Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.028
Filtrar
1.
Mol Genet Genomic Med ; 12(6): e2466, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38860480

RESUMEN

BACKGROUND: Spinocerebellar ataxia 29 (SCA29) is a rare genetic disorder characterized by early-onset ataxia, gross motor delay, and infantile hypotonia, and is primarily associated with variants in the ITPR1 gene. Cases of SCA29 in Asia are rarely reported, limiting our understanding of this disease. METHODS: A female Korean infant, demonstrating clinical features of SCA29, underwent evaluation and rehabilitation at our outpatient clinic from the age of 3 months to the current age of 4 years. Trio-based genome sequencing tests were performed on the patient and her biological parents. RESULTS: The infant initially presented with macrocephaly, hypotonia, and nystagmus, with nonspecific findings on initial neuroimaging. Subsequent follow-up revealed gross motor delay, early onset ataxia, strabismus, and cognitive impairment. Further neuroimaging revealed atrophy of the cerebellum and vermis, and genetic analysis revealed a de novo pathogenic heterozygous c.800C>T, p.Thr267Met missense mutation in the ITPR1 gene (NM_001378452.1). CONCLUSION: This is the first reported case of SCA29 in a Korean patient, expanding the genetic and phenotypic spectrum of ITPR1-related ataxias. Our case highlights the importance of recognizing early-onset ataxic symptoms, central hypotonia, and gross motor delays with poor ocular fixation, cognitive deficits, and isolated cerebellar atrophy as crucial clinical indicators of SCA29.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato , Mutación Missense , Degeneraciones Espinocerebelosas , Humanos , Femenino , Receptores de Inositol 1,4,5-Trifosfato/genética , Degeneraciones Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/patología , Preescolar , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/patología , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Lactante
2.
Rev Neurol (Paris) ; 180(5): 410-416, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609751

RESUMEN

Genetic cerebellar ataxias are still a diagnostic challenge, and yet not all of them have been identified. Very recently, in early 2023, a new cause of late-onset cerebellar ataxia (LOCA) was identified, spinocerebellar ataxia 27B (SCA27B). This is an autosomal dominant ataxia due to a GAA expansion in intron 1 of the FGF14 gene. Thanks to the many studies carried out since its discovery, it is now possible to define the clinical phenotype, its particularities, and the progression of SCA27B. It has also been established that it is one of the most frequent causes of LOCA. The core phenotype of the disease consists of slowly progressive late-onset ataxia with cerebellar syndrome, oculomotor disorders including downbeat nystagmus, and episodic symptoms such as diplopia. Therapeutic approaches have been proposed, including acetazolamide, and 4-aminopyridine, the latter with a better benefit/tolerance profile.


Asunto(s)
Edad de Inicio , Ataxias Espinocerebelosas , Humanos , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/diagnóstico , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/etiología , Factores de Crecimiento de Fibroblastos/genética , Degeneraciones Espinocerebelosas
3.
Artículo en Inglés | MEDLINE | ID: mdl-38617829

RESUMEN

Background: Spinocerebellar ataxia 21 (SCA21) is a rare neurological disorder caused by heterozygous variants in TMEM240. A growing, yet still limited number of reports suggested that hyperkinetic movements should be considered a defining component of the disease. Case Series: We describe two newly identified families harboring the recurrent pathogenic TMEM240 p.Pro170Leu variant. Both index patients and the mother of the first proband developed movement disorders, manifesting as myoclonic dystonia and action-induced dystonia without co-occurring ataxia in one case, and pancerebellar syndrome complicated by action-induced dystonia in the other. We reviewed the literature on TMEM240 variants linked to hyperkinetic disorders, comparing our cases to described phenotypes. Discussion: Adding to prior preliminary observations, our series highlights the relevance of hyperkinetic movements as clinically meaningful features of SCA21. TMEM240 mutation should be included in the differential diagnosis of myoclonic dystonia and ataxia-dystonia syndromes.


Asunto(s)
Distonía , Trastornos Distónicos , Mioclonía , Degeneraciones Espinocerebelosas , Humanos , Distonía/diagnóstico , Distonía/genética , Mioclonía/diagnóstico , Mioclonía/genética , Hipercinesia , Ataxia , Enfermedades Raras , Síndrome , Proteínas de la Membrana
4.
Hum Genomics ; 18(1): 35, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570878

RESUMEN

BACKGROUND: To investigate the genetics of early-onset progressive cerebellar ataxia in Iran, we conducted a study at the Children's Medical Center (CMC), the primary referral center for pediatric disorders in the country, over a three-year period from 2019 to 2022. In this report, we provide the initial findings from the national registry. METHODS: We selected all early-onset patients with an autosomal recessive mode of inheritance to assess their phenotype, paraclinical tests, and genotypes. The clinical data encompassed clinical features, the Scale for the Assessment and Rating of Ataxia (SARA) scores, Magnetic Resonance Imaging (MRI) results, Electrodiagnostic exams (EDX), and biomarker features. Our genetic investigations included single-gene testing, Whole Exome Sequencing (WES), and Whole Genome Sequencing (WGS). RESULTS: Our study enrolled 162 patients from various geographic regions of our country. Among our subpopulations, we identified known and novel pathogenic variants in 42 genes in 97 families. The overall genetic diagnostic rate was 59.9%. Notably, we observed PLA2G6, ATM, SACS, and SCA variants in 19, 14, 12, and 10 families, respectively. Remarkably, more than 59% of the cases were attributed to pathogenic variants in these genes. CONCLUSIONS: Iran, being at the crossroad of the Middle East, exhibits a highly diverse genetic etiology for autosomal recessive hereditary ataxia. In light of this heterogeneity, the development of preventive strategies and targeted molecular therapeutics becomes crucial. A national guideline for the diagnosis and management of patients with these conditions could significantly aid in advancing healthcare approaches and improving patient outcomes.


Asunto(s)
Degeneraciones Espinocerebelosas , Niño , Humanos , Irán/epidemiología , Degeneraciones Espinocerebelosas/genética , Pruebas Genéticas , Fenotipo , Genes Recesivos
5.
BMJ Case Rep ; 17(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453233

RESUMEN

Ataxia telangiectasia (A-T) (OMIM 208900) is an autosomal recessive multisystem disorder characterised by progressive cerebellar ataxia, telangiectasias, immunodeficiency and a predisposition to malignancy. 'Variant' A-T has later onset of neurological symptoms and slower progression compared with the 'classic' form. A woman presented with short stature in late childhood. Karyotype revealed rearrangements involving chromosomes 7 and 14. A chromosomal breakage disorder gene panel demonstrated compound heterozygote mutations in her ATM gene including one mutation c.7271T>G with residual ATM function, confirming the diagnosis of variant A-T. Since diagnosis, she has developed progressive cerebellar ataxia and telangiectasias. Long-standing restrictive and aversive feeding behaviours presented challenges for her management and necessitated gastrostomy.


Asunto(s)
Ataxia Telangiectasia , Ataxia Cerebelosa , Degeneraciones Espinocerebelosas , Femenino , Humanos , Ataxia Telangiectasia/complicaciones , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Mutación , Adolescente
6.
J Alzheimers Dis ; 98(1): 275-285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38393916

RESUMEN

Background: While many studies focus on the prognosis of individual neurological diseases, very few comprehensively compare and analyze real-world data of these diseases. Objective: To address this gap in knowledge, in this study, we comprehensively analyzed the real-life data of patients with neurological diseases. Methods: We prospectively enrolled patients with neurological diseases at three hospitals from December 1, 2016 to September 30, 2020. Neurological diseases were classified into nine groups: Dementia, Cerebrovascular disease, Parkinson's and related, Functional, Spinocerebellar degeneration, Neuroimmune, Epilepsy, Muscle dystrophy disease, and Hypertension. Patients were followed up for three years, and their prognosis and evaluation of their cognitive function served as the endpoint. Results: A total of 426 patients were finally enrolled. Both mortality and cognitive function differed among the neurological disease categories. After 3 years, mortality was highest in the Dementia (25.5%), Parkinson's and related (21.6%), and Spinocerebellar degeneration (35.3%) groups while the cognitive function of patients in these three groups was significantly lowest. Conclusions: When the neurological diseases were holistically observed, both mortality and cognitive function of the Dementia, Parkinson's and related, and Spinocerebellar degeneration groups were significantly worse than the remaining diseases.


Asunto(s)
Enfermedad de Alzheimer , Demencia , Epilepsia , Enfermedad de Parkinson , Degeneraciones Espinocerebelosas , Humanos , Enfermedad de Parkinson/psicología , Estudios de Cohortes , Cognición , Pronóstico , Demencia/diagnóstico
7.
Cells ; 13(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38391932

RESUMEN

Cerebellar ataxias are a wide heterogeneous group of movement disorders. Within this broad umbrella of diseases, there are both genetics and sporadic forms. The clinical presentation of these conditions can exhibit a diverse range of symptoms across different age groups, spanning from pure cerebellar manifestations to sensory ataxia and multisystemic diseases. Over the last few decades, advancements in our understanding of genetics and molecular pathophysiology related to both dominant and recessive ataxias have propelled the field forward, paving the way for innovative therapeutic strategies aimed at preventing and arresting the progression of these diseases. Nevertheless, the rarity of certain forms of ataxia continues to pose challenges, leading to limited insights into the etiology of the disease and the identification of target pathways. Additionally, the lack of suitable models hampers efforts to comprehensively understand the molecular foundations of disease's pathophysiology and test novel therapeutic interventions. In the following review, we describe the epidemiology, symptomatology, and pathological progression of hereditary ataxia, including both the prevalent and less common forms of these diseases. Furthermore, we illustrate the diverse molecular pathways and therapeutic approaches currently undergoing investigation in both pre-clinical studies and clinical trials. Finally, we address the existing and anticipated challenges within this field, encompassing both basic research and clinical endeavors.


Asunto(s)
Ataxia Cerebelosa , Degeneraciones Espinocerebelosas , Humanos , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/patología , Ataxia/patología , Cerebelo/patología
8.
Rinsho Shinkeigaku ; 64(3): 135-147, 2024 Mar 22.
Artículo en Japonés | MEDLINE | ID: mdl-38382935

RESUMEN

Spinocerebellar degeneration (SCD) is a neurodegenerative disorder characterized by cerebellar ataxia and other multisystem manifestations, such as Parkinsonism and pyramidal tract symptoms. No effective treatment is available for SCD. Approximately one-third of the cases of SCD are inherited, and the remaining two-third are sporadic, including multiple system atrophy. This article provides an overview of hereditary SCD, its clinical features, recent treatment advances, biomarkers, role of genomic medicine, and future treatment prospects.


Asunto(s)
Ataxia Cerebelosa , Atrofia de Múltiples Sistemas , Degeneraciones Espinocerebelosas , Humanos , Degeneraciones Espinocerebelosas/diagnóstico , Degeneraciones Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/terapia
9.
Clin Genet ; 105(4): 446-452, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38221848

RESUMEN

A pathogenic GAA repeat expansion in the first intron of the fibroblast growth factor 14 gene (FGF14) has been recently identified as the cause of spinocerebellar ataxia 27B (SCA27B). We herein screened 160 Greek index cases with late-onset cerebellar ataxia (LOCA) for FGF14 repeat expansions using a combination of long-range PCR and bidirectional repeat-primed PCRs. We identified 19 index cases (12%) carrying a pathogenic FGF14 GAA expansion, a diagnostic yield higher than that of previously screened repeat-expansion ataxias in Greek LOCA patients. The age at onset of SCA27B patients was 60.5 ± 12.3 years (range, 34-80). Episodic onset (37%), downbeat nystagmus (32%) and vertigo (26%) were significantly more frequent in FGF14 expansion-positive cases compared to expansion-negative cases. Beyond typical cerebellar signs, SCA27B patients often displayed hyperreflexia (47%) and reduced vibration sense in the lower extremities (42%). The frequency and phenotypic profile of SCA27B in Greek patients was similar to most other previously studied populations. We conclude that FGF14 GAA repeat expansions are the commonest known genetic cause of LOCA in the Greek population and recommend prioritizing testing for FGF14 expansions in the diagnostic algorithm of patients with LOCA.


Asunto(s)
Ataxia Cerebelosa , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas , Humanos , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Grecia/epidemiología , Ataxias Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/genética , Fenotipo , Expansión de Repetición de Trinucleótido/genética
10.
J Neurol ; 271(4): 2078-2085, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38263489

RESUMEN

BACKGROUND: Whether spinocerebellar ataxia 27B (SCA27B) may present as a cerebellar multiple system atrophy (MSA-C) mimic remains undetermined. OBJECTIVES: To assess the prevalence of FGF14 (GAA)≥250 expansions in patients with MSA-C, to compare SCA27B and MSA-C clinical presentation and natural history. METHODS: FGF14 expansion screening combined with longitudinal deep-phenotyping in a prospective cohort of 195 patients with sporadic late-onset cerebellar ataxia. RESULTS: After a mean disease duration of 6.4 years, 111 patients were not meeting criteria for MSA-C while 24 and 60 patients had a final diagnosis of possible and probable MSA-C, respectively. 16 patients carried an FGF14 (GAA)≥250 expansion in the group not meeting MSA-C criteria (14.4%), 3 patients in the possible MSA-C group (12.5%), but none among probable MSA-C cases. SCA27B patients were evolving more slowly than probable MSA-C patients. CONCLUSIONS: FGF14 (GAA)≥250 expansion may account for MSA look-alike cases and should be screened among slow progressors.


Asunto(s)
Atrofia de Múltiples Sistemas , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas , Humanos , Atrofia de Múltiples Sistemas/diagnóstico , Estudios Prospectivos , Ataxias Espinocerebelosas/diagnóstico , Cerebelo , Degeneraciones Espinocerebelosas/diagnóstico
12.
BMJ Case Rep ; 17(1)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182166

RESUMEN

Progressive multifocal leucoencephalopathy (PML) is a demyelinating disease caused by the John Cunningham (JC) virus, which may get reactivated under certain immunosuppressive states such as AIDS, immunomodulatory therapy and haematological malignancies. PML has been reported rarely even in immunocompetent individuals where no immunodeficiency was present. PML characteristically involves periventricular and juxtacortical white matter. Isolated cerebellar or brainstem PML may be seen rarely. We present a case of a man in his 70s who presented with rapidly progressive cerebellar ataxia, ptosis and bipyramidal signs. Investigations excluded a direct viral cerebellar infection, acute disseminated encephalomyelitis, paraneoplastic cerebellar degeneration or any structural cerebellar lesion. MRI PET study revealed the classical shrimp sign which raised the possibility of cerebellar PML, and the same was confirmed by a positive JC virus PCR in the cerebrospinal fluid. Our patient had no known immune-compromising state, but further workup revealed a low CD4 count suggestive of idiopathic CD4 lymphopenia. The case illustrates the importance of the shrimp sign on MRI, the possibility of cerebellar involvement of PML as well as the need to consider a differential diagnosis of PML even in individuals with no obvious immunocompromised state.


Asunto(s)
Virus JC , Leucoencefalopatía Multifocal Progresiva , Degeneración Cerebelosa Paraneoplásica , Degeneraciones Espinocerebelosas , Masculino , Humanos , Cerebelo/diagnóstico por imagen , Leucoencefalopatía Multifocal Progresiva/diagnóstico por imagen
13.
Cerebellum ; 23(1): 121-135, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36640220

RESUMEN

Characterizing bedside oculomotor deficits is a critical factor in defining the clinical presentation of hereditary ataxias. Quantitative assessments are increasingly available and have significant advantages, including comparability over time, reduced examiner dependency, and sensitivity to subtle changes. To delineate the potential of quantitative oculomotor assessments as digital-motor outcome measures for clinical trials in ataxia, we searched MEDLINE for articles reporting on quantitative eye movement recordings in genetically confirmed or suspected hereditary ataxias, asking which paradigms are most promising for capturing disease progression and treatment response. Eighty-nine manuscripts identified reported on 1541 patients, including spinocerebellar ataxias (SCA2, n = 421), SCA3 (n = 268), SCA6 (n = 117), other SCAs (n = 97), Friedreich ataxia (FRDA, n = 178), Niemann-Pick disease type C (NPC, n = 57), and ataxia-telangiectasia (n = 85) as largest cohorts. Whereas most studies reported discriminatory power of oculomotor assessments in diagnostics, few explored their value for monitoring genotype-specific disease progression (n = 2; SCA2) or treatment response (n = 8; SCA2, FRDA, NPC, ataxia-telangiectasia, episodic-ataxia 4). Oculomotor parameters correlated with disease severity measures including clinical scores (n = 18 studies (SARA: n = 9)), chronological measures (e.g., age, disease duration, time-to-symptom onset; n = 17), genetic stratification (n = 9), and imaging measures of atrophy (n = 5). Recurrent correlations across many ataxias (SCA2/3/17, FRDA, NPC) suggest saccadic eye movements as potentially generic quantitative oculomotor outcome. Recommendation of other paradigms was limited by the scarcity of cross-validating correlations, except saccadic intrusions (FRDA), pursuit eye movements (SCA17), and quantitative head-impulse testing (SCA3/6). This work aids in understanding the current knowledge of quantitative oculomotor parameters in hereditary ataxias, and identifies gaps for validation as potential trial outcome measures in specific ataxia genotypes.


Asunto(s)
Ataxia Telangiectasia , Ataxia de Friedreich , Degeneraciones Espinocerebelosas , Humanos , Movimientos Oculares , Ataxia , Genotipo , Progresión de la Enfermedad
14.
Cerebellum ; 23(2): 391-400, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36869969

RESUMEN

The Ataxia Global Initiative (AGI) is a worldwide multi-stakeholder research platform to systematically enhance trial-readiness in degenerative ataxias. The next-generation sequencing (NGS) working group of the AGI aims to improve methods, platforms, and international standards for ataxia NGS analysis and data sharing, ultimately allowing to increase the number of genetically ataxia patients amenable for natural history and treatment trials. Despite extensive implementation of NGS for ataxia patients in clinical and research settings, the diagnostic gap remains sizeable, as approximately 50% of patients with hereditary ataxia remain genetically undiagnosed. One current shortcoming is the fragmentation of patients and NGS datasets on different analysis platforms and databases around the world. The AGI NGS working group in collaboration with the AGI associated research platforms-CAGC, GENESIS, and RD-Connect GPAP-provides clinicians and scientists access to user-friendly and adaptable interfaces to analyze genome-scale patient data. These platforms also foster collaboration within the ataxia community. These efforts and tools have led to the diagnosis of > 500 ataxia patients and the discovery of > 30 novel ataxia genes. Here, the AGI NGS working group presents their consensus recommendations for NGS data sharing initiatives in the ataxia field, focusing on harmonized NGS variant analysis and standardized clinical and metadata collection, combined with collaborative data and analysis tool sharing across platforms.


Asunto(s)
Ataxia Cerebelosa , Degeneraciones Espinocerebelosas , Humanos , Ataxia Cerebelosa/genética , Bases de Datos Factuales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Difusión de la Información
15.
Cerebellum ; 23(2): 833-837, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37460907

RESUMEN

Potassium channels (KCN) are transmembrane complexes that regulate the resting membrane potential and the duration of action potentials in cells. The opening of KCN brings about an efflux of K+ ions that induces cell repolarization after depolarization, returns the transmembrane potential to its resting state, and enables for continuous spiking ability. The aim of this work was to assess the role of KCN dysfunction in the pathogenesis of hereditary ataxias and the mechanisms of action of KCN opening agents (KCO). In consequence, a review of the ad hoc medical literature was performed. Among hereditary KCN diseases causing ataxia, mutated Kv3.3, Kv4.3, and Kv1.1 channels provoke spinocerebellar ataxia (SCA) type 13, SCA19/22, and episodic ataxia type 1 (EA1), respectively. The K+ efflux was found to be reduced in experimental models of these diseases, resulting in abnormally prolonged depolarization and incomplete repolarization, thereby interfering with repetitive discharges in the cells. Hence, substances able to promote normal spiking activity in the cerebellum could provide symptomatic benefit. Although drugs used in clinical practice do not activate Kv3.3 or Kv4.3 directly, available KCO probably could ameliorate ataxic symptoms in SCA13 and SCA19/22, as verified with acetazolamide in EA1, and retigabine in a mouse model of hypokalemic periodic paralysis. To summarize, ataxia could possibly be improved by non-specific KCO in SCA13 and SCA19/22. The identification of new specific KCO agents will undoubtedly constitute a promising therapeutic strategy for these diseases.


Asunto(s)
Ataxia Cerebelosa , Canalopatías , Miocimia , Ataxias Espinocerebelosas/congénito , Degeneraciones Espinocerebelosas , Ratones , Animales , Canalopatías/tratamiento farmacológico , Canalopatías/genética , Ataxia/tratamiento farmacológico , Ataxia/genética , Mutación
16.
Cerebellum ; 23(2): 775-777, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37219716

RESUMEN

The exciting news about the US FDA approval of omaveloxolone as the first-ever drug to be approved for an inherited ataxia is welcome news for patients and families that deal with this devastating disease as well as for health care providers and investigators with an interest in this and other rare diseases. This event is the culmination of long and fruitful collaboration between patients, their families, clinicians, laboratory researchers, patient advocacy organizations, industry, and regulatory agencies. The process has generated intense discussion about outcome measures, biomarkers, trial design, and the nature of approval process for such diseases. It also has brought hope and enthusiasm for increasingly better therapies for genetic diseases in general.


Asunto(s)
Ataxia de Friedreich , Degeneraciones Espinocerebelosas , Triterpenos , Humanos , Ataxia de Friedreich/tratamiento farmacológico , Ataxia de Friedreich/genética , Ataxia/genética , Triterpenos/uso terapéutico
17.
Cerebellum ; 23(2): 678-687, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36892783

RESUMEN

Spinocerebellar ataxia type 11 (SCA11) is a rare type of autosomal dominant cerebellar ataxia, mainly characterized by progressive cerebellar ataxia, abnormal eye signs and dysarthria. SCA11 is caused by variants in TTBK2, which encodes tau tubulin kinase 2 (TTBK2) protein. Only a few families with SCA11 were described to date, all harbouring small deletions or insertions that result in frameshifts and truncated TTBK2 proteins. In addition, TTBK2 missense variants were also reported but they were either benign or still needed functional validation to ascertain their pathogenic potential in SCA11. The mechanisms behind cerebellar neurodegeneration mediated by TTBK2 pathogenic alleles are not clearly established. There is only one neuropathological report and a few functional studies in cell or animal models published to date. Moreover, it is still unclear whether the disease is caused by TTBK2 haploinsufficiency of by a dominant negative effect of TTBK2 truncated forms on the normal allele. Some studies point to a lack of kinase activity and mislocalization of mutated TTBK2, while others reported a disruption of normal TTBK2 function caused by SCA11 alleles, particularly during ciliogenesis. Although TTBK2 has a proven function in cilia formation, the phenotype caused by heterozygous TTBK2 truncating variants are not clearly typical of ciliopathies. Thus, other cellular mechanisms may explain the phenotype seen in SCA11. Neurotoxicity caused by impaired TTBK2 kinase activity against known neuronal targets, such as tau, TDP-43, neurotransmitter receptors or transporters, may contribute to neurodegeneration in SCA11.


Asunto(s)
Ataxia Cerebelosa , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas , Animales , Humanos , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Degeneraciones Espinocerebelosas/genética , Mutación del Sistema de Lectura
18.
Mov Disord ; 39(1): 141-151, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37964426

RESUMEN

BACKGROUND: The ITPR1 gene encodes the inositol 1,4,5-trisphosphate (IP3 ) receptor type 1 (IP3 R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood. OBJECTIVES: We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy. METHODS: Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction. RESULTS: We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP3 -binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype-phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression. CONCLUSIONS: This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Aniridia , Anhidrasas Carbónicas , Ataxia Cerebelosa , Discapacidad Intelectual , Trastornos del Movimiento , Degeneraciones Espinocerebelosas , Humanos , Ataxia Cerebelosa/genética , Mutación Missense/genética , Trastornos del Movimiento/complicaciones , Atrofia , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
19.
J Neurol ; 271(1): 526-542, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37787810

RESUMEN

Hereditary ataxia is a heterogeneous group of complex neurological disorders. Next-generation sequencing methods have become a great help in clinical diagnostics, but it may remain challenging to determine if a genetic variant is the cause of the patient's disease. We compiled a consecutive single-center series of 87 patients from 76 families with progressive ataxia of known or unknown etiology. We investigated them clinically and genetically using whole exome or whole genome sequencing. Test methods were selected depending on family history, clinical phenotype, and availability. Genetic results were interpreted based on the American College of Medical Genetics criteria. For high-suspicion variants of uncertain significance, renewed bioinformatical and clinical evaluation was performed to assess the level of pathogenicity. Thirty (39.5%) of the 76 families had received a genetic diagnosis at the end of our study. We present the predominant etiologies of hereditary ataxia in a Swedish patient series. In two families, we established a clinical diagnosis, although the genetic variant was classified as "of uncertain significance" only, and in an additional three families, results are pending. We found a pathogenic variant in one family, but we suspect that it does not explain the complete clinical picture. We conclude that correctly interpreting genetic variants in complex neurogenetic diseases requires genetics and clinical expertise. The neurologist's careful phenotyping remains essential to confirm or reject a diagnosis, also by reassessing clinical findings after a candidate genetic variant is suggested. Collaboration between neurology and clinical genetics and combining clinical and research approaches optimizes diagnostic yield.


Asunto(s)
Ataxia Cerebelosa , Degeneraciones Espinocerebelosas , Humanos , Suecia , Ataxia/diagnóstico , Ataxia/genética , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Fenotipo
20.
Clin Genet ; 105(2): 228-230, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37903629

RESUMEN

A novel homozygous variant in KIFBP was identified in a consanguineous family with four sibs affected by Goldberg-Sphrintzen Syndrome (GOSHS). We report for the first time, early-adulthood-onset progressive ataxia, opthalmoparesis, and hypogonadotropic hypogonadism in GOSHS.


Asunto(s)
Ataxia Cerebelosa , Hipogonadismo , Oftalmoplejía , Degeneraciones Espinocerebelosas , Humanos , Adulto , Ataxia Cerebelosa/genética , Hipogonadismo/genética , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA