Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 615
Filtrar
1.
Bioresour Technol ; 409: 131227, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117241

RESUMEN

Screening and isolating acid-tolerant bacteria capable of efficient hydrogen production can mitigate the inhibitory effects on microbial activity caused by rapid pH drops during fermentation. In this study, we isolated an acid-tolerant and highly efficient hydrogen-producing bacterium, named Clostridium sp. BLY-1, from acidic soil. Compared to the model strain Clostridium pasteurianum DSM 525, BLY-1 demonstrates a faster growth rate and superior hydrogen production capabilities. At an initial pH of 4.0, BLY-1's hydrogen production is 7.5 times greater than that of DSM 525, and under optimal conditions (pH=5.0), BLY-1's hydrogen production rate is 42.13% higher than DSM 525. Genomic analysis revealed that BLY-1 possesses a complete CiaRH two-component system and several stress-resistance components absent in DSM 525, which enhance its growth and hydrogen production in acidic environments. These findings provide a novel avenue for boosting the hydrogen production capabilities of Clostridium strains, offering new resources for advancing the green hydrogen industry.

2.
Microbiol Res ; 287: 127861, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094394

RESUMEN

Understanding of the mechanisms on bacteria-regulated mineral dissolution functions is important for further insight into mineral-microbe interactions. The functions of the two-component system have been studied. However, the molecular mechanisms involved in bacterial two-component system-mediated mineral dissolution are poorly understood. Here, the two-component regulatory system ResS/ResR in the mineral-solubilizing bacterium Pseudomonas pergaminensis F77 was characterized for its involvement in biotite dissolution. Strain F77 and the F77ΔresS, F77ΔresR, and F77ΔresS/R mutants were constructed and compared for the ResS/ResR system-mediated Fe and Al release from biotite in the medium and the mechanisms involved. After 3 days of incubation, the F77ΔresS, F77ΔresR, and F77ΔresS/R mutants significantly decreased the Fe and Al concentrations in the medium compared with F77. The F77ΔresS/R mutant had a greater impact on Fe and Al release from biotite than did the F77ΔresS or F77ΔresR mutant. The F77∆resS/R mutant exhibited significantly reduced Fe and Al concentrations by 21-61 % between 12 h and 48 h of incubation compared with F77. Significantly increased pH values and decreased cell counts on the mineral surfaces were found in the presence of the F77∆resS/R mutant compared with those in the presence of F77 between 12 h and 48 h of incubation. Metabolomic analysis revealed that the extracellular metabolites associated with biotite dissolution were downregulated in the F77ΔresS/R mutant. These downregulated metabolites included GDP-fucose, 20-carboxyleukotriene B4, PGP (16:1(9Z)/16:0), 3',5'-cyclic AMP, and a variety of acidic metabolites involved in carbohydrate, amino acid, and lipid metabolisms, glycan biosynthesis, and cellular community function. Furthermore, the expression levels of the genes involved in the production of these metabolites were downregulated in the F77ΔresS/R mutant compared with those in F77. Our findings suggested that the ResS/ResR system in F77 contributed to mineral dissolution by mediating the production of mineral-solubilizing related extracellular metabolites and bacterial adsorption on mineral surface.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Hierro , Metabolómica , Pseudomonas , Pseudomonas/genética , Pseudomonas/metabolismo , Hierro/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Aluminio/metabolismo , Mutación , Minerales/metabolismo , Silicatos/metabolismo , Silicatos de Aluminio , Compuestos Ferrosos
3.
J Bacteriol ; : e0010724, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133005

RESUMEN

Potassium (K+) is an essential physiological element determining membrane potential, intracellular pH, osmotic/turgor pressure, and protein synthesis in cells. Here, we describe the regulation of potassium uptake systems in the oligotrophic α-proteobacterium Caulobacter crescentus known as a model for asymmetric cell division. We show that C. crescentus can grow in concentrations from the micromolar to the millimolar range by mainly using two K+ transporters to maintain potassium homeostasis, the low-affinity Kup and the high-affinity Kdp uptake systems. When K+ is not limiting, we found that the kup gene is essential while kdp inactivation does not impact the growth. In contrast, kdp becomes critical but not essential and kup dispensable for growth in K+-limited environments. However, in the absence of kdp, mutations in kup were selected to improve growth in K+-depleted conditions, likely by increasing the affinity of Kup for K+. In addition, mutations in the KdpDE two-component system, which regulates kdpABCDE expression, suggest that the inner membrane sensor regulatory component KdpD mainly works as a phosphatase to limit the growth when cells reach late exponential phase. Our data therefore suggest that KdpE is phosphorylated by another non-cognate histidine kinase. On top of this, we determined the KdpE-dependent and independent K+ transcriptome. Together, our work illustrates how an oligotrophic bacterium responds to fluctuation in K+ availability.IMPORTANCEPotassium (K+) is a key metal ion involved in many essential cellular processes. Here, we show that the oligotroph Caulobacter crescentus can support growth at micromolar concentrations of K+ by mainly using two K+ uptake systems, the low-affinity Kup and the high-affinity Kdp. Using genome-wide approaches, we also determined the entire set of genes required for C. crescentus to survive at low K+ concentration as well as the full K+-dependent regulon. Finally, we found that the transcriptional regulation mediated by the KdpDE two-component system is unconventional since unlike Escherichia coli, the inner membrane sensor regulatory component KdpD seems to work rather as a phosphatase on the phosphorylated response regulator KdpE~P.

4.
Int J Biol Macromol ; 275(Pt 1): 133635, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964677

RESUMEN

Two-component signaling systems (TCS) are the predominant means of microbes for sensing and responding to environmental stimuli. Typically, TCS is comprised of a sensor histidine kinase (HK) and a cognate response regulator (RR), which might have coevolved together. They usually involve the phosphoryl transfer signaling mechanism. However, there are also some orphan and atypical HK and RR homologs, and their evolutionary origins are still not very clear. They are not associated with cognate pairs or lack the conserved residues for phosphoryl transfer, but they could receive or respond to signals from other regulators. The objective of this study is to reveal the evolutionary history of these orphan and atypical HK and RR homologs. Structural, domain, sequence, and phylogenetic analyses indicated that their evolution process might undergo gene duplication, divergence, and domain shuffling. Meanwhile, lateral gene transfer might also be involved for their gene distribution. Evolution of orphan and atypical HK and RR homologs have increased their signaling diversity, which could be helpful for microbial adaption in complex environments.


Asunto(s)
Evolución Molecular , Histidina Quinasa , Filogenia , Transducción de Señal , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Transducción de Señal/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Bacterias/genética , Bacterias/enzimología , Transferencia de Gen Horizontal
5.
Biotechnol Adv ; 75: 108404, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39002783

RESUMEN

Two-component systems (TCSs) are prevalent signaling pathways in bacteria. These systems mediate phosphotransfer between histidine kinase and a response regulator, facilitating responses to diverse physical, chemical, and biological stimuli. Advancements in synthetic and structural biology have repurposed TCSs for applications in monitoring heavy metals, disease-associated biomarkers, and the production of bioproducts. However, the utility of many TCS biosensors is hindered by undesired performance due to the lack of effective engineering methods. Here, we briefly discuss the architectures and regulatory mechanisms of TCSs. We also summarize the recent advancements in TCS engineering by experimental or computational-based methods to fine-tune the biosensor functional parameters, such as response curve and specificity. Engineered TCSs have great potential in the medical, environmental, and biorefinery fields, demonstrating a crucial role in a wide area of biotechnology.


Asunto(s)
Técnicas Biosensibles , Biotecnología , Técnicas Biosensibles/métodos , Biotecnología/métodos , Transducción de Señal , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
6.
Bioorg Chem ; 150: 107606, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38968903

RESUMEN

The number of new antibacterial agents currently being discovered is insufficient to combat bacterial resistance. It is extremely challenging to find new antibiotics and to introduce them to the pharmaceutical market. Therefore, special attention must be given to find new strategies to combat bacterial resistance and prevent bacteria from developing resistance. Two-component system is a transduction system and the most prevalent mechanism employed by bacteria to respond to environmental changes. This signaling system consists of a membrane sensor histidine kinase that perceives environmental stimuli and a response regulator which acts as a transcription factor. The approach consisting of developing response regulators inhibitors with antibacterial activity or antibiotic adjuvant activity is a novel approach that has never been previously reviewed. In this review we report for the first time, the importance of targeting response regulators and summarizing all existing studies carried out from 2008 until now on response regulators inhibitors as antibacterial agents or / and antibiotic adjuvants. Moreover, we describe the antibacterial activity and/or antibiotic adjuvants activity against the studied bacterial strains and the mechanism of different response regulator inhibitors when it's possible.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Farmacorresistencia Bacteriana/efectos de los fármacos , Bacterias/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Humanos , Adyuvantes Farmacéuticos/farmacología , Adyuvantes Farmacéuticos/química
7.
Mol Microbiol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39081077

RESUMEN

Sinorhizobium meliloti senses nutrients and compounds exuded from alfalfa host roots and coordinates an excitation, termination, and adaptation pathway during chemotaxis. We investigated the role of the novel S. meliloti chemotaxis protein CheT. While CheT and the Escherichia coli phosphatase CheZ share little sequence homology, CheT is predicted to possess an α-helix with a DXXXQ phosphatase motif. Phosphorylation assays demonstrated that CheT dephosphorylates the phosphate-sink response regulator, CheY1~P by enhancing its decay two-fold but does not affect the motor response regulator CheY2~P. Isothermal Titration Calorimetry (ITC) experiments revealed that CheT binds to a phosphomimic of CheY1~P with a KD of 2.9 µM, which is 25-fold stronger than its binding to CheY1. Dissimilar chemotaxis phenotypes of the ΔcheT mutant and cheT DXXXQ phosphatase mutants led to the hypothesis that CheT exerts additional function(s). A screen for potential binding partners of CheT revealed that it forms a complex with the methyltransferase CheR. ITC experiments confirmed CheT/CheR binding with a KD of 19 µM, and a SEC-MALS analysis determined a 1:1 and 2:1 CheT/CheR complex formation. Although they did not affect each other's enzymatic activity, CheT binding to CheY1~P and CheR may serve as a link between signal termination and sensory adaptation.

8.
Chembiochem ; : e202400392, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967093

RESUMEN

Two-component signal transduction systems (TCSs) are regulatory systems widely distributed in eubacteria, archaea, and a few eukaryotic organisms, but not in mammalian cells. A typical TCS consists of a histidine kinase and a response regulator protein. Functional and mechanistic studies on different TCSs have greatly advanced the understanding of cellular phosphotransfer signal transduction mechanisms. In this concept paper, we focus on the His-Asp phosphotransfer mechanism, the ATP synthesis function, antimicrobial drug design, cellular biosensors design, and protein allostery mechanisms based on recent TCS investigations to inspire new applications and future research perspectives.

9.
mBio ; 15(7): e0122024, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38842315

RESUMEN

Hybrid two-component systems (HTCSs) comprise a major class of transcription regulators of polysaccharide utilization genes in Bacteroides. Distinct from classical two-component systems in which signal transduction is carried out by intermolecular phosphotransfer between a histidine kinase (HK) and a cognate response regulator (RR), HTCSs contain the membrane sensor HK and the RR transcriptional regulator within a single polypeptide chain. Tethering the DNA-binding domain (DBD) of the RR with the dimeric HK domain in an HTCS could potentially promote dimerization of the DBDs and would thus require a mechanism to suppress DNA-binding activity in the absence of stimulus. Analysis of phosphorylation and DNA-binding activities of several HTCSs from Bacteroides thetaiotaomicron revealed a DBD suppression mechanism in which an inhibitory interaction between the DBD and the phosphoryl group-accepting receiver domain (REC) decreases autophosphorylation rates of HTCS-RECs and represses DNA-binding activities in the absence of phosphorylation. Sequence analyses and structure predictions identified a highly conserved sequence motif correlated with a conserved inhibitory domain arrangement of REC and DBD. The presence of the motif, as in most HTCSs, or its absence, in a small subset of HTCSs, is likely predictive of two distinct regulatory mechanisms evolved for different glycans. Substitutions within the conserved motif relieve the inhibitory interaction and result in elevated DNA-binding activities in the absence of phosphorylation. Our data suggest a fundamental regulatory mechanism shared by most HTCSs to suppress DBD activities using a conserved inhibitory interdomain arrangement to overcome the challenge of the fused HK and RR components. IMPORTANCE: Different dietary and host-derived complex carbohydrates shape the gut microbial community and impact human health. In Bacteroides, the prevalent gut bacteria genus, utilization of these diverse carbohydrates relies on different gene clusters that are under sophisticated control by various signaling systems, including the hybrid two-component systems (HTCSs). We have uncovered a highly conserved regulatory mechanism in which the output DNA-binding activity of HTCSs is suppressed by interdomain interactions in the absence of stimulating phosphorylation. A consensus amino acid motif is found to correlate with the inhibitory interaction surface while deviations from the consensus can lead to constitutive activation. Understanding of such conserved HTCS features will be important to make regulatory predictions for individual systems as well as to engineer novel systems with substitutions in the consensus to explore the glycan regulation landscape in Bacteroides.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Fosforilación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Unión Proteica , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Bacteroides/genética , Bacteroides/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Histidina Quinasa/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/química , Dominios Proteicos , Transducción de Señal
10.
Microbiol Spectr ; 12(8): e0014624, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38917423

RESUMEN

The discovery of antimicrobials with novel mechanisms of action is crucial to tackle the foreseen global health crisis due to antimicrobial resistance. Bacterial two-component signaling systems (TCSs) are attractive targets for the discovery of novel antibacterial agents. TCS-encoding genes are found in all bacterial genomes and typically consist of a sensor histidine kinase (HK) and a response regulator. Due to the conserved Bergerat fold in the ATP-binding domain of the TCS HK and the human chaperone Hsp90, there has been much interest in repurposing inhibitors of Hsp90 as antibacterial compounds. In this study, we explore the chemical space of the known Hsp90 inhibitor scaffold 3,4-diphenylpyrazole (DPP), building on previous literature to further understand their potential for HK inhibition. Six DPP analogs inhibited HK autophosphorylation in vitro and had good antimicrobial activity against Gram-positive bacteria. However, mechanistic studies showed that their antimicrobial activity was related to damage of bacterial membranes. In addition, DPP analogs were cytotoxic to human embryonic kidney cell lines and induced the cell arrest phenotype shown for other Hsp90 inhibitors. We conclude that these DPP structures can be further optimized as specific disruptors of bacterial membranes providing binding to Hsp90 and cytotoxicity are lowered. Moreover, the X-ray crystal structure of resorcinol, a substructure of the DPP derivatives, bound to the HK CheA represents a promising starting point for the fragment-based design of novel HK inhibitors. IMPORTANCE: The discovery of novel antimicrobials is of paramount importance in tackling the imminent global health crisis of antimicrobial resistance. The discovery of novel antimicrobials with novel mechanisms of actions, e.g., targeting bacterial two-component signaling systems, is crucial to bypass existing resistance mechanisms and stimulate pharmaceutical innovations. Here, we explore the possible repurposing of compounds developed in cancer research as inhibitors of two-component systems and investigate their off-target effects such as bacterial membrane disruption and toxicity. These results highlight compounds that are promising for further development of novel bacterial membrane disruptors and two-component system inhibitors.


Asunto(s)
Antibacterianos , Reposicionamiento de Medicamentos , Proteínas HSP90 de Choque Térmico , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/química , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Pirazoles/farmacología , Pirazoles/química , Histidina Quinasa/antagonistas & inhibidores , Histidina Quinasa/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/química , Bacterias Grampositivas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células HEK293
11.
Artículo en Inglés | MEDLINE | ID: mdl-38847924

RESUMEN

CssRS is a two-component system that plays a pivotal role in mediating the secretion stress response in Bacillus subtilis. This system upregulates the synthesis of membrane-bound HtrA family proteases that cope with misfolded proteins that accumulate within the cell envelope as a result of overexpression or heat shock. Recent studies have shown the induction of CssRS-regulated genes in response to cell envelope stress. We investigated the induction of the CssRS-regulated htrA promoter in the presence of different cell wall- and membrane-active substances and observed induction of the CssRS-controlled genes by glycopeptides (vancomycin and teicoplanin), polymyxins B and E, certain ß-lactams, and detergents. Teicoplanin was shown to elicit remarkably stronger induction than vancomycin and polymyxin B. Teicoplanin and polymyxin B induced the spxO gene expression in a CssRS-dependent fashion, resulting in increased activity of Spx, a master regulator of disulfide stress in Bacillus subtilis. The CssRS signaling pathway and Spx activity were demonstrated to be involved in Bacillus subtilis resistance to teicoplanin and polymyxin B.

12.
Water Res ; 259: 121855, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38838482

RESUMEN

Plasmid-mediated conjugative transfer facilitates the dissemination of antibiotic resistance, yet the comprehensive regulatory mechanisms governing this process remain elusive. Herein, we established pure bacteria and activated sludge conjugation system to investigate the regulatory mechanisms of conjugative transfer, leveraging metformin as an exogenous agent. Transcriptomic analysis unveiled that substantial upregulation of genes associated with the two-component system (e.g., AcrB/AcrA, EnvZ/Omp, and CpxA/CpxR) upon exposure to metformin. Furthermore, downstream regulators of the two-component system, including reactive oxygen species (ROS), cytoplasmic membrane permeability, and adenosine triphosphate (ATP) production, were enhanced by 1.7, 1.4 and 1.1 times, respectively, compared to the control group under 0.1 mg/L metformin exposure. Moreover, flow sorting and high-throughput sequencing revealed increased microbial community diversity among transconjugants in activated sludge systems. Notably, the antibacterial potential of human pathogenic bacteria (e.g., Bacteroides, Escherichia-Shigella, and Lactobacillus) was augmented, posing a potential threat to human health. Our findings shed light on the spread of antibiotic resistance bacteria and assess the ecological risks associated with plasmid-mediated conjugative transfer in wastewater treatment systems.


Asunto(s)
Plásmidos , Plásmidos/genética , Aguas del Alcantarillado/microbiología , Conjugación Genética , Bacterias/genética , Antibacterianos/farmacología
13.
Mol Microbiol ; 122(1): 50-67, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38798055

RESUMEN

Sensory adaptation in bacterial chemotaxis is mediated by posttranslational modifications of methyl-accepting chemotaxis proteins (MCPs). In Escherichia coli, the adaptation proteins CheR and CheB tether to a conserved C-terminal receptor pentapeptide. Here,we investigated the function of the pentapeptide motif (N/D)WE(E/N)F in Sinorhizobium meliloti chemotaxis. Isothermal titration calorimetry revealed stronger affinity of the pentapeptides to CheR and activated CheB relative to unmodified CheB. Strains with mutations of the conserved tryptophan in one or all four MCP pentapeptides resulted in a significant decrease or loss of chemotaxis to glycine betaine, lysine, and acetate, chemoattractants sensed by pentapeptide-bearing McpX and pentapeptide-lacking McpU and McpV, respectively. Importantly, we discovered that the pentapeptide mediates chemotaxis when fused to the C-terminus of pentapeptide-lacking chemoreceptors via a flexible linker. We propose that adaptational assistance and a threshold number of available sites enable the efficient docking of adaptation proteins to the chemosensory array. Altogether, these results demonstrate that S. meliloti effectively utilizes a pentapeptide-dependent adaptation system with a minimal number of tethering units to assist pentapeptide-lacking chemoreceptors and hypothesize that the higher abundance of CheR and CheB in S. meliloti compared to E. coli allows for ample recruitment of adaptation proteins to the chemosensory array.


Asunto(s)
Proteínas Bacterianas , Quimiotaxis , Proteínas Quimiotácticas Aceptoras de Metilo , Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Oligopéptidos/metabolismo , Factores Quimiotácticos/metabolismo , Metiltransferasas
14.
mBio ; 15(6): e0061624, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38771052

RESUMEN

Pseudomonas aeruginosa is one of the most common nosocomial pathogens worldwide, known for its virulence, drug resistance, and elaborate sensor-response network. The primary challenge encountered by pathogens during the initial stages of infection is the immune clearance arising from the host. The resident macrophages of barrier organs serve as the frontline defense against these pathogens. Central to our understanding is the mechanism by which bacteria modify their behavior to circumvent macrophage-mediated clearance, ensuring their persistence and colonization. To successfully evade macrophage-mediated phagocytosis, bacteria must possess an adaptive response mechanism. Two-component systems provide bacteria the agility to navigate diverse environmental challenges, translating external stimuli into cellular adaptive responses. Here, we report that the well-documented histidine kinase, LadS, coupled to a cognate two-component response regulator, PA0034, governs the expression of a vital adhesin called chaperone-usher pathway pilus cupA. The LadS/PA0034 system is susceptible to interference from the reactive oxygen species likely to be produced by macrophages and further lead to a poor adhesive phenotype with scantily cupA pilus, impairing the phagocytosis efficiency of macrophages during acute infection. This dynamic underscores the intriguing interplay: as macrophages deploy reactive oxygen species to combat bacterial invasion, the bacteria recalibrate their exterior to elude these defenses. IMPORTANCE: The notoriety of Pseudomonas aeruginosa is underscored by its virulence, drug resistance, and elaborate sensor-response network. Yet, the mechanisms by which P. aeruginosa maneuvers to escape phagocytosis during acute infections remain elusive. This study pinpoints a two-component response regulator, PA0034, coupled with the histidine kinase LadS, and responds to macrophage-derived reactive oxygen species. The macrophage-derived reactive oxygen species can impair the LadS/PA0034 system, resulting in reduced expression of cupA pilus in the exterior of P. aeruginosa. Since the cupA pilus is an important adhesin of P. aeruginosa, its deficiency reduces bacterial adhesion and changes their behavior to adopt a planktonic lifestyle, subsequently inhibiting the phagocytosis of macrophages by interfering with bacterial adhesion. Briefly, reactive oxygen species may act as environmental cues for the LadS/PA0034 system. Upon recognition, P. aeruginosa may transition to a poorly adhesive state, efficiently avoiding engulfment by macrophages.


Asunto(s)
Macrófagos , Fagocitosis , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/metabolismo , Macrófagos/microbiología , Macrófagos/inmunología , Ratones , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/inmunología , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/genética , Regulación Bacteriana de la Expresión Génica , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Histidina Quinasa/metabolismo , Histidina Quinasa/genética , Humanos , Células RAW 264.7
15.
Microbiol Res ; 285: 127775, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38788350

RESUMEN

Vibrio alginolyticus is one of the most common opportunistic pathogens in marine animals and humans. In this study, A transposon mutation library of the V. alginolyticus E110 was used to identify motility-related genes, and we found three flagellar and one capsular polysaccharide (CPS) synthesis-related genes were linked to swarming motility. Then, gene deletion and complementation further confirmed that CPS synthesis-related gene ugd is involved in the swarming motility of V. alginolyticus. Phenotype assays showed that the Δugd mutant reduced CPS production, decreased biofilm formation, impaired swimming ability, and increased cytotoxicity compared to the wild-type strain. Transcriptome analysis showed that 655 genes (15%) were upregulated and 914 genes (21%) were downregulated in the Δugd strain. KEGG pathway and heatmap analysis revealed that genes involved in two-component systems (TCSs), chemotaxis, and flagella assembly pathways were downregulated in the Δugd mutant. On the other hand, genes involved in pathways of human diseases, biosynthesis ABC transporters, and metabolism were upregulated in the Δugd mutant. The RT-qPCR further validated that ugd-regulated genes are associated with motility, biofilm formation, virulence, and TCSs. These findings imply that ugd may be an important player in the control of some physiological processes in V. alginolyticus, highlighting its potential as a target for future research and potential therapeutic interventions.


Asunto(s)
Cápsulas Bacterianas , Proteínas Bacterianas , Biopelículas , Flagelos , Regulación Bacteriana de la Expresión Génica , Vibrio alginolyticus , Vibrio alginolyticus/genética , Vibrio alginolyticus/fisiología , Vibrio alginolyticus/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Flagelos/fisiología , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/genética , Virulencia , Animales , Perfilación de la Expresión Génica , Eliminación de Gen , Humanos , Vibriosis/microbiología
16.
Mol Microbiol ; 121(6): 1182-1199, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38690761

RESUMEN

The dipeptide D-Ala-D-Ala is an essential component of peptidoglycan and the target of vancomycin. Most Clostridioides difficile strains possess the vanG operon responsible for the synthesis of D-Ala-D-Ser, which can replace D-Ala-D-Ala in peptidoglycan. The C. difficile vanG operon is regulated by a two-component system, VanRS, but is not induced sufficiently by vancomycin to confer resistance to this antibiotic. Surprisingly, in the absence of the VanS histidine kinase (HK), the vanG operon is still induced by vancomycin and also by another antibiotic, ramoplanin, in a VanR-dependent manner. This suggested the cross-regulation of VanR by another HK or kinases that are activated in the presence of certain lipid II-targeting antibiotics. We identified these HKs as CD35990 and CD22880. However, mutations in either or both HKs did not affect the regulation of the vanG operon in wild-type cells suggesting that intact VanS prevents the cross-activation of VanR by non-cognate HKs. Overproduction of VanR in the absence of VanS, CD35990, and CD22880 led to high expression of the vanG operon indicating that VanR can potentially utilize at least one more phosphate donor for its activation. Candidate targets of CD35990- and CD22880-mediated regulation in the presence of vancomycin or ramoplanin were identified by RNA-Seq.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Clostridioides difficile , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa , Operón , Resistencia a la Vancomicina , Vancomicina , Operón/genética , Clostridioides difficile/genética , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/metabolismo , Histidina Quinasa/metabolismo , Histidina Quinasa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vancomicina/farmacología , Resistencia a la Vancomicina/genética , Antibacterianos/farmacología , Depsipéptidos/farmacología , Factores de Transcripción
17.
Microbiol Res ; 285: 127783, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795407

RESUMEN

The regulator of capsule synthesis (Rcs) system, an atypical two-component system prevalent in numerous gram-negative bacteria, serves as a sophisticated regulatory phosphorylation cascade mechanism. It plays a pivotal role in perceiving environmental stress and regulating the expression of downstream genes to ensure host survival. During the signaling transduction process, various proteins participate in phosphorylation to further modulate signal inputs and outputs. Although the structure of core proteins related to the Rcs system has been partially well-defined, and two models have been proposed to elucidate the intricate molecular mechanisms underlying signal sensing, a systematic characterization of the signal transduction process of the Rcs system remains challenging. Furthermore, exploring its corresponding regulator outputs is also unremitting. This review aimed to shed light on the regulation of bacterial virulence by the Rcs system. Moreover, with the assistance of the Rcs system, biosynthesis technology has developed high-value target production. Additionally, via this review, we propose designing chimeric Rcs biosensor systems to expand their application as synthesis tools. Finally, unsolved challenges are highlighted to provide the basic direction for future development of the Rcs system.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Transducción de Señal , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fosforilación , Virulencia , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Técnicas Biosensibles
18.
Int J Mol Sci ; 25(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38732236

RESUMEN

The use of probiotic lactobacilli has been proposed as a strategy to mitigate damage associated with exposure to toxic metals. Their protective effect against cationic metal ions, such as those of mercury or lead, is believed to stem from their chelating and accumulating potential. However, their retention of anionic toxic metalloids, such as inorganic arsenic, is generally low. Through the construction of mutants in phosphate transporter genes (pst) in Lactiplantibacillus plantarum and Lacticaseibacillus paracasei strains, coupled with arsenate [As(V)] uptake and toxicity assays, we determined that the incorporation of As(V), which structurally resembles phosphate, is likely facilitated by phosphate transporters. Surprisingly, inactivation in Lc. paracasei of PhoP, the transcriptional regulator of the two-component system PhoPR, a signal transducer involved in phosphate sensing, led to an increased resistance to arsenite [As(III)]. In comparison to the wild type, the phoP strain exhibited no differences in the ability to retain As(III), and there were no observed changes in the oxidation of As(III) to the less toxic As(V). These results reinforce the idea that specific transport, and not unspecific cell retention, plays a role in As(V) biosorption by lactobacilli, while they reveal an unexpected phenotype for the lack of the pleiotropic regulator PhoP.


Asunto(s)
Arsénico , Fosfatos , Fosfatos/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo , Lactobacillus/metabolismo , Lactobacillus/efectos de los fármacos , Lactobacillus/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética , Arseniatos/metabolismo , Arseniatos/toxicidad
19.
BMC Microbiol ; 24(1): 126, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622558

RESUMEN

This study aimed to explore the role of the two-component system Bae SR in the mechanism of drug resistance in carbapenem-resistant A. baumannii (CRAB) using molecular docking and real-time polymerase chain reaction (PCR). The two-component system Bae SR of Acinetobacter baumannii was subjected to molecular docking with imipenem, meropenem, and levofloxacin. Antibacterial assays and fluorescence quantitative PCR were used to explore protein-ligand interactions and molecular biological resistance mechanisms related to CRAB. The analysis of the two-component system in A. baumannii revealed that imipenem exhibited the highest docking energy in Bae S at - 5.81 kcal/mol, while the docking energy for meropenem was - 4.92 kcal/mol. For Bae R, imipenem had a maximum docking energy of - 4.28 kcal/mol, compared with - 4.60 kcal/mol for meropenem. The highest binding energies for Bae S-levofloxacin and Bae R-levofloxacin were - 3.60 and - 3.65 kcal/mol, respectively. All imipenem-resistant strains had minimum inhibitory concentration (MIC) values of 16 µg/mL, whereas levofloxacin-resistant strains had MIC values of 8 µg/mL. The time-sterilization curve showed a significant decrease in bacterial colony numbers at 2 h under the action of 8 µg/mL imipenem, indicating antibacterial effects. In contrast, levofloxacin did not exhibit any antibacterial activity. Fluorescence quantitative PCR results revealed significantly increased relative expression levels of bae S and bae R genes in the CRAB group, which were 2 and 1.5 times higher than those in the CSAB group, respectively, with statistically significant differences. Molecular docking in this study found that the combination of Bae SR and carbapenem antibiotics (imipenem, meropenem) exhibited stronger affinity and stability compared with levofloxacin. Moreover, the overexpression of the two-component system genes in carbapenem-resistant A. baumannii enhanced its resistance to carbapenem, providing theoretical and practical insights into carbapenem resistance in respiratory tract infections caused by A. baumannii.


Asunto(s)
Acinetobacter baumannii , Carbapenémicos , Carbapenémicos/farmacología , Meropenem/farmacología , Simulación del Acoplamiento Molecular , Reacción en Cadena en Tiempo Real de la Polimerasa , Levofloxacino/farmacología , Antibacterianos/farmacología , Imipenem/farmacología , Resistencia a Medicamentos , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética
20.
mBio ; 15(6): e0023024, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682935

RESUMEN

Strict management of intracellular heme pools, which are both toxic and beneficial, is crucial for bacterial survival during infection. The human pathogen Staphylococcus aureus uses a two-component heme sensing system (HssRS), which counteracts environmental heme toxicity by triggering expression of the efflux transporter HrtBA. The HssS heme sensor is a HisKA-type histidine kinase, characterized as a membrane-bound homodimer containing an extracellular sensor and a cytoplasmic conserved catalytic domain. To elucidate HssS heme-sensing mechanism, a structural simulation of the HssS dimer based on Alphafold2 was docked with heme. In this model, a heme-binding site is present in the HssS dimer between the membrane and extracellular domains. Heme is embedded in the membrane bilayer with its two protruding porphyrin propionates interacting with two conserved Arg94 and Arg163 that are located extracellularly. Single substitutions of these arginines and two highly conserved phenylalanines, Phe25 and Phe128, in the predicted hydrophobic pocket limited the ability of HssS to induce HrtBA synthesis. Combination of the four substitutions abolished HssS activation. Wild-type (WT) HssS copurified with heme from Escherichia coli, whereas heme binding was strongly attenuated in the variants. This study gives evidence that exogenous heme interacts with HssS at the membrane/extracellular interface to initiate HssS activation and induce HrtBA-mediated heme extrusion from the membrane. This "gatekeeper" mechanism could limit intracellular diffusion of exogenous heme in S. aureus and may serve as a paradigm for how efflux transporters control detoxification of exogenous hydrophobic stressors.IMPORTANCEIn the host blood, pathogenic bacteria are exposed to the red pigment heme that concentrates in their lipid membranes, generating cytotoxicity. To overcome heme toxicity, Staphylococcus aureus expresses a membrane sensor protein, HssS. Activation of HssS by heme triggers a phosphotransfer mechanism leading to the expression of a heme efflux system, HrtBA. This detoxification system prevents intracellular accumulation of heme. Our structural and functional data reveal a heme-binding hydrophobic cavity in HssS within the transmembrane domains (TM) helices at the interface with the extracellular domain. This structural pocket is important for the function of HssS as a heme sensor. Our findings provide a new basis for the elucidation of pathogen-sensing mechanisms as a prerequisite to the discovery of inhibitors.


Asunto(s)
Proteínas Bacterianas , Hemo , Transducción de Señal , Staphylococcus aureus , Hemo/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Histidina Quinasa/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/química , Regulación Bacteriana de la Expresión Génica , Sitios de Unión , Membrana Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA