RESUMEN
Introduction. Fungal infections are relevant health risks for individuals with acquired immunodeficiency in the resource-limited tropics, but available surveillance data are scarce. For Candida auris and Cryptococcus spp., the evolution from environmental reservoirs to human pathogens causing life-threatening diseases is currently discussed as a public health concern in the context of climate change and limited treatment options.Gap statement. Uncovering the gastrointestinal tract as an epidemiological niche of fungi emerging from the environment into individuals for whom fungal infections are not diagnosed.Aim. To contribute to data on the local epidemiology of C. auris and Cryptococcus spp. in Western African Ghana by analysing gastrointestinal samples of Ghanaian individuals.Methodology. Four real-time PCR assays targeting C. auris and five real-time PCR assays targeting Cryptococcus spp. were applied with stool samples of 875 non-age-stratified Ghanaian HIV patients and 30 Ghanaian control individuals without known HIV infection. Also, 664 samples from Ghanaian children under 2 years of age were investigated. The true abundance of the target micro-organism was considered as unlikely in the case of one or fewer positive signals, likely in the case of two to three positive signals and highly likely in the case of four or more positive signals per sample in the real-time PCR assays.Results. The combined application of sensitive, target-specific real-time PCR assays indicates that neither C. auris, Cryptococcus neoformans complex nor Cryptococcus gattii complex were part of the gut microbiota of Ghanaian individuals with or without HIV infection.Conclusion. Despite the significant disease burden from these pathogens in immunosuppressed Ghanaian individuals, detection from gastrointestinal samples was unlikely, which should be taken into account when discussing screening strategies for these fungi of public health concern. In contrast, the detection of these fungi from such samples should not routinely be considered as commensal colonization flora.
Asunto(s)
Candida , Cryptococcus , Heces , Microbioma Gastrointestinal , Infecciones por VIH , Reacción en Cadena en Tiempo Real de la Polimerasa , Humanos , Ghana/epidemiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Candida/aislamiento & purificación , Candida/genética , Adulto , Femenino , Masculino , Cryptococcus/aislamiento & purificación , Cryptococcus/genética , Infecciones por VIH/complicaciones , Persona de Mediana Edad , Heces/microbiología , Adulto Joven , Criptococosis/microbiología , Criptococosis/diagnóstico , Criptococosis/epidemiología , Adolescente , Candidiasis/microbiología , Candidiasis/diagnóstico , Candidiasis/epidemiología , Preescolar , Niño , Lactante , AncianoRESUMEN
Cryptococcal meningitis causes an estimated 112,000 global deaths per annum. Genomic and phenotypic features of the infecting strain of Cryptococcus spp. have been associated with outcomes from cryptococcal meningitis. Additionally, population-level pharmacokinetic variability is well documented in these patient cohorts. The relative contribution of these factors to clinical outcomes is unknown. Based in Malawi, we conducted a sub-study of the phase 3 Ambition-CM trial (ISRCTN72509687), collecting plasma and cerebrospinal fluid at serial time points during the first 14 days of antifungal therapy. We explored the relative contribution of pathogen genotype, drug resistance phenotype, and pharmacokinetics on clinical outcomes including lumbar opening pressure, pharmacodynamic effect, and mortality. We report remarkable genomic homogeneity among infecting strains of Cryptococcus spp., within and between patients. There was no evidence of acquisition of antifungal resistance in our isolates. Genotypic features of the infecting strain were not consistently associated with adverse or favorable clinical outcomes. However, baseline fungal burden and early fungicidal activity (EFA) were associated with mortality. The strongest predictor of EFA was the level of exposure to amphotericin B. Our analysis suggests the most effective means of improving clinical outcomes from HIV-associated cryptococcal meningitis is to optimize exposure to potent antifungal therapy. IMPORTANCE: HIV-associated cryptococcal meningitis is associated with a high burden of mortality. Research into the different strain types causing this disease has yielded inconsistent findings in terms of which strains are associated with worse clinical outcomes. Our study suggests that the exposure of patients to potent anti-cryptococcal drugs has a more significant impact on clinical outcomes than the strain type of the infecting organism. Future research should focus on optimizing drug exposure, particularly in the context of novel anticryptococcal drugs coming into clinical use.
Asunto(s)
Antifúngicos , Infecciones por VIH , Meningitis Criptocócica , Meningitis Criptocócica/tratamiento farmacológico , Meningitis Criptocócica/microbiología , Meningitis Criptocócica/mortalidad , Humanos , Antifúngicos/farmacocinética , Antifúngicos/uso terapéutico , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Malaui , Resultado del Tratamiento , Genotipo , Anfotericina B/farmacocinética , Anfotericina B/uso terapéutico , Masculino , Femenino , Adulto , Cryptococcus/genética , Cryptococcus/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Genómica/métodos , Cryptococcus neoformans/genética , Cryptococcus neoformans/efectos de los fármacos , Pruebas de Sensibilidad MicrobianaRESUMEN
Sclareolide, a natural product with bioactive and fragrant properties, is not only utilized in the food, healthcare, and cosmetics industries but also serves as a precursor for the production of ambroxide and some bioactive compounds. Currently, there are three primary methods for producing sclareolide: direct extraction from plants, chemical synthesis using sclareol as a precursor, and the biotransformation of sclareol. Here, we established a platform for producing sclareolide through a modular coculture system with Saccharomyces cerevisiae and Cryptococcus albidus ATCC 20918. S. cerevisiae was engineered for de novo sclareol biosynthesis from glucose, while C. albidus enabled the production of sclareolide via sclareol biotransformation. To enhance the supply of sclareol, a recombinant yeast strain was constructed through metabolic engineering to produce 536.2 mg/L of sclareol. Further improvement of the coculture system for sclareolide production was achieved by incorporating Triton X-100 facilitated intermediate permeability, inoculation proportion adjustment, and culture temperature optimization. These refinements culminated in a sclareolide yield of 626.3 mg/L. This study presents a novel streamlined and efficient approach for sclareolide preparation, showcasing the potential of the microbial consortium in sustainable bioproduction.
Asunto(s)
Cryptococcus , Diterpenos , Ingeniería Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Diterpenos/metabolismo , Cryptococcus/metabolismo , Cryptococcus/genética , Consorcios Microbianos , Técnicas de CocultivoRESUMEN
Cryptococcosis is an important fungal infection for both humans and cats, but molecular epidemiological studies on strains isolated from cats are limited. We conducted multi-locus sequence typing analysis and antifungal susceptibility testing of 14 Cryptococcus spp. strains from domestic cats in Japan and one strain isolated from a cat in Singapore. All 14 strains from domestic cats in Japan were identified as Cryptococcus neoformans molecular type VNI. The sequence types (STs) included eight cases of ST5, five cases of ST31, and one novel ST. VNI ST5 is the most frequently isolated strain in Japanese patients as well, while there are no records of VNI ST31 being isolated from Japanese patients. The Singaporean cat strain was identified as C. gattii VGIIb (C. deuterogattii), ST7. We compared these results with strains previously reported to have been isolated from cats. This comparison suggested that molecular types of Cryptococcus spp. isolated from cats may differ depending on the country. In the antifungal susceptibility testing of C. neoformans, one strain each exceeded the epidemiological cutoff value (ECV) for amphotericin B and 5-fluorocytosine, while two strains exceeded the ECV for fluconazole. This study reveals the molecular epidemiology of Cryptococcus spp. isolated from cats with cryptococcosis in Japan. It suggests that investigating Cryptococcus spp. carried by cats, which share close living environments with humans, may contribute to the health of both cats and human populations.
Cryptococcosis is an important fungal disease in both humans and cats. We genotyped strains isolated from cats with cryptococcosis in Japan. Our findings revealed that the most common genotype infecting both cats and humans in Japan is identical.
Asunto(s)
Antifúngicos , Enfermedades de los Gatos , Criptococosis , Cryptococcus neoformans , Pruebas de Sensibilidad Microbiana , Epidemiología Molecular , Tipificación de Secuencias Multilocus , Animales , Gatos , Criptococosis/microbiología , Criptococosis/epidemiología , Criptococosis/veterinaria , Japón/epidemiología , Enfermedades de los Gatos/microbiología , Enfermedades de los Gatos/epidemiología , Antifúngicos/farmacología , Cryptococcus neoformans/genética , Cryptococcus neoformans/aislamiento & purificación , Cryptococcus neoformans/clasificación , Cryptococcus neoformans/efectos de los fármacos , Técnicas de Tipificación Micológica , Cryptococcus gattii/genética , Cryptococcus gattii/aislamiento & purificación , Cryptococcus gattii/clasificación , Cryptococcus gattii/efectos de los fármacos , Genotipo , Cryptococcus/genética , Cryptococcus/clasificación , Cryptococcus/aislamiento & purificación , Cryptococcus/efectos de los fármacos , Singapur/epidemiologíaRESUMEN
Alternative transcription start site (TSS) usage regulation has been identified as a major means of gene expression regulation in metazoans. However, in fungi, its impact remains elusive as its study has thus far been restricted to model yeasts. Here, we first re-analyzed TSS-seq data to define genuine TSS clusters in 2 species of pathogenic Cryptococcus. We identified 2 types of TSS clusters associated with specific DNA sequence motifs. Our analysis also revealed that alternative TSS usage regulation in response to environmental cues is widespread in Cryptococcus, altering gene expression and protein targeting. Importantly, we performed a forward genetic screen to identify a unique transcription factor (TF) named Tur1, which regulates alternative TSS (altTSS) usage genome-wide when cells switch from exponential phase to stationary phase. ChiP-Seq and DamID-Seq analyses suggest that at some loci, the role of Tur1 might be direct. Tur1 has been previously shown to be essential for virulence in C. neoformans. We demonstrated here that a tur1Δ mutant strain is more sensitive to superoxide stress and phagocytosed more efficiently by macrophages than the wild-type (WT) strain.
Asunto(s)
Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Factores de Transcripción , Sitio de Iniciación de la Transcripción , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Cryptococcus/genética , Cryptococcus/patogenicidad , Cryptococcus/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/metabolismo , Macrófagos/microbiología , Macrófagos/metabolismo , Animales , Ratones , Virulencia/genética , Fagocitosis/genéticaRESUMEN
Dissemination from one organ system to another is common to many pathogens and often the key process separating simple illness from fatal infection. The pathogenic Cryptococcus species offer a prime example. Cryptococcal infection is thought to begin in the lungs, as a mild or asymptomatic pneumonia. However, bloodborne dissemination from the lungs to the brain is responsible for the most devastating forms of infection. As with other disseminating infections, the transition likely depends on rare but crucial events, such as the crossing of a tissue barrier. By their nature, these events are difficult to study. Francis et al. (mBio 15:e03078-23, 2024, https://doi.org/10.1128/mbio.03078-23) have addressed this difficulty by developing a powerful imaging pipeline to scan through unprecedented volumes of tissue from mice infected with Cryptococcus at multiple stages of infection. Their observations challenge some of our basic assumptions about cryptococcal pathogenesis, including when and how the organism reaches the bloodstream and the central nervous system.
Asunto(s)
Criptococosis , Cryptococcus , Animales , Criptococosis/microbiología , Ratones , Cryptococcus/patogenicidad , Cryptococcus/genética , Cryptococcus/clasificación , Encéfalo/microbiología , Encéfalo/patología , Pulmón/microbiología , Pulmón/patología , Modelos Animales de Enfermedad , Humanos , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/genéticaRESUMEN
In exploring the evolutionary trajectories of both pathogenesis and karyotype dynamics in fungi, we conducted a large-scale comparative genomic analysis spanning the Cryptococcus genus, encompassing both global human fungal pathogens and nonpathogenic species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species, covering virtually all known diversity within these genera. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at preadaptive pathogenic potential, our analysis found evidence of gene gain (via horizontal gene transfer) and gene loss in pathogenic Cryptococcus species, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the 2 genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5, or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes showed reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Overall, our findings advance our understanding of genetic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.
Asunto(s)
Cromosomas Fúngicos , Cryptococcus , Evolución Molecular , Genoma Fúngico , Genómica , Cariotipo , Cryptococcus/genética , Cryptococcus/patogenicidad , Cryptococcus/clasificación , Cromosomas Fúngicos/genética , Genómica/métodos , Filogenia , Sintenía , Centrómero/genética , Criptococosis/microbiología , HumanosRESUMEN
Transformation of foreign DNA into Cryptococcus species is a powerful tool for exploring gene functions in these human pathogens. Agrobacterium tumefaciens-mediated transformation (AtMT) has been used for the stable introduction of exogenous DNA into Cryptococcus for over two decades, being particularly impactful for insertional mutagenesis screens to discover new genes involved in fungal biology. A detailed protocol to conduct this transformation method is provided in the chapter. Scope for modifications and the benefits and disadvantages of using AtMT in Cryptococcus species are also presented.
Asunto(s)
Agrobacterium tumefaciens , Cryptococcus , Transformación Genética , Cryptococcus/genética , Agrobacterium tumefaciens/genética , ADN Bacteriano/genética , Vectores Genéticos/genética , Técnicas de Transferencia de GenRESUMEN
RNA interference (RNAi) is a molecular biology technique for silencing specific eukaryotic genes without altering the DNA sequence in the genome. The silencing effect occurs because of decreased levels of mRNA that then result in decreased protein levels for the gene. The specificity of the silencing is dependent upon the presence of sequence-specific double-stranded RNA (dsRNA) that activates the cellular RNAi machinery. This chapter describes the process of silencing a specific target gene in Cryptococcus using a dual promoter vector. The plasmid, pIBB103, was designed with two convergent GAL7 promoters flanking a ura5 fragment that acts as a reporter for efficient RNAi. The target gene fragment is inserted between the promoters to be transcribed from both directions leading to the production of dsRNA in cells that activate the RNAi pathway.
Asunto(s)
Cryptococcus , Regiones Promotoras Genéticas , Interferencia de ARN , Cryptococcus/genética , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Vectores Genéticos/genética , Plásmidos/genética , Silenciador del GenRESUMEN
Cryptococcal meningitis is the second most common cause of death in people living with HIV/AIDS, yet we have a limited understanding of how cryptococcal isolates change over the course of infection. Cryptococcal infections are environmentally acquired, and the genetic diversity of these infecting isolates can also be geographically linked. Here, we employ whole genome sequences for 372 clinical Cryptococcus isolates from 341 patients with HIV-associated cryptococcal meningitis obtained via a large clinical trial, across both Malawi and Cameroon, to enable population genetic comparisons of isolates between countries. We see that isolates from Cameroon are highly clonal, when compared to those from Malawi, with differential rates of disruptive variants in genes with roles in DNA binding and energy use. For a subset of patients (22) from Cameroon, we leverage longitudinal sampling, with samples taken at days 7 and 14 post-enrollment, to interrogate the genetic changes that arise over the course of infection, and the genetic diversity of isolates within patients. We see disruptive variants arising over the course of infection in several genes, including the phagocytosis-regulating transcription factor GAT204. In addition, in 13% of patients sampled longitudinally, we see evidence for mixed infections. This approach identifies geographically linked genetic variation, signatures of microevolution, and evidence for mixed infections across a clinical cohort of patients affected by cryptococcal meningitis in Central Africa.
Cryptococcal meningitis, caused by Cryptococcus, results in approximately half a million deaths per year globally. We compare clinical Cryptococcus samples from Cameroon and Malawi to explore the genetic diversity of these isolates. We find instances of mixed-strain infections and identify genetic variants arising in Cryptococcus over disease.
Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Coinfección , Cryptococcus neoformans , Cryptococcus , Infecciones por VIH , Meningitis Criptocócica , Humanos , Meningitis Criptocócica/epidemiología , Meningitis Criptocócica/veterinaria , Cryptococcus neoformans/genética , Cryptococcus/genética , Camerún/epidemiología , Coinfección/veterinaria , Síndrome de Inmunodeficiencia Adquirida/complicaciones , Síndrome de Inmunodeficiencia Adquirida/veterinaria , Variación Genética , Infecciones por VIH/complicaciones , Infecciones por VIH/veterinariaRESUMEN
Cryptococcus species are opportunistic human fungal pathogens. Survival in a hostile environment, such as the elevated body temperatures of transmitting animals and humans, is crucial for Cryptococcus infection. Numerous intriguing investigations have shown that the Hsf family of thermotolerance transcription regulators plays a crucial role in the pathogen-host axis of Cryptococcus. Although Hsf1 is known to be a master regulator of the heat shock response through the activation of gene expression of heat shock proteins (Hsps). Hsf1 and other Hsfs are multifaceted transcription regulators that regulate the expression of genes involved in protein chaperones, metabolism, cell signal transduction, and the electron transfer chain. In Saccharomyces cerevisiae, a model organism, Hsf1's working mechanism has been intensively examined. Nonetheless, the link between Hsfs and Cryptococcus pathogenicity remains poorly understood. This review will focus on the transcriptional regulation of Hsf function in Cryptococcus, as well as potential antifungal treatments targeting Hsf proteins.
Asunto(s)
Cryptococcus , Factores de Transcripción , Animales , Humanos , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Cryptococcus/genética , Cryptococcus/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Saccharomyces cerevisiae/genéticaRESUMEN
Few therapeutic drugs and increased drug resistance have aggravated the current treatment difficulties of Cryptococcus in recent years. To better understand the antifungal drug resistance mechanism and treatment strategy of cryptococcosis. In this review, by combining the fundamental features of Cryptococcus reproduction leading to changes in its genome, we review recent research into the mechanism of four current anti-cryptococcal agents, coupled with new therapeutic strategies and the application of advanced technologies WGS and CRISPR-Cas9 in this field, hoping to provide a broad idea for the future clinical therapy of cryptococcosis.
Asunto(s)
Criptococosis , Cryptococcus , Humanos , Cryptococcus/genética , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología , Farmacorresistencia Fúngica/genéticaRESUMEN
This review describes the changes in yeast species names in the previous decade. Several yeast species have been reclassified to accommodate the "One fungus=One name" (1F=1N) principle of the Code. As the names of medically important yeasts have also been reviewed and revised, details of the genera Candida, Cryptococcus, Malassezia, and Trichosporon are described in Section 3, along with the history of name changes. Since the phylogenetic positions of Candida species in several clades have not been clarified, revision of this species has not been completed. Among the species that remain unrevised despite their importance in the medical field, we propose the transfer of six Candida species to be reclassified in the Nakaseomyces clade, including Nakaseomyces glabratus and Nakaseomyces nivalensis.
Asunto(s)
Cryptococcus , Malassezia , Trichosporon , Trichosporon/genética , Malassezia/genética , Cryptococcus/genética , Candida/genética , FilogeniaRESUMEN
Small molecules are components of fungal extracellular vesicles (EVs), but their biological roles are only superficially known. NOP16 is a eukaryotic gene that is required for the activity of benzimidazoles against Cryptococcus deuterogattii. In this study, during the phenotypic characterization of C. deuterogattii mutants lacking NOP16 expression, we observed that this gene was required for EV production. Analysis of the small molecule composition of EVs produced by wild-type cells and two independent nop16Δ mutants revealed that the deletion of NOP16 resulted not only in a reduced number of EVs but also an altered small molecule composition. In a Galleria mellonella model of infection, the nop16Δ mutants were hypovirulent. The hypovirulent phenotype was reverted when EVs produced by wild-type cells, but not mutant EVs, were coinjected with the nop16Δ cells in G. mellonella. These results reveal a role for NOP16 in EV biogenesis and cargo, and also indicate that the composition of EVs is determinant for cryptococcal virulence.
Asunto(s)
Cryptococcus , Vesículas Extracelulares , Comunicación Celular , Cryptococcus/genética , Vesículas Extracelulares/metabolismo , Virulencia/genéticaRESUMEN
Cellular development is orchestrated by evolutionarily conserved signaling pathways, which are often pleiotropic and involve intra- and interpathway epistatic interactions that form intricate, complex regulatory networks. Cryptococcus species are a group of closely related human fungal pathogens that grow as yeasts yet transition to hyphae during sexual reproduction. Additionally, during infection they can form large, polyploid titan cells that evade immunity and develop drug resistance. Multiple known signaling pathways regulate cellular development, yet how these are coordinated and interact with genetic variation is less well understood. Here, we conducted quantitative trait locus (QTL) analyses of a mapping population generated by sexual reproduction of two parents, only one of which is unisexually fertile. We observed transgressive segregation of the unisexual phenotype among progeny, as well as a large-cell phenotype under mating-inducing conditions. These large-cell progeny were found to produce titan cells both in vitro and in infected animals. Two major QTLs and corresponding quantitative trait genes (QTGs) were identified: RIC8 (encoding a guanine-exchange factor) and CNC06490 (encoding a putative Rho-GTPase activator), both involved in G protein signaling. The two QTGs interact epistatically with each other and with the mating-type locus in phenotypic determination. These findings provide insights into the complex genetics of morphogenesis during unisexual reproduction and pathogenic titan cell formation and illustrate how QTL analysis can be applied to identify epistasis between genes. This study shows that phenotypic outcomes are influenced by the genetic background upon which mutations arise, implicating dynamic, complex genotype-to-phenotype landscapes in fungal pathogens and beyond.
Asunto(s)
Criptococosis/genética , Cryptococcus/genética , Epistasis Genética/genética , Evolución Biológica , Cryptococcus/metabolismo , Cryptococcus/patogenicidad , Proteínas Fúngicas/genética , Genes del Tipo Sexual de los Hongos/genética , Hifa/crecimiento & desarrollo , Morfogénesis , Fenotipo , Sitios de Carácter Cuantitativo/genética , Reproducción/genética , Reproducción AsexuadaRESUMEN
BACKGROUND: Cryptococcal meningitis (CM) has a high morbidity and mortality due to the low detection of Cryptococcus in cerebrospinal fluid (CSF) during the early stage of the disease with traditional methods. CASE PRESENTATION: In addition to the traditional methods of India ink staining and cryptococcal antigen (CrAg), we used nanopore sequencing and next-generation sequencing (NGS) to detect pathogenic DNA in CSF samples of three patients with CM. The CSF samples of all three patients were positive by India ink staining and CrAg. NGS also detected Cryptococcus in all three CSF samples. Nanopore sequencing detected Cryptococcus in two CSF samples. CONCLUSION: Nanopore sequencing may be useful in assisting with the clinical diagnosis of CM. Further research is needed to determine the sensitivity and specificity of nanopore sequencing of CSF.
Asunto(s)
Cryptococcus/genética , Meningitis Criptocócica/líquido cefalorraquídeo , Secuenciación de Nanoporos/métodos , Adulto , Antígenos Fúngicos/inmunología , Biomarcadores/líquido cefalorraquídeo , Cryptococcus/inmunología , Femenino , Humanos , Masculino , Meningitis Criptocócica/diagnóstico , Persona de Mediana EdadRESUMEN
Cutinases are esterases that release fatty acids from the apoplastic layer in plants. As they accept bulky and hydrophobic substrates, cutinases could be used in many applications, ranging from valorization of bark-rich side streams to plastic recycling. Advancement of these applications, however, requires deeper knowledge of cutinases' biodiversity and structure-function relationships. Here, we mined over 3000 members from carbohydrate esterase family 5 for putative cutinases and condensed it to 151 genes from known or putative lignocellulose-targeting organisms. The 151 genes were subjected to a phylogenetic analysis, which showed that cutinases with available crystal structures were phylogenetically closely related. We then selected nine phylogenic diverse cutinases for recombinant production and characterized their kinetic activity against para-nitrophenol substrates esterified with consecutively longer alkyl chains (pNP-C2 to C16). Each investigated cutinase had a unique activity fingerprint against the tested pNP substrates. The five enzymes with the highest activity on pNP-C12 and C16, indicative of activity on bulky hydrophobic compounds, were selected for in-depth kinetic and structure-function analysis. All five enzymes showed a decrease in kcat values with increasing substrate chain length, whereas KM values and binding energies (calculated from in silico docking analysis) improved. Two cutinases from Fusarium solani and Cryptococcus sp. exhibited outstandingly low KM values, resulting in high catalytic efficiencies toward pNP-C16. Docking analysis suggested that different clades of the phylogenetic tree may harbor enzymes with different modes of substrate interaction, involving a solvent-exposed catalytic triad, a lipase-like lid, or a clamshell-like active site possibly formed by flexible loops.
Asunto(s)
Hidrolasas de Éster Carboxílico , Cryptococcus , Proteínas Fúngicas , Fusarium , Filogenia , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Cryptococcus/enzimología , Cryptococcus/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fusarium/enzimología , Fusarium/genéticaRESUMEN
BACKGROUND: Cryptococcosis is a major opportunistic invasive mycosis in immunocompromised patients, but it is also increasingly seen in immunocompetent patients. In the early stages of cryptococcosis, limitations of the detection method may hinder the diagnosis. A molecular diagnostic technique based on nucleic acid sequence-based amplification (NASBA) method was developed to fulfil the need for efficient diagnosis of cryptococcosis. METHODS: We compared the diagnostic performance of NASBA, PCR and cryptococcal antigen (CrAg) test (colloidal gold method) in clinical samples from 25 cryptococcosis patients (including 8 cryptococcal meningoencephalitis and 17 pulmonary cryptococcosis) who were categorized as proven cases (n = 10) and probable cases (n = 15) according to the revised EORTC/MSG definitions. 10 patients with non-Cryptococcus infection and 30 healthy individuals were categorized as control group. RESULTS: The lowest detection limit of NASBA was 10 CFU/mL, and RNA of non-target bacteria or fungi was not amplified. The sensitivity of NASBA, PCR and colloidal gold method was 92.00% (95% CI 72.50-98.60%), 64.00% (95% CI 42.62-81.29%), 100.00% (95% CI 83.42-100.00%), and the specificity was 95.00% (95% CI 81.79-99.13%), 80.00% (95% CI 63.86-90.39%) and 82.50% (95% CI 66.64-92.11%) respectively. The highest specificity (97.50%), accuracy (95.38%) and k value (0.90) were achieved when both NASBA and colloidal gold results were positive. CONCLUSIONS: NASBA is a new alternative detection method for cryptococcosis which is both accurate and rapid without expensive equipment and specialised personnel. It may be used as a tool for confirming current infection as well as monitoring the effectiveness of antifungal treatment. The use of NASBA to detect Cryptococcus RNA in blood samples is of great significance for the diagnosis of pulmonary cryptococcosis. The combination of NASBA and colloidal gold can improve the diagnostic accuracy of cryptococcosis.