Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Invertebr Pathol ; 201: 108014, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37918657

RESUMEN

The rapid spread of the protozoan Haplosporidium pinnae is having a strong negative effect on Pinna nobilis populations. A case study on a residual population in Lake Faro (Sicily, Central Mediterranean), whose long-term monitoring has revealed a dramatic decline following the 2018-2020 mass mortality event, is presented. In the framework of such monitoring, we performed tissue sampling on nine living P. nobilis, detecting the pathogen in seven of them. In contrast, other pathogens associated with P. nobilis disease in other areas, i.e., Mycobacterium spp. and Vibrio mediterranei, were not recorded. The surviving individuals (approximately twenty) showed that brackish areas only weakly mitigate the effects of H. pinnae disease and might not be resolutive. Nevertheless, the results show that Lake Faro may constitute one of the last Mediterranean P. nobilis sanctuaries.


Asunto(s)
Bivalvos , Haplosporidios , Mycobacterium , Humanos , Animales , Lagos , Bivalvos/microbiología
2.
Ecol Evol ; 13(8): e10383, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37546570

RESUMEN

The fan mussel Pinna nobilis is currently on the brink of extinction due to a multifactorial disease mainly caused to the highly pathogenic parasite Haplosporidium pinnae, meaning that the selection pressure outweighs the adaptive potential of the species. Hopefully, rare individuals have been observed somehow resistant to the parasite, stretching the need to identify the traits underlying this better fitness. Among the candidate to explore at first intention are fast-evolving immune genes, of which toll-like receptor (TLR). In this study, we examined the genetic diversity at 14 TLR loci across P. nobilis, Pinna rudis and P. nobilis × P. rudis hybrid genomes, collected at four physically distant regions, that were found to be either resistant or sensitive to the parasite H. pinnae. We report a high genetic diversity, mainly observed at cell surface TLRs compared with that of endosomal TLRs. However, the endosomal TLR-7 exhibited unexpected level of diversity and haplotype phylogeny. The lack of population structure, associated with a high genetic diversity and elevated dN/dS ratio, was interpreted as balancing selection, though both directional and purifying selection were detected. Interestingly, roughly 40% of the P. nobilis identified as resistant to H. pinnae were introgressed with P. rudis TLR. Specifically, they all carried a TLR-7 of P. rudis origin, whereas sensitive P. nobilis were not introgressed, at least at TLR loci. Small contributions of TLR-6 and TLR-4 single-nucleotide polymorphisms to the clustering of resistant and susceptible individuals could be detected, but their specific role in resistance remains highly speculative. This study provides new information on the diversity of TLR genes within the P. nobilis species after MME and additional insights into adaptation to H. pinnae that should contribute to the conservation of this Mediterranean endemic species.

3.
Microorganisms ; 11(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37317120

RESUMEN

In this study, we investigated the presence of the parasite Haplosporidium pinnae, which is a pathogen for the bivalve Pinna nobilis, in water samples from different environments. Fifteen mantle samples of P. nobilis infected by H. pinnae were used to characterize the ribosomal unit of this parasite. The obtained sequences were employed to develop a method for eDNA detection of H. pinnae. We collected 56 water samples (from aquaria, open sea and sanctuaries) for testing the methodology. In this work, we developed three different PCRs generating amplicons of different lengths to determine the level of degradation of the DNA, since the status of H. pinnae in water and, therefore, its infectious capacity are unknown. The results showed the ability of the method to detect H. pinnae in sea waters from different areas persistent in the environment but with different degrees of DNA fragmentation. This developed method offers a new tool for preventive analysis for monitoring areas and to better understand the life cycle and the spread of this parasite.

4.
J Oncol Pharm Pract ; 29(3): 731-737, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35821579

RESUMEN

INTRODUCTION: Anti-EGFR targeted anti-cancer treatment is associated with various skin adverse events. Cetuximab is often associated with acneiform papules and skin disorders. Hypertrichosis cited in face pinnae and eyelash trichomegaly are seldom described. CASE REPORT: A 72-year-old female cancer patient presented deteriorating facial-pinnae hypertrichosis and eyelash prolongation post cetuximab infusion. MANAGEMENT AND OUTCOME: Consecutive cetuximab administration led to exaggerating hairy skin side effects, fully alleviated when the drug was discontinued. DISCUSSION: To the best of our knowledge, this is the first reported case of an anti-EGFR-associated diffuse pinnae hypertrichosis presentation in a female patient in literature. This distinct entity can be easily diagnosed and manipulated with early drug withdrawal. An extensive review of relevant basic molecular research is provided to increase physicians' awareness.


Asunto(s)
Antineoplásicos , Hipertricosis , Enfermedades de la Piel , Femenino , Humanos , Anciano , Cetuximab/efectos adversos , Hipertricosis/inducido químicamente , Hipertricosis/tratamiento farmacológico , Antineoplásicos/efectos adversos , Enfermedades de la Piel/inducido químicamente
5.
J Invertebr Pathol ; 190: 107735, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35247465

RESUMEN

Since early autumn 2016, Mass Mortality Events (MME) have drastically impacted the population of the fan mussel Pinna nobilis in the Mediterranean Sea. Haplosporidium pinnae, a newly described Haplosporidian species, has been considered the causative agent of the mortality outbreaks in association to opportunistic bacterial pathogens. In the present study, we first reported a cytological description of H. pinnae in moribund specimens of P. nobilis which were collected in the Gulf of Taranto (Ionian Sea, Italy) during summer 2018. Different life-cycle stages of the parasite, including uni- and binucleate cells, small plasmodia, big multinucleate plasmodia and sporocysts with spores, were detected in all the examined animals and most of the parasite cells were present in gills, mantle and digestive gland, while the spores were found only in the latter organ. Histology and molecular biology were also performed, confirming the nature of the infectious agent, as already reported in the area. Additionally, molecular study revealed the presence of bacteria from the Mycobacterium ulcerans - M. marinum complex but no evident macroscopical or microscopical lesions, just as no bacteria referred to Mycobacterium were observed by histology. In conclusion, the present study aimed to provide further contributions to the understanding of the mortality of P. nobilis, pointing to the role of the cytological method of investigation both for diagnostic and epidemiological purposes, and discussing the current epidemic situation in the Adriatic sea.


Asunto(s)
Bivalvos , Haplosporidios , Mycobacterium , Animales , Bivalvos/parasitología , Italia , Alimentos Marinos
7.
Cells ; 10(11)2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34831063

RESUMEN

Due to the rapid decrease of Pinna nobilis populations during the previous decades, this bivalve species, endemic in the Mediterranean Sea, is characterized as 'critically endangered'. In addition to human pressures, various pathogen infections have resulted in extended reduction, even population extinction. While Haplosporidium pinnae is characterized as one of the major causative agents, mass mortalities have also been attributed to Mycobacterium sp. and Vibrio spp. Due to limited knowledge concerning the physiological response of infected P. nobilis specimens against various pathogens, this study's aim was to investigate to pathophysiological response of P. nobilis individuals, originating from mortality events in the Thermaikos Gulf and Lesvos and Limnos islands (Greece), and their correlation to different potential pathogens detected in the diseased animals. In isolated tissues, several cellular stress indicators of the heat shock and immune response, apoptosis and autophagy, were examined. Despite the complexity and limitations in the study of P. nobilis mortality events, the present investigation demonstrates the cumulative negative effect of co-infection additionally with H. pinnae in comparison to the non-presence of haplosporidian parasite. In addition, impacts of global climate change affecting physiological performance and immune responses result in more vulnerable populations in infectious diseases, a phenomenon which may intensify in the future.


Asunto(s)
Bivalvos/fisiología , Estructuras Animales/metabolismo , Animales , Bivalvos/parasitología , Caspasas/metabolismo , Geografía , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Haplosporidios/fisiología , Interleucina-6/metabolismo , Región Mediterránea , Proteína Sequestosoma-1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina/metabolismo
8.
Microorganisms ; 9(5)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925782

RESUMEN

Pinna nobilis populations, constituting the largest bivalve mollusk endemic to the Mediterranean, is characterized as critically endangered, threatened by extinction. Among the various factors proposed as etiological agents are the Haplosporidium pinnae and Mycobacterium sp. parasites. Nevertheless, devastation of the fan mussel populations is still far from clear. The current work is undertaken under a broader study aiming to evaluate the health status of Pinna nobilis population in Aegean Sea, after the mass mortalities that occurred in 2019. A significant objective was also (a) the investigation of the etiological agents of small-scale winter mortalities in the remaining populations after the devastating results of Haplosporidium pinnae and Mycobacterium sp. infections, as well as (b) the examination of the susceptibility of the identified bacterial strains in antibiotics for future laboratory experiments. Microbiological assays were used in order to detect the presence of potential bacterial pathogens in moribund animals in combination with molecular tools for their identification. Our results provide evidence that Vibrio bacterial species are directly implicated in the winter mortalities, particularly in cases where the haplosporidian parasite was absent. Additionally, this is the first report of Vibrio mediterranei and V. splendidus hosted by any bivalve on the Greek coastline.

9.
Biomarkers ; 26(5): 450-461, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33899623

RESUMEN

PURPOSE: Pinna nobilis (fan mussel) is one of the most important endemic bivalve molluscs in the Mediterranean and mass mortality events were observed in these mussels in recent years. In this study, we report mass mortalities caused by Haplosporidium pinnae, which has been spreading in the Mediterranean for 3 years, and reached the Çanakkale Strait, which is the entrance of the Marmara and the Black Sea. MATERIAL AND METHODS: Field observations during sampling and subsequent histopathological, biochemical, genetic, and microbiological analyses were carried out. RESULTS: These analyses showed that H. pinnae infection spread among the natural beds of P. nobilis, causing severe tissue damage and oxidative stress. Our phylogenetic analyses suggested that the parasite spread through the Mediterranean much faster than thought. The results showed that vibriosis originating from Vibrio coralliilyticus, Vibrio tubiashii, Vibrio mediterranei, and Vibrio hispanicus, acted together with H. pinnae in infected individuals and caused death. CONCLUSION: It is highly probable that the spread of H. pinnae to the Sea of Marmara and the Black Sea may occur earlier than expected, and it was concluded that mass deaths were caused by co-infection with H. pinnae and a geographically specific marine pathogen that can infect P. nobilis populations.


Asunto(s)
Bivalvos/microbiología , Bivalvos/parasitología , Coinfección , Infecciones por Bacterias Gramnegativas/microbiología , Haplosporidios/patogenicidad , Infecciones por Protozoos/parasitología , Vibrio/patogenicidad , Animales , Bivalvos/metabolismo , Monitoreo del Ambiente , Infecciones por Bacterias Gramnegativas/metabolismo , Infecciones por Bacterias Gramnegativas/transmisión , Haplosporidios/genética , Interacciones Huésped-Parásitos , Estrés Oxidativo , Filogenia , Infecciones por Protozoos/metabolismo , Infecciones por Protozoos/transmisión , Ribotipificación , Vibrio/genética
10.
Pathogens ; 9(12)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260452

RESUMEN

Mass mortality events due to disease outbreaks have recently affected almost every healthy population of fan mussel, Pinna nobilis in Mediterranean Sea. The devastating mortality of the species has turned the interest of the research towards the causes of these events. After the haplosporidan infestation and the infection by Mycobacterium sp., new emerging pathogens have arisen based on the latest research. In the present study, a metagenomic approach of 16S rRNA next generation sequencing (NGS) was applied in order to assess the bacterial diversity within the digestive gland of diseased individuals as well as to carry out geographical correlations among the biodiversity of microbiome in the endangered species Pinna nobilis. The specimens originated from the mortalities occurred in 2019 in the region of Greece. Together with other bacterial genera, the results confirmed the presence of Vibrio spp., assuming synergistic effects in the mortality events of the species. Alongside with the presence of Vibrio spp., numerous bacterial genera were detected as well, including Aliivibrio spp., Photobacterium spp., Pseudoalteromonas spp., Psychrilyobacter spp. and Mycoplasma spp. Bacteria of the genus Mycoplasma were in high abundance particularly in the sample originated from Limnos island representing the first time recorded in Pinna nobilis. In conclusion, apart from exclusively the Haplosporidan and the Mycobacterium parasites, the presence of potentially pathogenic bacterial taxa detected, such as Vibrio spp., Photobactrium spp. and Alivibrio spp. lead us to assume that mortality events in the endangered Fan mussel, Pinna nobilis, may be attributed to synergistic effects of more pathogens.

11.
Pathogens ; 9(11)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187065

RESUMEN

The endemic fan mussel (Pinna nobilis) in the Mediterranean Sea is at high risk of disappearance due to massive mortality events. The aim of the study was to evaluate the antioxidant response of P. nobilis collected in the Balearic Islands (Western Mediterranean) before and after the mass mortality event. Individuals collected before (between 2011 and 2012) and after (between 2016 and 2017) the event were analyzed by histological, molecular, and biochemical methods to compare pathogenic loads and biochemical responses. All the individuals collected during 2016-2017 presented symptoms of the disease and were positive for Haplosporidium pinnae, while acid-fast bacteria or/and Gram-negative bacteria were detected in some individuals of both sampling periods. The activities of the antioxidant enzymes catalase and superoxide dismutase in the gills were significantly lower in P. nobilis affected with the parasite compared to those in the asymptomatic ones, while levels of malondialdehyde, as an indicator of lipid peroxidation, were higher in infected individuals. When analyzing the differential effects of H. pinnae and Mycobacterium sp. on P. nobilis, it was observed that significant effects on biomarkers were only observed in the presence of H. pinnae. Co-infection of P. nobilis by H. pinnae with other pathogens such as Mycobacterium sp. constitutes a serious problem due to its high mortality rate in the Balearic Island waters. This concerning situation for P. nobilis is favored by a reduction in antioxidant defenses related to H. pinnae infection that induces oxidative stress and cell damage.

12.
Life (Basel) ; 10(10)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066230

RESUMEN

The fan mussel, Pinna nobilis, represents the largest bivalve endemic to the Mediterranean Sea. Since 2016, dramatic mass mortality of this species has been observed in several areas. The first surveys suggested that Haplosporidium pinnae (currently considered species-specific) was the main etiological agent, but recent studies have indicated that a multifactorial disease may be responsible for this phenomenon. In this study, we performed molecular diagnostic analyses on P. nobilis, P. rudis, and bivalve heterologous host species from the island of Sardinia to shed further light on the pathogens involved in the mass mortality. The results support the occurrence of a multifactorial disease and that Mycobacterium spp. and H. pinnae are not necessarily associated with the illness. Indeed, our analyses revealed that H. pinnae is not species-specific for P. nobilis, as it was present in other bivalves at least three years before the mass mortality began, and species of Mycobacterium were also found in healthy individuals of P. nobilis and P. rudis. We also detected the species Rhodococcus erythropolis, representing the first report in fan mussels of a bacterium other than Mycobacterium spp. and Vibrio spp. These results depict a complicated scenario, further demonstrating how the P. nobilis mass mortality event is far from being fully understood.

13.
Ecol Evol ; 10(18): 9853-9866, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33005349

RESUMEN

Multiple studies have described the anatomy and function of the external ear (pinna) of bats, and other placental mammals, however, studies of marsupial pinna are largely absent. In bats, the tragus appears to be especially important for locating and capturing insect prey. In this study, we aimed to investigate the pinnae of Australian marsupials, with a focus on the presence/absence of tragi and how they may relate to diet. We investigated 23 Australian marsupial species with varying diets. The pinnae measurements (scapha width, scapha length) and tragi (where present) were measured. The interaural distance and body length were also recorded for each individual. Results indicated that all nectarivorous, carnivorous, and insectivorous species had tragi with the exception of the insectivorous striped possum (Dactylopsila trivirgata), numbat (Myrmecobius fasciatus), and nectarivorous sugar glider (Petaurus breviceps). No herbivorous or omnivorous species had tragi. Based on the findings in this study, and those conducted on placental mammals, we suggest marsupials use tragi in a similar way to placentals to locate and target insectivorous prey. The Tasmanian devil (Sarcophilus harrisii) displayed the largest interaural distance that likely aids in better localization and origin of noise associated with prey detection. In contrast, the smallest interaural distance was exhibited by a macropod. Previous studies have suggested the hearing of macropods is especially adapted to detect warnings of predators made by conspecifics. While the data in this study demonstrate a diversity in pinnae among marsupials, including presence and absence of tragi, it suggests that there is a correlation between pinna structure and diet choice among marsupials. A future study should investigate a larger number of individuals and species and include marsupials from Papua New Guinea, and Central and South America as a comparison.

14.
Pathogens ; 9(10)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977433

RESUMEN

From May to October 2019, multiple mass mortality events (MMEs) of Pinna nobilis were observed along Croatian coastline starting from the south-east and rapidly progressing in north-western direction. Time dynamics of the MMEs closely followed general speed and direction patterns of surface sea-currents, advancing approximately 350 km in less than 3 months. Surveillance, clinical evaluation, and sample collection were performed on multiple sites with various degrees of mortality rates. Moribund P. nobilis individuals were collected and subjected to pathological, molecular, and microscopical investigation. Affected animals were positive for Mycobacterium in 70% of the individuals, and Haplosporidium pinnae was present in 58% of the cases. Observed pathological lesions were most severe where concurrent presence of both pathogens was confirmed (in 45.8% of moribund individuals). Moderate to strong lesions were observed in animals positive for Mycobacterium only (25% of cases), and lesions were absent or minor to moderate when only H. pinnae was confirmed (16% of cases). Considering the rapid and severe spread of the MMEs, the areas less exposed to major sea currents appeared to be at lower risk of pathogen transmission. Surveillance activities along the Croatian coastline identified several P. nobilis populations in such "lower risk" areas without apparent mortality or clinical symptoms. Such areas are of particular interest as source of potentially healthy individuals to support active recovery actions.

15.
J Invertebr Pathol ; 173: 107388, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32339521

RESUMEN

We identified areas with high individual densities of the pen shell, Pinna nobilis, in two areas along the Croatian Adriatic coast. The surveys carried out in 2018 and 2019 showed population densities of approximately 9 to 13 individuals/100 m2. However, in 2019 a mass mortality event (MME) causing 36% to 100% mortality of this bivalve species was observed in the surveyed Croatian bays. The parasite Haplosporidium pinnae was identified by histological and molecular methods in all affected sampled individuals, while Mycobacterium sp. and Gram negative bacilli were detected in some affected and live bivalves. This finding constitutes the first record of these pathogens affecting P. nobilis in the middle Adriatic, confirming the continuous spread of the disease. Previously, the Adriatic water body was considered to be a natural shelter against the MME caused by pathogens in pen shell populations because of its distinct ecological features. The Adriatic Sea is a semi-closed water body with the largest continental shelf in the Mediterranean Sea, and due to its geomorphology and bathymetry, it is a sea with distinct characteristics. Monitoring plans and further studies in the Adriatic bays are now a priority for mitigating the high risk of extinction and working toward the conservation of this protected species.


Asunto(s)
Bivalvos/fisiología , Cercozoos/aislamiento & purificación , Mycobacterium/aislamiento & purificación , Animales , Bivalvos/microbiología , Bivalvos/parasitología , Croacia , Mar Mediterráneo , Microsporidios/aislamiento & purificación , Dinámica Poblacional
16.
Mar Environ Res ; 155: 104889, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32072991

RESUMEN

Mycobacterium sp. and Haplosporidium pinnae constitute invasive parasite species of bivalves, reported for the first time in the present study in the Aegean Sea and Thermaikos Gulf, respectively. During the last years, the endangered fan mussel (Pinna nobilis) experienced several mortality events in the Mediterranean Sea that caused deaths to 90% or more of their populations and have been attributed to infections by these pathogens. In Greece, two mass mortality events have been recently reported, namely in the Gulf of Kalloni and in Limnos island. In the present study we investigated the presence of both pathogens in P. nobilis from these marine areas as well as from Thermaikos Gulf using both histopathological microscopy and molecular markers. The detected parasite DNA was further quantified in the three populations utilizing a real time qPCR. Histopathological results indicated the presence of a Mycobacterium species alongside with the existence of the Haplosporidian parasite, which was identified in all mortality events in the Mediterranean Sea. The parasite was present in different phases mostly on the digestive gland epithelium. Phylogenetic analysis confirmed the taxonomy of the Haplosporidian parasite as the recently described Haplosporidium pinnae, whereas it failed to identify the Mycobacteria parasite at species level. While Mycobacterium sp. was detected in all examined specimens, H. pinnae was not detected in all diseased fan mussels. Interestingly, monitoring of P. nobilis population from Thermaikos Gulf, an estuary of extremely high importance for bivalve production, revealed the presence of both pathogens in a few specimens in higher quantity but with no symptoms of the disease. Besides, all the specimens from Thermaikos Gulf had inflammatory responses similarly to moribund specimens from mortality events.


Asunto(s)
Bivalvos/microbiología , Bivalvos/parasitología , Haplosporidios/aislamiento & purificación , Especies Introducidas , Mycobacterium/aislamiento & purificación , Animales , Especies en Peligro de Extinción , Grecia , Islas , Mar Mediterráneo , Filogenia
17.
J Invertebr Pathol ; 164: 32-37, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31026464

RESUMEN

The fan mussel, Pinna nobilis (Linnaeus 1758), is an endemic bivalve of the Mediterranean basin, protected by international legislation as an endangered species. In the early summer of 2018, a mass mortality event (MME) of P. nobilis was recorded in the Gulf of Taranto (Southern Italy, Ionian Sea). Moribund specimens of P. nobilis were collected by scuba divers and processed by bacteriological, parasitological, histopathological and molecular analyses to investigate the causes of this MME. Different developmental stages (i.e., plasmodia, spores and sporocysts) of a presumptive haplosporidian parasite were observed during the histological analysis in the epithelium and in the lumen of the digestive tubules, where mature spores occurred either free or in sporocysts. The spores presented an operculum and an ovoid shape measuring 4.4 µm (±0.232) in length and 3.6 µm (±0.233) in width. BLAST analysis of an 18SrRNA sequence revealed a high nucleotide similarity (99%) with the reference sequence of Haplosporidium pinnae available in GenBank database. Phylogenetic analysis clustered the sequence of the pathogen in a paraphyletic clade with the reference sequence of H. pinnae, excluding other haplosporidians (i.e., Bonamia and Minchinia genera). Based on data reported, H. pinnae was the causative agent of MME in the populations of P. nobilis sampled in the Ionian Sea, where the conservation of this endangered species is heavily threatened by such a protozoan infection. Further investigations should contribute to knowledge about the life cycle of H. pinnae in order to reduce spread of the pathogen and to mitigate the burden of the disease where P. nobilis is facing the risk of extinction.


Asunto(s)
Bivalvos/parasitología , Haplosporidios/aislamiento & purificación , Infecciones Protozoarias en Animales/parasitología , Animales , Haplosporidios/genética , Italia , Filogenia , Infecciones Protozoarias en Animales/mortalidad , ARN Ribosómico 18S/genética , Alimentos Marinos/parasitología
18.
Bio Protoc ; 8(13): e2906, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34395738

RESUMEN

As the sister clade of seed plants, ferns are significant materials for plant phylogeny research. However, the genomic DNA extraction protocol for fern samples like modified CTAB method still lacks robustness. Here, we found that the amount and condition of the pinnae samples are critical for gDNA extraction in fern, Adiantum capillus-veneris L. In 500 µl CTAB solution, the recommended amount of pinnae is about 10-20 mg (2-3 pieces). The condition of the pinnae must be instantly-picked from a plant cultivated in a suitable environment. With these factors under control, it is highly reproducible to get the high-quality gDNA with low degradation rate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA