore the potential long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) involved in RIF. The analysis revealed 213 and 1485 differentially expressed mRNAs and lncRNAs, respectively (fold change ≥ 2 and p < 0.05). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that these genes were mostly involved in processes related to immunity or inflammation. 5 key genes (TTR, ALB, TF, AFP, and CFTR) and a key module including 14 hub genes (AFP, ALB, APOA1, APOA2, APOB, APOH, FABP1, FGA, FGG, GC, ITIH2, SERPIND1, TF and TTR) were identified in the protein-protein interaction (PPI) network. The 5 key genes were used to further explore the lncRNA-miRNA-mRNA regulatory network. Finally, the drug ML-193 based on the 14 hub genes was identifed through the CMap. After ML-193 treatment, endometrial cell proliferation was increased, the hub genes were mostly down-regulated, and the ER marker HOXA10 was up-regulated. These results offer insights into the regulatory mechanisms of lncRNAs and mRNAs and suggest ML-193 as a therapeutic agent for RIF by enhancing ER.

15.
Heliyon ; 10(12): e32294, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975147

RESUMEN

Background: This study introduces a novel prognostic tool, the Disulfidoptosis-Related lncRNA Index (DRLI), integrating the molecular signatures of disulfidoptosis and long non-coding RNAs (lncRNAs) with the cellular heterogeneity of the tumor microenvironment, to predict clinical outcomes in patients with clear cell renal cell carcinoma (ccRCC). Methods: We analyzed 530 tumor and 72 normal samples from The Cancer Genome Atlas (TCGA), employing k-means clustering based on disulfidoptosis-associated gene expression to stratify ccRCC samples into prognostic groups. lncRNAs correlated with disulfidoptosis were identified and used to construct the DRLI, which was validated by Kaplan-Meier and receiver operating characteristic curves. We utilized single-cell deconvolution analysis to estimate the proportion of immune cell types within the tumor microenvironment, while the ESTIMATE and TIDE algorithms were employed to assess immune infiltration and potential response to immunotherapy. Results: The Disulfidoptosis-Related lncRNA Index (DRLI) effectively stratified ccRCC patients into high and low-risk groups, significantly impacting survival outcomes (P < 0.001). High-risk patients, marked by a unique lncRNA profile associated with disulfidoptosis, faced worse prognoses. Single-cell analysis revealed marked tumor microenvironment heterogeneity, especially in immune cell makeup, correlating with patient risk levels. In prognostic predictions, DRLI outperformed traditional clinical indicators, achieving AUC values of 0.779, 0.757, and 0.779 for 1-year, 3-year, and 5-year survival in the training set, and 0.746, 0.734, and 0.750 in the validation set. Notably, while the constructed nomogram showed exceptional predictive capability for short-term prognosis (AUC = 0.877), the DRLI displayed remarkable long-term predictive accuracy, with its AUC value reaching 0.823 for 10-year survival, closely approaching the nomogram's performance. Conclusions: The study introduces the DRLI as a groundbreaking molecular stratification tool for ccRCC, enhancing prognostic precision and potentially guiding personalized treatment strategies. This advancement is particularly significant in the context of long-term survival predictions. Our findings also elucidate the complex interplay between disulfidoptosis, lncRNAs, and the immune microenvironment in ccRCC, offering a comprehensive perspective on its pathogenesis and progression. The DRLI and the nomogram together represent significant strides in ccRCC research, highlighting the importance of molecular-based assessments in predicting patient outcomes.

16.
Plant Physiol Biochem ; 214: 108908, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38976942

RESUMEN

Drought stress strongly affects crop yield. Although knowledge of long non-coding RNAs (lncRNAs) has been updated continuously and rapidly, information about lncRNAs in drought resistance regulation is extremely limited in sorghum. Here, lncRNA-sequencing was performed with seedlings of a sorghum cultivar (Jinza29) under three water control treatments to investigate the mechanism of lncRNAs responsible for drought resistance in sorghum. A total of 377 differentially expressed lncRNAs (DElncRNAs) were identified. We also predicted 4322 and 2827 transcripts as potential cis-target and trans-target genes for drought-responsive lncRNAs, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that those target genes exhibited marked enrichment into "oxidoreductase activity", "signal transducer activity", "DNA repair", "photosynthesis", "glutathione metabolism", and "phenylpropanoid biosynthesis" and other terms associated with abiotic stress resistance. Moreover, several lncRNAs were estimated to modulate the expression of other genes related to stress response and photosynthetic carbon metabolism. Additionally, we found 107 DElncRNAs that might be candidate target mimics for 56 miRNAs. LncRNAs play important roles in drought adaptation of sorghum through interacting with protein-encoding genes. The obtained results provided novel insights into the biological characteristics of lncRNAs and offered potential regulatory factors for genetically enhancing drought resistance in sorghum.

17.
Front Endocrinol (Lausanne) ; 15: 1426380, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978623

RESUMEN

Diabetes, a multifaceted metabolic disorder, poses a significant global health burden with its increasing prevalence and associated complications, such as diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, and diabetic angiopathy. Recent studies have highlighted the intricate interplay between N6-methyladenosine (m6A) and non-coding RNAs (ncRNAs) in key pathways implicated in these diabetes complications, like cell apoptosis, oxidative stress, and inflammation. Thus, understanding the mechanistic insights into how m6A dysregulation impacts the expression and function of ncRNAs opens new avenues for therapeutic interventions targeting the m6A-ncRNAs axis in diabetes complications. This review explores the regulatory roles of m6A modifications and ncRNAs, and stresses the role of the m6A-ncRNA axis in diabetes complications, providing a therapeutic potential for these diseases.


Asunto(s)
Adenosina , Complicaciones de la Diabetes , ARN no Traducido , Humanos , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , ARN no Traducido/genética , Animales , Estrés Oxidativo
18.
Clin Exp Med ; 24(1): 149, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967892

RESUMEN

Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder, but its diagnosis and treatment remain obscure. Non-coding RNAs (ncRNAs), as potential biomarkers, have attracted increasing attention in digestive diseases. Here, we present a comprehensive research status, development trends, and valuable insights in this subject area. The literature search was performed using Web of Science Core Collection. VOSviewer 1.6.20, Citespace 6.2.R4, and Microsoft Excel 2021 were used for bibliometric analysis. A total of 124 articles were included in the analysis. Overall, publication patterns fluctuated. Globally, People's Republic of China, the USA, and Germany were the top three contributors of publications. Guangzhou University of Chinese Medicine, University of California, Mayo Clinic, and University of California, Los Angeles contributed the highest number of publications. The pathways and specific mechanisms by which ncRNAs regulate transcription and translation and thus regulate the pathophysiological processes of IBS are the main research hotspots in this field. We found that microRNA (miRNAs) are intricately involved in the regulation of key pathologies such as viscera sensitivity, intestinal permeability, intestinal mucosal barrier, immunoinflammatory response, and brain-gut axis in the IBS, and these topics have garnered significant attention in research community. Notably, microecological disorders are also associated with IBS pathogenesis, and ncRNA may play an important role in the interactions between host and intestinal flora. This is the first bibliometric study to comprehensively summarize the research hotspots and trends related to IBS and ncRNAs (especially miRNAs). Our findings will help understand the role of ncRNAs in IBS and provide guidance to future studies.


Asunto(s)
Bibliometría , Síndrome del Colon Irritable , MicroARNs , Humanos , Síndrome del Colon Irritable/genética , MicroARNs/genética
19.
Cardiovasc Diabetol ; 23(1): 227, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951895

RESUMEN

In recent years, the incidence of diabetes has been increasing rapidly, posing a serious threat to human health. Diabetic cardiomyopathy (DCM) is characterized by cardiomyocyte hypertrophy, myocardial fibrosis, apoptosis, ventricular remodeling, and cardiac dysfunction in individuals with diabetes, ultimately leading to heart failure and mortality. However, the underlying mechanisms contributing to DCM remain incompletely understood. With advancements in molecular biology technology, accumulating evidence has shown that numerous non-coding RNAs (ncRNAs) crucial roles in the development and progression of DCM. This review aims to summarize recent studies on the involvement of three types of ncRNAs (micro RNA, long ncRNA and circular RNA) in the pathophysiology of DCM, with the goal of providing innovative strategies for the prevention and treatment of DCM.


Asunto(s)
Cardiomiopatías Diabéticas , ARN Circular , ARN Largo no Codificante , Humanos , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/metabolismo , Animales , ARN Circular/genética , ARN Circular/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica , ARN no Traducido/genética , ARN no Traducido/metabolismo , Transducción de Señal , Miocardio/patología , Miocardio/metabolismo
20.
Virologie (Montrouge) ; 28(3): 199-215, 2024 Jun 01.
Artículo en Francés | MEDLINE | ID: mdl-38970341

RESUMEN

Viroids are the smallest non-coding infectious RNAs (between 246 and 401 nucleotides) known to be highly structured and replicate autonomously in the host plants. Although they do not encode any peptides, viroids induce visible symptoms in susceptible host plants. This article provides an overview of their physical and biological properties, the diseases they cause and their significance for the plants. The mechanisms underlying the expression of symptoms in host plants, their detection and various strategies employed for diseases prevention are also developed.


Asunto(s)
Enfermedades de las Plantas , Plantas , ARN Viral , Viroides , Viroides/genética , Viroides/fisiología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/prevención & control , ARN Viral/genética , ARN no Traducido/genética , ARN no Traducido/fisiología , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA