Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(19): 8988-8994, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37782684

RESUMEN

Harnessing the spin of single atoms is at the heart of quantum information nanotechnology based on magnetic concepts. By attaching single Co atoms to monatomic Cu chains, we demonstrate the ability to control the spin orientation by the atomic environment. Due to spin-orbit coupling (SOC), the spin is tilted by ≈58° from the surface normal toward the chain as evidenced by inelastic tunneling spectroscopy. These findings are reproduced by density functional theory calculations and have implications for Co atoms on pristine Cu(111), which are believed to be Kondo systems. Our quantum Monte Carlo calculations suggest that SOC suppresses the Kondo effect of Co atoms at chains and on the flat surface. Our work impacts the fundamental understanding of low-energy excitations in nanostructures on surfaces and demonstrates the ability to manipulate atomic-scale magnetic moments, which can have tremendous implications for quantum devices.

2.
J Phys Condens Matter ; 34(47)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36137515

RESUMEN

We report time-of-flight inelastic neutron scattering (INS) investigations on the spin fluctuation spectrum in the 112-type iron-based superconductor (FeSC) Ca0.82La0.18Fe0.96Ni0.04As2(CaLa-112). In comparison to the 122-type FeSCs with a centrosymmetric tetragonal lattice structure (space groupI4/mmm) at room temperature and an in-plane stripe-type antiferromagnetic (AF) order at low temperature, the 112 system has a noncentrosymmetric structure (space groupP21) with additional zigzag arsenic chains between Ca/La layers and a magnetic ground state with similar wavevectorQAFbut different orientations of ordered moments in the parent compounds. Our INS study clearly reveals that the in-plane dispersions and the bandwidth of spin excitations in the superconducting CaLa-112 closely resemble to those in 122 systems. While the total fluctuating moments⟨m2⟩≈4.6±0.2µB2/Fe are larger than 122 system, the dynamic correlation lengths are similar (ξ ≈ 10 Å). These results suggest that superconductivity in iron arsenides may have a common magnetic origin under similar magnetic exchange couplings with a dual nature from local moments and itinerant electrons, despite their different magnetic patterns and lattice symmetries.

3.
ACS Appl Mater Interfaces ; 11(39): 36213-36220, 2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31495171

RESUMEN

The determination of the local orientation and magnitude of the magnetization in spin textures plays a pivotal role in understanding and harnessing magnetic properties for technological applications. Here, we show that by employing the polarization dependence of resonant inelastic X-ray scattering (RIXS), we can directly probe the spin ordering with chemical and site selectivity. Applied on the prototypical ferrimagnetic mixed-valence system, magnetite ([Fe3+]A[Fe3+,Fe2+]BO4), we can distinguish spin-flip excitations at the A and B antiferromagnetically coupled Fe3+ sublattices and quantify the exchange field. Furthermore, it is possible to determine the orbital contribution to the magnetic moment from detailed angular dependence measurements. RIXS dichroism measurements performed at spin-flip excitations with nanometer spatial resolution will offer a powerful mapping contrast suitable for the characterization of magnetic ordering at interfaces and engineered spin textures.

4.
Nano Lett ; 18(1): 88-93, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29232947

RESUMEN

The ability of molecules to maintain magnetic multistability in nanoscale-junctions will determine their role in downsizing spintronic devices. While spin-injection from ferromagnetic leads gives rise to magnetoresistance in metallic nanocontacts, nonmagnetic leads probing the magnetic states of the junction itself have been considered as an alternative. Extending this experimental approach to molecular junctions, which are sensitive to chemical parameters, we demonstrate that the electron affinity of a molecule decisively influences its spin transport. We use a scanning tunneling microscope to trap a meso-substituted iron porphyrin, putting the iron center in an environment that provides control of its charge and spin states. A large electron affinity of peripheral ligands is shown to enable switching of the molecular S = 1 ground state found at low electron density to S = 1/2 at high density, while lower affinity keeps the molecule inactive to spin-state transition. These results pave the way for spin control using chemical design and electrical means.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA