Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
J Med Microbiol ; 73(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39207836

RESUMEN

Introduction. The global spread of Acinetobacter spp., particularly the Acinetobacter calcoaceticusbaumannii (ACB) complex, has led to its recognition as a significant pathogen by the World Health Organization (WHO). The increasing resistance of the ACB complex to multiple antibiotics presents a challenge for treatment, necessitating accurate antibiotic susceptibility profiling after isolation.Hypothesis or gap statement. There is limited understanding of the antimicrobial resistance and chlorhexidine, a biocide, susceptibility profiles of ACB complex strains, especially in clinical settings in Turkey.Aim. This study aimed to identify ACB complex strains recovered from various clinical specimens at Hacettepe University Hospitals in Ankara, Turkey, in 2019, and to assess identification, their antibiotic and chlorhexidine susceptibility profiles, and genomic relatedness.Methodology. Eighty-two ACB complex strains were identified using MALDI-TOF MS. Susceptibility testing to 12 antibiotics was conducted using the disc diffusion method, and colistin, chlorhexidine susceptibility was assessed using the broth microdilution technique, following the latest EUCAST and CLSI guidelines. ACB complex members with reduced chlorhexidine sensitivity were further analyzed by pulsed-field gel electrophoresis (PFGE) for bacterial typing.Results. Among the isolates, 1.2% were multidrug-resistant (MDR), 73.2% were extensively drug-resistant (XDR), and 12.2% were pandrug-resistant (PDR). Carbapenem resistance was found in 86.7% of MDR, PDR, and XDR strains. Colistin resistance was observed in 15.8% of isolates, and 18.2% exhibited decreased susceptibility to chlorhexidine. PFGE revealed seven different clones among strains with reduced chlorhexidine sensitivity, indicating vertical transmission within the hospital.Conclusion. This study highlights the reduced susceptibility to chlorhexidine in ACB complex members and provides epidemiological insights into their spread. The findings underscore the importance of screening for antimicrobial resistance and biocide susceptibility profiles to effectively manage healthcare-associated infections.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Clorhexidina , Electroforesis en Gel de Campo Pulsado , Pruebas de Sensibilidad Microbiana , Clorhexidina/farmacología , Turquía/epidemiología , Humanos , Antibacterianos/farmacología , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/epidemiología , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/aislamiento & purificación , Acinetobacter calcoaceticus/efectos de los fármacos , Acinetobacter calcoaceticus/genética , Acinetobacter calcoaceticus/clasificación , Acinetobacter calcoaceticus/aislamiento & purificación , Femenino , Adulto , Masculino , Persona de Mediana Edad , Tipificación Molecular/métodos , Adulto Joven , Anciano , Adolescente , Niño , Preescolar , Lactante , Farmacorresistencia Bacteriana Múltiple/genética , Anciano de 80 o más Años
2.
Biomed Res Int ; 2024: 8842625, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161641

RESUMEN

The Acinetobacter calcoaceticus-baumannii (ACB) complex, also known as ACB complex, consists of four bacterial species that can cause opportunistic infections in humans, especially in hospital settings. Conventional therapies for susceptible strains of the ACB complex include broad-spectrum cephalosporins, ß-lactam/ß-lactamase inhibitors, and carbapenems. Unfortunately, the effectiveness of these antibiotics has declined due to increasing rates of resistance. The predominant resistance mechanisms identified in the ACB complex involve carbapenem-resistant (CR) oxacillinases and metallo-ß-lactamases (MBLs). This research, conducted at Kathmandu Model Hospital in Nepal, sought to identify genes associated with CR, specifically blaNDM-1, blaOXA-23-like, and blaOXA-24-like genes in carbapenem-resistant Acinetobacter calcoaceticus-baumannii (CR-ACB) complex. Additionally, the study is aimed at identifying the ACB complex through the sequencing of the 16s rRNA gene. Among the 992 samples collected from hospitalized patients, 43 (approximately 4.334%) tested positive for the ACB complex. These positive samples were mainly obtained from different hospital units, including intensive care units (ICUs); cabins; and neonatal, general, and maternity wards. The prevalence of infection was higher among males (58.14%) than females (41.86%), with the 40-50 age group showing the highest infection rate. In susceptibility testing, colistin and polymyxin B exhibited a susceptibility rate of 100%, whereas all samples showed resistance to third-generation cephalosporins. After polymyxins, gentamicin (30.23%) and amikacin (34.88%) demonstrated the highest susceptibility. A substantial majority (81.45%) of ACB complex isolates displayed resistance to carbapenems, with respiratory and pus specimens being the primary sources. Polymerase chain reaction (PCR) revealed that the primary CR gene within the ACB complex at this hospital was bla OXA-23-like, followed by bla NDM-1. To ensure the accuracy of the phenotypic assessment, 12 samples were chosen for 16s rRNA sequencing using Illumina MiSeq™ to confirm that they are Acinetobacter species. QIIME 2.0 analysis confirmed all 12 isolates to be Acinetobacter species. In the hospital setting, a substantial portion of the ACB complex carries CR genes, rendering carbapenem ineffective for treatment.


Asunto(s)
Acinetobacter baumannii , Carbapenémicos , beta-Lactamasas , beta-Lactamasas/genética , Nepal , Humanos , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Masculino , Femenino , Adulto , Acinetobacter baumannii/genética , Acinetobacter baumannii/efectos de los fármacos , Persona de Mediana Edad , Acinetobacter calcoaceticus/genética , Acinetobacter calcoaceticus/efectos de los fármacos , Acinetobacter calcoaceticus/enzimología , Pruebas de Sensibilidad Microbiana , Adolescente , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/tratamiento farmacológico , Niño , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Adulto Joven , Lactante , Anciano , Preescolar , Proteínas Bacterianas/genética , ARN Ribosómico 16S/genética , Farmacorresistencia Bacteriana/genética
3.
Front Cell Infect Microbiol ; 14: 1410997, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027135

RESUMEN

Background: Acinetobacter baumannii (AB) has emerged as one of the most challenging pathogens worldwide, causing invasive infections in the critically ill patients due to their ability to rapidly acquire resistance to antibiotics. This study aimed to analyze antibiotic resistance genes harbored in AB and non-baumannii Acinetobacter calcoaceticus-baumannii (NB-ACB) complex causing invasive diseases in Korean children. Methods: ACB complexes isolated from sterile body fluid of children in three referral hospitals were prospectively collected. Colistin susceptibility was additionally tested via broth microdilution. Whole genome sequencing was performed and antibiotic resistance genes were analyzed. Results: During January 2015 to December 2020, a total of 67 ACB complexes were isolated from sterile body fluid of children in three referral hospitals. The median age of the patients was 0.6 (interquartile range, 0.1-7.2) years old. Among all the isolates, 73.1% (n=49) were confirmed as AB and others as NB-ACB complex by whole genome sequencing. Among the AB isolates, only 22.4% susceptible to carbapenem. In particular, all clonal complex (CC) 92 AB (n=33) showed multi-drug resistance, whereas 31.3% in non-CC92 AB (n=16) (P<0.001). NB-ACB showed 100% susceptibility to all classes of antibiotics except 3rd generation cephalosporin (72.2%). The main mechanism of carbapenem resistance in AB was the bla oxa23 gene with ISAba1 insertion sequence upstream. Presence of pmr gene and/or mutation of lpxA/C gene were not correlated with the phenotype of colistin resistance of ACB. All AB and NB-ACB isolates carried the abe and ade multidrug efflux pumps. Conclusions: In conclusion, monitoring and research for resistome in ACB complex is needed to identify and manage drug-resistant AB, particularly CC92 AB carrying the bla oxa23 gene.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Pruebas de Sensibilidad Microbiana , Secuenciación Completa del Genoma , Humanos , Niño , Preescolar , Lactante , República de Corea/epidemiología , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/epidemiología , Acinetobacter baumannii/genética , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/aislamiento & purificación , Antibacterianos/farmacología , Femenino , Masculino , COVID-19/epidemiología , Colistina/farmacología , Acinetobacter calcoaceticus/genética , Acinetobacter calcoaceticus/efectos de los fármacos , Acinetobacter calcoaceticus/aislamiento & purificación , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , SARS-CoV-2/genética , SARS-CoV-2/efectos de los fármacos , Estudios Prospectivos , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
4.
Diagn Microbiol Infect Dis ; 110(1): 116398, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38908041

RESUMEN

Carbapenem-resistant significant members of Acinetobacter calcoaceticus-Acinetobacter baumannii (CR-SM-ACB) complex have emerged as an important cause of sepsis, especially in ICUs. This study demonstrates the application of loop-mediated-isothermal-amplification (LAMP) assay for detection of CR-SM-ACB-complex from patients with sepsis. Whole-blood and culture-broths(CB) collected from patients with culture-positive sepsis were subjected to LAMP and compared with PCR, and RealAmp. Vitek-2 system and conventional PCR results were used as confirmatory references. The sensitivity and specificity of LAMP(97 % & 100 %) and RealAmp(100 % & 100 %) for detection of CR-SM-ACB-complex from CB were better than PCR(87 % & 100 %). Diagnostic accuracy of LAMP, RealAmp, and PCR for detection of SM-ACB-complex from CB was 98.5 %, 100 %, and 88.5 % respectively. Turnaround time of Culture, LAMP, PCR, and RealAmp was 28-53, 6-20, 9-23, and 6-20hours, respectively. LAMP is a simple, inexpensive tool that can be applied directly to positive CB and may be customized to detect emerging pathogens and locally-prevalent resistance genes and to optimize antimicrobial use.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Acinetobacter calcoaceticus , Carbapenémicos , Unidades de Cuidados Intensivos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad , Sepsis , Humanos , Infecciones por Acinetobacter/diagnóstico , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/aislamiento & purificación , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/economía , Sepsis/diagnóstico , Sepsis/microbiología , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/economía , Carbapenémicos/farmacología , Acinetobacter calcoaceticus/genética , Acinetobacter calcoaceticus/efectos de los fármacos , Acinetobacter calcoaceticus/aislamiento & purificación , Antibacterianos/farmacología , Análisis Costo-Beneficio
5.
Biosci Rep ; 44(5)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38687614

RESUMEN

The soluble glucose dehydrogenase (sGDH) from Acinetobacter calcoaceticus has been widely studied and is used, in biosensors, to detect the presence of glucose, taking advantage of its high turnover and insensitivity to molecular oxygen. This approach, however, presents two drawbacks: the enzyme has broad substrate specificity (leading to imprecise blood glucose measurements) and shows instability over time (inferior to other oxidizing glucose enzymes). We report the characterization of two sGDH mutants: the single mutant Y343F and the double mutant D143E/Y343F. The mutants present enzyme selectivity and specificity of 1.2 (Y343F) and 5.7 (D143E/Y343F) times higher for glucose compared with that of the wild-type. Crystallographic experiments, designed to characterize these mutants, surprisingly revealed that the prosthetic group PQQ (pyrroloquinoline quinone), essential for the enzymatic activity, is in a cleaved form for both wild-type and mutant structures. We provide evidence suggesting that the sGDH produces H2O2, the level of production depending on the mutation. In addition, spectroscopic experiments allowed us to follow the self-degradation of the prosthetic group and the disappearance of sGDH's glucose oxidation activity. These studies suggest that the enzyme is sensitive to its self-production of H2O2. We show that the premature aging of sGDH can be slowed down by adding catalase to consume the H2O2 produced, allowing the design of a more stable biosensor over time. Our research opens questions about the mechanism of H2O2 production and the physiological role of this activity by sGDH.


Asunto(s)
Acinetobacter calcoaceticus , Proteínas Bacterianas , Glucosa 1-Deshidrogenasa , Peróxido de Hidrógeno , Acinetobacter calcoaceticus/enzimología , Acinetobacter calcoaceticus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Glucosa/metabolismo , Glucosa 1-Deshidrogenasa/genética , Glucosa 1-Deshidrogenasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Mutación , Cofactor PQQ/metabolismo , Especificidad por Sustrato
6.
Antimicrob Agents Chemother ; 68(5): e0169823, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38567976

RESUMEN

Acinetobacter baumannii-calcoaceticus complex (ABC) causes severe, difficult-to-treat infections that are frequently antibiotic resistant. Sulbactam-durlobactam (SUL-DUR) is a targeted ß-lactam/ß-lactamase inhibitor combination antibiotic designed to treat ABC infections, including those caused by multidrug-resistant strains. In a global, pathogen-specific, randomized, controlled phase 3 trial (ATTACK), the efficacy and safety of SUL-DUR were compared to colistin, both dosed with imipenem-cilastatin as background therapy, in patients with serious infections caused by carbapenem-resistant ABC. Results from ATTACK showed that SUL-DUR met the criteria for non-inferiority to colistin for the primary efficacy endpoint of 28-day all-cause mortality with improved clinical and microbiological outcomes compared to colistin. This report describes the characterization of the baseline ABC isolates from patients enrolled in ATTACK, including an analysis of the correlation of microbiological outcomes with SUL-DUR MIC values and the molecular drivers of SUL-DUR resistance.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Colistina , Pruebas de Sensibilidad Microbiana , Sulbactam , Humanos , Masculino , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter calcoaceticus/efectos de los fármacos , Acinetobacter calcoaceticus/genética , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Combinación Cilastatina e Imipenem/uso terapéutico , Colistina/farmacología , Colistina/uso terapéutico , Farmacorresistencia Bacteriana Múltiple , Sulbactam/uso terapéutico , Sulbactam/farmacología
7.
Comp Immunol Microbiol Infect Dis ; 109: 102185, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663213

RESUMEN

To evaluate the frequency of Acinetobacter spp., belonging to both Acinetobacter calcoaceticus-baumannii (ACB) and non-ACB complex, and their antibiotic resistance profiles in veterinary medicine, a three-year (2020-2022) retrospective study was carried out on sick companion animals. Epidemiological data from different clinical canine, feline, and equine samples, were acquired. For each strain, MALDI-TOF MS identification and susceptibility to a panel of 11 antibiotics, by Kirby-Bauer and E-test methods, were performed. Out of 628 bacteriological examinations, 2.5% resulted positive for strains belonging to Acinetobacter genus. Frequencies of 2.3%, 1.9%, and 3% were obtained from both in-visiting and hospitalized dogs, cats, and horses, respectively. Members of ACB-complex accounted for 50% of isolates. Since all strains resulted susceptible to aminoglycosides and polymyxins, no pandrug-resistant (PDR) species were recorded. While 12.5% A. baumannii resulted extensively-drug resistant (XDR), a higher percentage of multidrug-resistant strains was recorded among non-ACB strains (35.5%) than ACB strains (25%). Susceptibility was observed in the same percentage in both groups (62.5%). All ACB strains confirmed their intrinsic resistances. Non-ACB species showed lower resistances against antipseudomonal penicillins plus beta-lactamase inhibitors (P=0.1306), III generation cephalosporins (P=0.0547), and tetracyclines (P=0.0209) than ACB species. Carbapenem-resistance was observed for XDR A. baumannii (12.5%) and, in particular for MDR non-ACB complex members (25%). To our knowledge, A. lactucae represents the first description in two sick dogs in Italy. Furthermore, our results emphasize the role of non-ACB-complex species as important zoonotic pathogens, which could be reservoirs of clinically relevant resistance profiles.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Enfermedades de los Gatos , Enfermedades de los Perros , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Animales , Estudios Retrospectivos , Perros , Gatos/microbiología , Infecciones por Acinetobacter/veterinaria , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/epidemiología , Infecciones por Acinetobacter/tratamiento farmacológico , Caballos/microbiología , Antibacterianos/farmacología , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Enfermedades de los Perros/microbiología , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Gatos/microbiología , Enfermedades de los Gatos/tratamiento farmacológico , Mascotas/microbiología , Acinetobacter calcoaceticus/efectos de los fármacos , Acinetobacter calcoaceticus/genética , Enfermedades de los Caballos/microbiología , Enfermedades de los Caballos/tratamiento farmacológico
8.
Environ Int ; 186: 108603, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38547543

RESUMEN

Acinetobacter baumannii has become a prominent nosocomial pathogen, primarily owing to its remarkable ability to rapidly acquire resistance to a wide range of antimicrobial agents and its ability to persist in diverse environments. However, there is a lack of data on the molecular epidemiology and its potential implications for public health of A. baumannii strains exhibiting clinically significant resistances that originate from non-clinical environments. Therefore, the genetic characteristics and resistance mechanisms of 80 A. baumannii-calcoaceticus (ABC) complex isolates, sourced from environments associated with poultry and pig production, municipal wastewater treatment plants (WWTPs), and clinical settings, were investigated. In total, our study classified 54 isolates into 29 previously described sequence types (STs), while 26 isolates exhibited as-yet-unassigned STs. We identified a broad range of A. baumannii STs originating from poultry and pig production environments (e.g., ST10, ST238, ST240, ST267, ST345, ST370, ST372, ST1112 according to Pasteur scheme). These STs have also been documented in clinical settings worldwide, highlighting their clinical significance. These findings also raise concerns about the potential zoonotic transmission of certain STs associated with livestock environments. Furthermore, we observed that clinical isolates exhibited the highest diversity of antimicrobial resistance genes (ARGs). In contrast to non-clinical isolates, clinical isolates typically carried a significantly higher number of ARGs, ranging from 10 to 15. They were also the exclusive carriers of biocide resistance genes and acquired carbapenemases (blaOXA-23, blaOXA-58, blaOXA-72, blaGIM-1, blaNDM-1). Additionally, we observed that clinical strains displayed an increased capacity for carrying plasmids and undergoing genetic transformation. This heightened capability could be linked to the intense selective pressures commonly found within clinical settings. Our study provides comprehensive insights into essential aspects of ABC isolates originating from livestock-associated environments and clinical settings. We explored their resistance mechanisms and potential implications for public health, providing valuable knowledge for addressing these critical issues.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Ganado , Aguas Residuales , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/aislamiento & purificación , Aguas Residuales/microbiología , Animales , Ganado/microbiología , Antibacterianos/farmacología , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/epidemiología , Humanos , Porcinos , Farmacorresistencia Bacteriana/genética , Acinetobacter calcoaceticus/genética , Acinetobacter calcoaceticus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Aves de Corral/microbiología , Farmacorresistencia Bacteriana Múltiple/genética
9.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38460955

RESUMEN

The Acinetobacter calcoaceticus-baumannii (ACB) complex is an often-overlooked group of nosocomial pathogens with a significant environmental presence. Rapid molecular screening methods for virulence, antimicrobial resistance, and toxin (VAT) genes are required to investigate the potential pathogenicity of environmental isolates. This study aimed to develop and apply novel ACB complex-specific multiplex PCR (mPCR) primers and protocols for the rapid detection of eight VAT genes. We optimized three single-tube mPCR assays using reference DNA from ACB complex and other Acinetobacter species. These assays were then applied to detect VAT genes in cultured ACB complex isolates recovered from clinical and environmental sources. Widespread detection of VAT genes in environmental isolates confirmed the validity, functionality, and applicability of these novel assays. Overall, the three newly developed ACB complex species-specific mPCR assays are rapid and simple tools that can be adopted in diagnostic and clinical lab settings. The detection of VAT genes in environmental isolates suggests that environmental niches could serve as a reservoir for potentially pathogenic ACB complex and warrants further investigation. The newly developed mPCR assays are specific, sensitive, and efficient, making them well-suited for high-throughput screening in epidemiological studies and evaluating the potential pathogenicity of ACB complex recovered from various sources.


Asunto(s)
Acinetobacter baumannii , Acinetobacter calcoaceticus , Toxinas Biológicas , Reacción en Cadena de la Polimerasa Multiplex/métodos , Virulencia/genética , Antibacterianos/farmacología , Acinetobacter calcoaceticus/genética , Farmacorresistencia Bacteriana , Acinetobacter baumannii/genética
10.
Clin Infect Dis ; 76(Suppl 2): S166-S178, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37125466

RESUMEN

Acinetobacter baumannii-calcoaceticus complex is the most commonly identified species in the genus Acinetobacter and it accounts for a large percentage of nosocomial infections, including bacteremia, pneumonia, and infections of the skin and urinary tract. A few key clones of A. baumannii-calcoaceticus are currently responsible for the dissemination of these organisms worldwide. Unfortunately, multidrug resistance is a common trait among these clones due to their unrivalled adaptive nature. A. baumannii-calcoaceticus isolates can accumulate resistance traits by a plethora of mechanisms, including horizontal gene transfer, natural transformation, acquisition of mutations, and mobilization of genetic elements that modulate expression of intrinsic and acquired genes.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Acinetobacter calcoaceticus , Acinetobacter , Bacteriemia , Humanos , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Acinetobacter calcoaceticus/genética , Infecciones por Acinetobacter/epidemiología , Bacteriemia/epidemiología , Farmacorresistencia Bacteriana Múltiple/genética
11.
PLoS Genet ; 18(6): e1010020, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35653398

RESUMEN

Nosocomial pathogens of the Acinetobacter calcoaceticus-baumannii (ACB) complex are a cautionary example for the world-wide spread of multi- and pan-drug resistant bacteria. Aiding the urgent demand for novel therapeutic targets, comparative genomics studies between pathogens and their apathogenic relatives shed light on the genetic basis of human-pathogen interaction. Yet, existing studies are limited in taxonomic scope, sensing of the phylogenetic signal, and resolution by largely analyzing genes independent of their organization in functional gene clusters. Here, we explored more than 3,000 Acinetobacter genomes in a phylogenomic framework integrating orthology-based phylogenetic profiling and microsynteny conservation analyses. We delineate gene clusters in the type strain A. baumannii ATCC 19606 whose evolutionary conservation indicates a functional integration of the subsumed genes. These evolutionarily stable gene clusters (ESGCs) reveal metabolic pathways, transcriptional regulators residing next to their targets but also tie together sub-clusters with distinct functions to form higher-order functional modules. We shortlisted 150 ESGCs that either co-emerged with the pathogenic ACB clade or are preferentially found therein. They provide a high-resolution picture of genetic and functional changes that coincide with the manifestation of the pathogenic phenotype in the ACB clade. Key innovations are the remodeling of the regulatory-effector cascade connecting LuxR/LuxI quorum sensing via an intermediate messenger to biofilm formation, the extension of micronutrient scavenging systems, and the increase of metabolic flexibility by exploiting carbon sources that are provided by the human host. We could show experimentally that only members of the ACB clade use kynurenine as a sole carbon and energy source, a substance produced by humans to fine-tune the antimicrobial innate immune response. In summary, this study provides a rich and unbiased set of novel testable hypotheses on how pathogenic Acinetobacter interact with and ultimately infect their human host. It is a comprehensive resource for future research into novel therapeutic strategies.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter calcoaceticus , Infecciones por Acinetobacter/genética , Infecciones por Acinetobacter/microbiología , Acinetobacter calcoaceticus/genética , Carbono , Humanos , Familia de Multigenes/genética , Filogenia , Virulencia
12.
Bioresour Technol ; 353: 127148, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35421563

RESUMEN

A new bacterial strain, Acinetobacter calcoaceticus TY1, was identified in activated sludge. This strain efficiently metabolized nitrogen from ammonium at low temperatures, utilizing NH4+-N, NO3--N, and NO2--N as nitrogen sources. Of these, NH4+-N was superior in terms of both assimilation and heterotrophic nitrification at 8 °C. The nitrogen metabolism-associated genes amoA, nirK, and nosZ were identified in TY1. Optimal requirements for growth and nitrogen removal were pH 7, shaking speed of 90 rpm, a C/N ratio of 10, and sodium citrate for the carbon supply. The ability to denitrify at low temperature suggests TY1's potential for wastewater management.


Asunto(s)
Acinetobacter calcoaceticus , Compuestos de Amonio , Acinetobacter calcoaceticus/genética , Acinetobacter calcoaceticus/metabolismo , Aerobiosis , Bacterias/metabolismo , Desnitrificación , Procesos Heterotróficos , Nitrificación , Nitritos/metabolismo , Nitrógeno/metabolismo , Temperatura
13.
Sci Rep ; 12(1): 230, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997148

RESUMEN

The carbapenem-resistant Acinetobacter calcoaceticus-baumannii (ACB) complex has become an urgent threat worldwide. Here, we determined antibiotic combinations and the feasible synergistic mechanisms against three couples of ACB (A. baumannii (AB250 and A10), A. pittii (AP1 and AP23), and A. nosocomialis (AN4 and AN12)). Imipenem with fosfomycin, the most effective in the time-killing assay, exhibited synergism to all strains except AB250. MurA, a fosfomycin target encoding the first enzyme in the de novo cell wall synthesis, was observed with the wild-type form in all isolates. Fosfomycin did not upregulate murA, indicating the MurA-independent pathway (cell wall recycling) presenting in all strains. Fosfomycin more upregulated the recycling route in synergistic strain (A10) than non-synergistic strain (AB250). Imipenem in the combination dramatically downregulated the recycling route in A10 but not in AB250, demonstrating the additional effect of imipenem on the recycling route, possibly resulting in synergism by the agitation of cell wall metabolism. Moreover, heteroresistance to imipenem was observed in only AB250. Our results indicate that unexpected activity of imipenem on the active cell wall recycling concurrently with the presence of heteroresistance subpopulation to imipenem may lead to the synergism of imipenem and fosfomycin against the ACB isolates.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Acinetobacter calcoaceticus/efectos de los fármacos , Antibacterianos/farmacología , Pared Celular/efectos de los fármacos , Farmacorresistencia Bacteriana , Fosfomicina/farmacología , Imipenem/farmacología , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Acinetobacter calcoaceticus/genética , Acinetobacter calcoaceticus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Sinergismo Farmacológico , Humanos , Pruebas de Sensibilidad Microbiana
14.
Nucleic Acids Res ; 49(19): e113, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34417598

RESUMEN

DNA methylation is widespread amongst eukaryotes and prokaryotes to modulate gene expression and confer viral resistance. 5-Methylcytosine (m5C) methylation has been described in genomes of a large fraction of bacterial species as part of restriction-modification systems, each composed of a methyltransferase and cognate restriction enzyme. Methylases are site-specific and target sequences vary across organisms. High-throughput methods, such as bisulfite-sequencing can identify m5C at base resolution but require specialized library preparations and single molecule, real-time (SMRT) sequencing usually misses m5C. Here, we present a new method called RIMS-seq (rapid identification of methylase specificity) to simultaneously sequence bacterial genomes and determine m5C methylase specificities using a simple experimental protocol that closely resembles the DNA-seq protocol for Illumina. Importantly, the resulting sequencing quality is identical to DNA-seq, enabling RIMS-seq to substitute standard sequencing of bacterial genomes. Applied to bacteria and synthetic mixed communities, RIMS-seq reveals new methylase specificities, supporting routine study of m5C methylation while sequencing new genomes.


Asunto(s)
5-Metilcitosina/metabolismo , Metilasas de Modificación del ADN/metabolismo , Enzimas de Restricción del ADN/metabolismo , Escherichia coli K12/genética , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Acinetobacter calcoaceticus/enzimología , Acinetobacter calcoaceticus/genética , Aeromonas hydrophila/enzimología , Aeromonas hydrophila/genética , Bacillus amyloliquefaciens/enzimología , Bacillus amyloliquefaciens/genética , Secuencia de Bases , Clostridium acetobutylicum/enzimología , Clostridium acetobutylicum/genética , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas de Restricción del ADN/genética , Escherichia coli K12/enzimología , Regulación Bacteriana de la Expresión Génica , Haemophilus/enzimología , Haemophilus/genética , Haemophilus influenzae/enzimología , Haemophilus influenzae/genética , Humanos , Microbiota/genética , Análisis de Secuencia de ADN , Piel/microbiología
15.
J Basic Microbiol ; 61(3): 230-240, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33491793

RESUMEN

A bacterium designated as strain STP14 was isolated from a sewage treatment plant and identified as Acinetobacter calcoaceticus based on 16S ribosomal RNA gene sequencing. Strain STP14 exhibited resistance to several metals such as mercury, cobalt, copper, nickel, lead, and cadmium. Among these metals, the bacterium showed maximum resistance to cadmium in concentration up to 1200 mg/L. The antimicrobial susceptibility test of A. calcoaceticus strain STP14 showed coresistance to all tested antibiotics except tigecycline and chloramphenicol for which 16 ± 1- and 15 ± 1-mm zone of inhibition was observed, respectively. The protein pattern of the crude cellular extract revealed substantial differences in protein bands of untreated control and cadmium treated A. calcoaceticus strain STP14 suggesting variable protein expression under cadmium stress. Metals and antibiotic resistance are increasing phenomenon and universal concern of public health. This study improves our understanding regarding the bacterial coresistance against metals and antibiotics and the possible emergence of multidrug resistance due to selective pressure and coselection in the metal polluted sewage sludge.


Asunto(s)
Acinetobacter calcoaceticus/efectos de los fármacos , Acinetobacter calcoaceticus/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Metales Pesados/toxicidad , Aguas del Alcantarillado/microbiología , Acinetobacter calcoaceticus/aislamiento & purificación , Metales Pesados/análisis , Pruebas de Sensibilidad Microbiana , Aguas del Alcantarillado/química , Purificación del Agua/métodos
16.
Artículo en Inglés, Español | MEDLINE | ID: mdl-32307128

RESUMEN

INTRODUCTION: Acinetobacter is a genus that comprises a group of opportunistic pathogens responsible for a variety of nosocomial infections. The Acinetobacter calcoaceticus-Acinetobacter baumannii (Acb) complex includes some species of clinical importance, mainly A. baumannii, A. pittii and A. nosocomialis, which share phenotypic similarities that make it very difficult to distinguish between them using a phenotypic approach. The aim of this study was to evaluate two commercial matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems for the identification of different Acinetobacter species, with a special focus among those belonging to the Acb complex. METHODS: One hundred and fifty-six Acinetobacter spp. clinical strains, identified by amplified ribosomal DNA restriction analysis (ARDRA) and rpoB gene sequencing, were analysed by two different MALDI-TOF systems. RESULTS: Considering only the 144 strains of the Acb complex evaluated in this study, the Vitek-MS™ and Microflex LT™ systems correctly identified 129 (89.6%) and 143 (99.3%) strains, respectively. CONCLUSION: After analysing 156 strains belonging to Acinetobacter spp., both Vitek-MS™ and Microflex LT™ proved to be rapid and accurate systems for the identification of Acb complex species showing a good correlation. However, both manufacturers should improve their databases to include new species in them.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter calcoaceticus , Infecciones por Acinetobacter/diagnóstico , Acinetobacter calcoaceticus/genética , Técnicas Bacteriológicas , ADN Ribosómico , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
17.
J Antimicrob Chemother ; 76(3): 626-634, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33201995

RESUMEN

OBJECTIVES: This study analysed the novel carbapenem-hydrolysing class D ß-lactamase OXA-822 identified in the clinical Acinetobacter calcoaceticus isolate AC_2117. METHODS: WGS was employed for identification of ß-lactamases. Micro-broth dilution was used for evaluation of antibiotic susceptibility of AC_2117 and transformants containing blaOXA-822. After heterologous purification of OXA-822, OXA-359 and OXA-213, enzyme kinetics were determined using spectrometry. The effect of OXA-822 upon meropenem treatment was analysed in the Galleria mellonella in vivo infection model. RESULTS: OXA-822 is a member of the intrinsic OXA-213-like family found in A. calcoaceticus and Acinetobacter pittii. Amino acid sequence similarity to the nearest related OXA-359 was 97%. Production of OXA-822, OXA-359 and OXA-213 in Acinetobacter baumannii ATCC® 19606T resulted in elevated MICs for carbapenems (up to 16-fold). Penicillinase activity of the purified OXA-822 revealed high KM values, in the millimolar range, combined with high turnover numbers. OXA-822 showed the highest affinity to carbapenems, but affinity to imipenem was ∼10-fold lower compared with other carbapenems. Molecular modelling revealed that imipenem does not interact with a negatively charged side chain of OXA-822, as doripenem does, leading to the lower affinity. Presence of OXA-822 decreased survival of infected Galleria mellonella larvae after treatment with meropenem. Only 52.7% ±â€Š7.7% of the larvae survived after 24 h compared with 90.9% ±â€Š3.7% survival in the control group. CONCLUSIONS: The novel OXA-822 from a clinical A. calcoaceticus isolate displayed penicillinase and carbapenemase activity in vitro, elevated MICs in different species and decreased carbapenem susceptibility in A. baumannii in vivo.


Asunto(s)
Acinetobacter calcoaceticus , Proteínas Bacterianas , beta-Lactamasas , Acinetobacter , Acinetobacter calcoaceticus/enzimología , Acinetobacter calcoaceticus/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Carbapenémicos/farmacología , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética
18.
Biotechnol Bioeng ; 118(2): 737-744, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33073356

RESUMEN

AcCHMO, a cyclohexanone monooxygenase from Acinetobacter calcoaceticus, is a typical Type I Baeyer-Villiger monooxygenase (BVMO). We previously obtained the AcCHMOM6 mutant, which oxidizes omeprazole sulfide (OPS) to the chiral sulfoxide drug esomeprazole. To further improve the catalytic efficiency of the AcCHMOM6 mutant, a focused mutagenesis strategy was adopted at the intersections of the FAD-binding domain, NADPH-binding domain, and α-helical domain based on structural characteristics of AcCHMO. By using focused mutagenesis and subsequent global evolution two key residues (L55 and P497) at the intersections of the domains were identified. Mutant of L55Y improved catalytic efficiency significantly, whereas the P497S mutant alleviated substrate inhibition remarkably. AcCHMOM7 (L55Y/P497S) was obtained by combining the two mutations, which increased the specific activity from 18.5 (M6) to 108 U/g, and an increase in the Ki of the substrate OPS from 34 to 265 µM. The results indicate that catalytic performance can be elevated by modification of the sensitive sites at the intersection of the domains of AcCHMO. The results also provided some insights for the engineering of other Type I BVMOs or other multidomain proteins.


Asunto(s)
Acinetobacter calcoaceticus/enzimología , Proteínas Bacterianas/química , Oxigenasas de Función Mixta/química , Acinetobacter calcoaceticus/genética , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Oxigenasas de Función Mixta/genética , Mutación Missense , Dominios Proteicos
19.
BMC Biotechnol ; 20(1): 39, 2020 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-32711499

RESUMEN

BACKGROUND: With the high demand for diesel across the world, environmental decontamination from its improper usage, storage and accidental spills becomes necessary. One highly environmentally friendly and cost-effective decontamination method is to utilize diesel-degrading microbes as a means for bioremediation. Here, we present a newly isolated and identified strain of Acinetobacter calcoaceticus ('CA16') as a candidate for the bioremediation of diesel-contaminated areas. RESULTS: Acinetobacter calcoaceticus CA16 was able to survive and grow in minimal medium with diesel as the only source of carbon. We determined through metabolomics that A. calcoaceticus CA16 appears to be efficient at diesel degradation. Specifically, CA16 is able to degrade 82 to 92% of aliphatic alkane hydrocarbons (CnHn + 2; where n = 12-18) in 28 days. Several diesel-degrading genes (such as alkM and xcpR) that are present in other microbes were also found to be activated in CA16. CONCLUSIONS: The results presented here suggest that Acinetobacter strain CA16 has good potential in the bioremediation of diesel-polluted environments.


Asunto(s)
Acinetobacter calcoaceticus/genética , Acinetobacter calcoaceticus/aislamiento & purificación , Acinetobacter calcoaceticus/metabolismo , Gasolina , Genómica , Microbiología del Suelo , Acinetobacter calcoaceticus/clasificación , Alcanos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Canadá , Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica , Hidrocarburos , Metabolómica , Filogenia , Suelo
20.
Int J Mol Sci ; 21(2)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963214

RESUMEN

The mechanisms of action of the complex including entomopathogenic nematodes of the genera Steinernema and Heterorhabditis and their mutualistic partners, i.e., bacteria Xenorhabdus and Photorhabdus, have been well explained, and the nematodes have been commercialized as biological control agents against many soil insect pests. However, little is known regarding the nature of the relationships between these bacteria and the gut microbiota of infected insects. In the present study, 900 bacterial isolates that were obtained from the midgut samples of Melolontha melolontha larvae were screened for their antagonistic activity against the selected species of the genera Xenorhabdus and Photorhabdus. Twelve strains exhibited significant antibacterial activity in the applied tests. They were identified based on 16S rRNA and rpoB, rpoD, or recA gene sequences as Pseudomonas chlororaphis, Citrobacter murliniae, Acinetobacter calcoaceticus, Chryseobacterium lathyri, Chryseobacterium sp., Serratia liquefaciens, and Serratia sp. The culture filtrate of the isolate P. chlororaphis MMC3 L3 04 exerted the strongest inhibitory effect on the tested bacteria. The results of the preliminary study that are presented here, which focused on interactions between the insect gut microbiota and mutualistic bacteria of entomopathogenic nematodes, show that bacteria inhabiting the gut of insects might play a key role in insect resistance to entomopathogenic nematode pressure.


Asunto(s)
Larva/microbiología , Photorhabdus/genética , Photorhabdus/aislamiento & purificación , Xenorhabdus/genética , Xenorhabdus/aislamiento & purificación , Acinetobacter calcoaceticus/genética , Acinetobacter calcoaceticus/aislamiento & purificación , Animales , Chryseobacterium/genética , Chryseobacterium/aislamiento & purificación , Citrobacter/genética , Citrobacter/aislamiento & purificación , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Pseudomonas chlororaphis/genética , Pseudomonas chlororaphis/aislamiento & purificación , ARN Ribosómico 16S/genética , Serratia liquefaciens/genética , Serratia liquefaciens/aislamiento & purificación , Simbiosis/genética , Simbiosis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA