Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 581
Filtrar
1.
Sci Rep ; 14(1): 15460, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965287

RESUMEN

The gut microbiota plays a crucial role in neural development and progression of neural disorders like Parkinson's disease (PD). Probiotics have been suggested to impact neurodegenerative diseases via gut-brain axis. This study aims to investigate the therapeutic potential of Lacticaseibacillus rhamnosus E9, a high exopolysaccharide producer, on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of PD. C57BL/6 mice subjected to MPTP were fed L. rhamnosus E9 for fifteen days and sacrificed after the last administration. Motor functions were determined by open-field, catalepsy, and wire-hanging tests. The ileum and the brain tissues were collected for ELISA, qPCR, and immunohistochemistry analyses. The cecum content was obtained for microbiota analysis. E9 supplementation alleviated MPTP-induced motor dysfunctions accompanied by decreased levels of striatal TH and dopamine. E9 also reduced the level of ROS in the striatum and decreased the DAT expression while increasing the DR1. Furthermore, E9 improved intestinal integrity by enhancing ZO-1 and Occludin levels and reversed the dysbiosis of the gut microbiota induced by MPTP. In conclusion, E9 supplementation improved the MPTP-induced motor deficits and neural damage as well as intestinal barrier by modulating the gut microbiota in PD mice. These findings suggest that E9 supplementation holds therapeutic potential in managing PD through the gut-brain axis.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Ratones Endogámicos C57BL , Probióticos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Lacticaseibacillus rhamnosus/fisiología , Masculino , Probióticos/farmacología , Probióticos/administración & dosificación , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/microbiología , Cuerpo Estriado/metabolismo , Intoxicación por MPTP/microbiología , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/tratamiento farmacológico , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/efectos de los fármacos , Dopamina/metabolismo
2.
Int J Mol Sci ; 25(14)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39062963

RESUMEN

Parkinson's disease (PD) is characterized by a long prodromal period, during which patients often have sleep disturbances. The histaminergic system and circadian rhythms play an important role in the regulation of the sleep-wake cycle. Changes in the functioning of these systems may be involved in the pathogenesis of early stages of PD and may be age-dependent. Here, we have analyzed changes in the expression of genes associated with the regulation of the sleep-wake cycle (Hnmt, Hrh1, Hrh3, Per1, Per2, and Chrm3) in the substantia nigra (SN) and striatum of normal male mice of different ages, as well as in young and adult male mice with an MPTP-induced model of the early symptomatic stage (ESS) of PD. Age-dependent expression analysis in normal mouse brain tissue revealed changes in Hrh3, Per1, Per2, and Chrm3 genes in adult mice relative to young mice. When gene expression was examined in mice with the MPTP-induced model of the ESS of PD, changes in the expression of all studied genes were found only in the SN of adult mice with the ESS model of PD. These data suggest that age is a significant factor influencing changes in the expression of genes associated with sleep-wake cycle regulation in the development of PD.


Asunto(s)
Ritmo Circadiano , Animales , Ratones , Masculino , Ritmo Circadiano/genética , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , Sueño/genética , Envejecimiento/genética , Modelos Animales de Enfermedad , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Cuerpo Estriado/metabolismo , Intoxicación por MPTP/genética , Intoxicación por MPTP/metabolismo , Factores de Edad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Vigilia
3.
Brain Behav ; 14(7): e3605, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38956819

RESUMEN

BACKGROUND: High-frequency repeated transcranial magnetic stimulation (rTMS) stimulating the primary motor cortex (M1) is an alternative, adjunctive therapy for improving the motor symptoms of Parkinson's disease (PD). However, whether the high frequency of rTMS positively correlates to the improvement of motor symptoms of PD is still undecided. By controlling for other parameters, a disease animal model may be useful to compare the neuroprotective effects of different high frequencies of rTMS. OBJECTIVE: The current exploratory study was designed to compare the protective effects of four common high frequencies of rTMS (5, 10, 15, and 20 Hz) and iTBS (a special form of high-frequency rTMS) and explore the optimal high-frequency rTMS on an animal PD model. METHODS: Following high frequencies of rTMS application (twice a week for 5 weeks) in a MPTP/probenecid-induced chronic PD model, the effects of the five protocols on motor behavior as well as dopaminergic neuron degeneration levels were identified. The underlying molecular mechanisms were further explored. RESULTS: We found that all the high frequencies of rTMS had protective effects on the motor functions of PD models to varying degrees. Among them, the 10, 15, and 20 Hz rTMS interventions induced comparable preservation of motor function through the protection of nigrostriatal dopamine neurons. The enhancement of brain-derived neurotrophic factor (BDNF), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT-2) and the suppression of TNF-α and IL-1ß in the nigrostriatum were involved in the process. The efficacy of iTBS was inferior to that of the above three protocols. The effect of 5 Hz rTMS protocol was weakest. CONCLUSIONS: Combined with the results of the present study and the possible side effects induced by rTMS, we concluded that 10 Hz might be the optimal stimulation frequency for preserving the motor functions of PD models using rTMS treatment.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Trastornos Parkinsonianos , Probenecid , Estimulación Magnética Transcraneal , Animales , Estimulación Magnética Transcraneal/métodos , Ratones , Masculino , Probenecid/farmacología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/terapia , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Motora/metabolismo , Corteza Motora/fisiopatología , Neuronas Dopaminérgicas/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Interleucina-1beta/metabolismo , Sustancia Negra/metabolismo , Cuerpo Estriado/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Intoxicación por MPTP/terapia , Intoxicación por MPTP/prevención & control , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/fisiopatología , Actividad Motora/fisiología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología
4.
Sci Rep ; 14(1): 16487, 2024 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019902

RESUMEN

Cerebral dopamine neurotrophic factor (CDNF) and its close structural relative, mesencephalic astrocyte-derived neurotrophic factor (MANF), are proteins with neurotrophic properties. CDNF protects and restores the function of dopamine (DA) neurons in rodent and non-human primate (NHP) toxin models of Parkinson's disease (PD) and therefore shows promise as a drug candidate for disease-modifying treatment of PD. Moreover, CDNF was found to be safe and to have some therapeutic effects on PD patients in phase 1/2 clinical trials. However, the mechanism underlying the neurotrophic activity of CDNF is unknown. In this study, we delivered human CDNF (hCDNF) to the brain using an adeno-associated viral (AAV) vector and demonstrated the neurotrophic effect of AAV-hCDNF in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. AAV-hCDNF resulted in the expression of hCDNF in the striatum (STR) and substantia nigra (SN), and no toxic effects on the nigrostriatal pathway were observed. Intrastriatal injection of AAV-hCDNF reduced motor impairment and partially alleviated gait dysfunction in the acute MPTP mouse model. In addition, gene therapy with AAV-hCDNF had significant neuroprotective effects on the nigrostriatal pathway and decreased the levels of interleukin 1beta (IL-1ß) and complement 3 (C3) in glial cells in the acute MPTP mouse model. Moreover, AAV-hCDNF reduced C/EBP homologous protein (CHOP) and glucose regulatory protein 78 (GRP78) expression in astroglia. These results suggest that the neuroprotective effects of CDNF may be mediated at least in part through the regulation of neuroinflammation and the UPR pathway in a mouse MPTP model of PD in vivo.


Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Vectores Genéticos , Factores de Crecimiento Nervioso , Animales , Neuronas Dopaminérgicas/metabolismo , Dependovirus/genética , Ratones , Humanos , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Técnicas de Transferencia de Gen , Masculino , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Inflamación/metabolismo , Terapia Genética/métodos , Ratones Endogámicos C57BL , Cuerpo Estriado/metabolismo , Intoxicación por MPTP/terapia , Intoxicación por MPTP/metabolismo , Sustancia Negra/metabolismo
5.
Brain Res Bull ; 214: 110989, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825252

RESUMEN

Parkinson's disease (PD) is a chronic neurodegenerative disease with unclear pathogenesis that involves neuroinflammation and intestinal microbial dysbiosis. Intercellular adhesion molecule-1 (ICAM-1), an inflammatory marker, participates in neuroinflammation during dopaminergic neuronal damage. However, the explicit mechanisms of action of ICAM-1 in PD have not been elucidated. We established a subacute PD mouse model by the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and observed motor symptoms and gastrointestinal dysfunction in mice. Immunofluorescence was used to examine the survival of dopaminergic neurons, expression of microglial and astrocyte markers, and intestinal tight junction-associated proteins. Then, we use 16 S rRNA sequencing to identify alterations in the microbiota. Our findings revealed that ICAM-1-specific antibody (Ab) treatment relieved behavioural defects, gastrointestinal dysfunction, and dopaminergic neuronal death in MPTP-induced PD mice. Further mechanistic investigations indicated that ICAM-1Ab might suppress neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra and relieving colon barrier impairment and intestinal inflammation. Furthermore, 16 S rRNA sequencing revealed that the relative abundances of bacterial Firmicutes, Clostridia, and Lachnospiraceae were elevated in the PD mice. However, ICAM-1Ab treatment ameliorated the MPTP-induced disorders in the intestinal microbiota. Collectively, we concluded that the suppressing ICAM-1 might lead to the a significant decrease of inflammation and restore the gut microbial community, thus ameliorating the damage of DA neurons.


Asunto(s)
Neuronas Dopaminérgicas , Molécula 1 de Adhesión Intercelular , Ratones Endogámicos C57BL , Animales , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Ratones , Masculino , Modelos Animales de Enfermedad , Enfermedades Neuroinflamatorias/metabolismo , Microbioma Gastrointestinal/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Inflamación/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Microglía/metabolismo , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Trastornos Parkinsonianos/metabolismo , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/patología
6.
Acta Neuropathol Commun ; 12(1): 79, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773545

RESUMEN

Neurodegenerative diseases have common underlying pathological mechanisms including progressive neuronal dysfunction, axonal and dendritic retraction, and mitochondrial dysfunction resulting in neuronal death. The retina is often affected in common neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Studies have demonstrated that the retina in patients with Parkinson's disease undergoes changes that parallel the dysfunction in the brain. These changes classically include decreased levels of dopamine, accumulation of alpha-synuclein in the brain and retina, and death of dopaminergic nigral neurons and retinal amacrine cells leading to gross neuronal loss. Exploring this disease's retinal phenotype and vision-related symptoms is an important window for elucidating its pathophysiology and progression, and identifying novel ways to diagnose and treat Parkinson's disease. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson's disease in animal models. MPTP is a neurotoxin converted to its toxic form by astrocytes, transported to neurons through the dopamine transporter, where it causes mitochondrial Complex I inhibition and neuron degeneration. Systemic administration of MPTP induces retinal changes in different animal models. In this study, we assessed the effects of MPTP on the retina directly via intravitreal injection in mice (5 mg/mL and 50 mg/mL to 7, 14 and 21 days post-injection). MPTP treatment induced the reduction of retinal ganglion cells-a sensitive neuron in the retina-at all time points investigated. This occurred without a concomitant loss of dopaminergic amacrine cells or neuroinflammation at any of the time points or concentrations tested. The observed neurodegeneration which initially affected retinal ganglion cells indicated that this method of MPTP administration could yield a fast and straightforward model of retinal ganglion cell neurodegeneration. To assess whether this model could be amenable to neuroprotection, mice were treated orally with nicotinamide (a nicotinamide adenine dinucleotide precursor) which has been demonstrated to be neuroprotective in several retinal ganglion cell injury models. Nicotinamide was strongly protective following intravitreal MPTP administration, further supporting intravitreal MPTP use as a model of retinal ganglion cell injury. As such, this model could be utilized for testing neuroprotective treatments in the context of Parkinson's disease and retinal ganglion cell injury.


Asunto(s)
Ratones Endogámicos C57BL , Fármacos Neuroprotectores , Niacinamida , Células Ganglionares de la Retina , Animales , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Niacinamida/farmacología , Niacinamida/administración & dosificación , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Masculino , Ratones , Administración Oral , Inyecciones Intravítreas , Modelos Animales de Enfermedad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/tratamiento farmacológico , Intoxicación por MPTP/patología , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/tratamiento farmacológico
7.
Phytomedicine ; 127: 155494, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471370

RESUMEN

BACKGROUND: Parkinson's disease (PD), a neurodegenerative disorder, is characterized by motor symptoms due to the progressive loss of dopaminergic neurons in the substantia nigra (SN) and striatum (STR), alongside neuroinflammation. Asiaticoside (AS), a primary active component with anti-inflammatory and neuroprotective properties, is derived from Centella asiatica. However, the precise mechanisms through which AS influences PD associated with inflammation are not yet fully understood. PURPOSE: This study aimed to explore the protective mechanism of AS in PD. METHODS: Targets associated with AS and PD were identified from the Swiss Target Prediction, Similarity Ensemble Approach, PharmMapper, and GeneCards database. A protein-protein interaction (PPI) network was constructed to identify potential therapeutic targets. Concurrently, GO and KEGG analyses were performed to predict potential signaling pathways. To validate these mechanisms, the effects of AS on 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice were investigated. Furthermore, neuroinflammation and the activation of the NLRP3 inflammasome were assessed to confirm the anti-inflammatory properties of AS. In vitro experiments in BV2 cells were then performed to investigate the mechanisms of AS in PD. Moreover, CETSA, molecular docking, and molecular dynamics simulations (MDs) were performed for further validation. RESULTS: Network pharmacology analysis identified 17 potential targets affected by AS in PD. GO and KEGG analyses suggested the biological roles of these targets, demonstrating that AS interacts with 149 pathways in PD. Notably, the NOD-like receptor signaling pathway was identified as a key pathway mediating AS's effect on PD. In vivo studies demonstrated that AS alleviated motor dysfunction and reduced the loss of dopaminergic neurons in MPTP-induced PD mice. In vitro experiments demonstrated that AS substantially decreased IL-1ß release in BV2 cells, attributing this to the modulation of the NLRP3 signaling pathway. CETSA and molecular docking studies indicated that AS forms a stable complex with NLRP3. MDs suggested that ARG578 played an important role in the formation of the complex. CONCLUSION: In this study, we first predicted that the potential target and pathway of AS's effect on PD could be NLRP3 protein and NOD-like receptor signaling pathway by network pharmacology analysis. Further, we demonstrated that AS could alleviate symptoms of PD induced by MPTP through its interaction with the NLRP3 protein for the first time by in vivo and in vitro experiments. By binding to NLRP3, AS effectively inhibits the assembly and activation of the inflammasome. These findings suggest that AS is a promising inhibitor for PD driven by NLRP3 overactivation.


Asunto(s)
Intoxicación por MPTP , Fármacos Neuroprotectores , Enfermedad de Parkinson , Triterpenos , Ratones , Animales , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/metabolismo , Neuroprotección , Enfermedades Neuroinflamatorias , Simulación del Acoplamiento Molecular , Microglía , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas , Antiinflamatorios/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
8.
J Agric Food Chem ; 72(11): 5734-5745, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38453725

RESUMEN

Parkinson's disease (PD) is marked by the degeneration of dopaminergic neurons of the substantia nigra (SN), with neuroinflammation and mitochondrial dysfunction being key contributors. The neuroprotective potential of folic acid (FA) in the dopaminergic system of PD was assessed in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model. MPTP (20 mg/kg of body weight) was administered to C57BL/6J mice to simulate PD symptoms followed by FA treatment (5 mg/kg of body weight). Behavioral tests, pole, rotarod, and open-field tests, evaluated motor function, while immunohistochemistry, ELISA, RT-qPCR, and Western blotting quantified neuroinflammation, oxidative stress markers, and mitochondrial function. FA supplementation considerably improved motor performance, reduced homocysteine levels and mitigated oxidative damage in the SN. The FA-attenuated activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome lessened glial cell activity and reduced neuroinflammation. At the molecular level, FA reduced DNA damage, downregulated phosphorylated p53, and induced the expression of peroxisome proliferator-activated receptor α coactivator 1α (PGC-1α), enhancing mitochondrial function. Therefore, FA exerts neuroprotection in MPTP-induced PD by inhibiting neuroinflammation via NLRP3 inflammasome suppression and promoting mitochondrial integrity through the p53-PGC-1α pathway. Notable limitations of our study include its reliance on a single animal model and the incompletely elucidated mechanisms underlying the impact of FA on mitochondrial dynamics. Future investigations will explore the clinical utility of FA and its molecular mechanisms, further advancing it as a potential therapeutic for managing and delaying the progression of PD.


Asunto(s)
Intoxicación por MPTP , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Inflamasomas/genética , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , Neuronas Dopaminérgicas , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/metabolismo , Enfermedades Neuroinflamatorias , Proteína p53 Supresora de Tumor/metabolismo , Ratones Endogámicos C57BL , Enfermedad de Parkinson/genética , Mitocondrias/metabolismo , Peso Corporal , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología
9.
Neurochem Int ; 175: 105700, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38417589

RESUMEN

Currently, there is no effective treatment for Parkinson's disease (PD), and the regenerative treatment of neural stem cells (NSCs) is considered the most promising method. This study aimed to investigate the protective effect and mechanism of NSCs on neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced cynomolgus monkey (Macaca fascicularis) model of PD. We first found that injecting NSCs into the subarachnoid space relieved motor dysfunction in PD cynomolgus monkeys, as well as reduced dopaminergic neuron loss and neuronal damage in the substantia nigra (SN) and striatum. Besides, NSCs decreased 17-estradiol (E2) level, an estrogen, in the cerebrospinal fluid (CSF) of PD cynomolgus monkeys, which shows NSCs may provide neuro-protection by controlling estrogen levels in the CSF. Furthermore, NSCs elevated proliferator-activated receptor gamma coactivator-1 alpha (PGC-1a), mitofusin 2 (MFN2), and optic atrophy 1 (OPA1) expression, three genes mediating mitochondrial biogenesis, in the SN and striatum of PD monkeys. In addition, NSCs suppress reactive oxygen species (ROS) production caused by MPTP, as well as mitochondrial autophagy, therefore preserving dopaminergic neurons. In summary, our findings show that NSCs may preserve dopaminergic and neuronal cells in an MPTP-induced PD cynomolgus monkey model. These protective benefits might be attributed to NSCs' ability of modulating estrogen balance, increasing mitochondrial biogenesis, and limiting oxidative stress and mitochondrial autophagy. These findings add to our understanding of the mechanism of NSC treatment and shed light on further clinical treatment options.


Asunto(s)
Intoxicación por MPTP , Células-Madre Neurales , Enfermedad de Parkinson , Animales , Humanos , Macaca fascicularis/metabolismo , Intoxicación por MPTP/terapia , Intoxicación por MPTP/metabolismo , Células-Madre Neurales/metabolismo , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas , Dopamina/metabolismo , Estrógenos/farmacología
10.
Chem Biol Interact ; 387: 110820, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38016618

RESUMEN

Baicalin, a potent anti-oxidative and anti-inflammatory flavonoid compound derived from Scutellaria baicalensis, has emerged as a neuroprotective agent. However, the mechanisms by which baicalin is neuroprotective in Parkinson's disease (PD) remain unclear. In this research, α-syn/MPP+ and MPTP were used to establish PD models in BV2 cells and C57BL/6 mice, respectively. The effect and mechanism of action of baicalin in PD were investigated by Western blotting, RT-qPCR, ELISA, Immunohistochemistry (IHC) staining, Immunofluorescence (IF) staining, HPLC and methods. Results demonstrate that baicalin mitigates oxidative stress, microglia activation and inflammatory response caused by α-syn/MPP+ and MPTP. It protects against dopaminergic neuron loss and relieves motor deficits. Meanwhile, baicalin not only significantly up-regulates the expression of Nrf2 and its downstream antioxidant enzyme, but also suppresses the activation of NLRP3 inflammasome simultaneously. Notably, the beneficial effects of baicalin in PD treatment are blocked by Nrf2 knockdown. This research reveals that baicalin may exert neuroprotective effects in PD treatment by suppressing the activation of NLRP3 inflammasome and it is dependent on the Nrf2-mediated antioxidative response.


Asunto(s)
Flavonoides , Intoxicación por MPTP , Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Ratones , Antioxidantes/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Flavonoides/farmacología , Flavonoides/uso terapéutico , Flavonoides/metabolismo , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Microglía , Intoxicación por MPTP/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo
11.
Kaohsiung J Med Sci ; 39(10): 1002-1010, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37807941

RESUMEN

Butyrate (BU), a gut microbiota-derived metabolite, has been reported to play a neuroprotective role in Parkinson's disease (PD). However, the specific molecular mechanism of BU has not been fully interpreted. This work aimed to verify the protective effects of BU against MPTP/MPP+ -induced neurotoxicity and explore the mechanisms involved. The results showed that BU protected against MPTP-induced motor dysfunction and decreased tyrosine hydroxylase (TH) and dopamine transporter (DAT) levels. Additionally, BU pretreatment improved PC12 cell viability and reduced MPP+ -induced PC12 cell apoptosis. BU treatment also attenuated MPP+ -stimulated oxidative stress and inflammatory response in PC12 cells. Furthermore, BU inhibited MPTP/MPP+ -induced hyperactivation of the JAK2/STAT3 signaling in mice and PC12 cells. Besides, a JAK2 agonist, Coumermycin A1 (C-A1), substantially reversed BU-mediated inhibition on JAK2/STAT3 phosphorylation in MPP+ -challenged PC12 cells and abated BU-induced repression on MPP+ -triggered apoptosis, oxidative stress, and inflammatory response in PC12 cells. To sum up, BU might exert neuroprotective effects against MPP+ /MPTP-induced neurotoxicity by inactivating the JAK2/STAT3 signaling.


Asunto(s)
Microbioma Gastrointestinal , Intoxicación por MPTP , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratas , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Butiratos , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Transducción de Señal , Células PC12 , Ratones Endogámicos C57BL
12.
Int J Mol Sci ; 24(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298200

RESUMEN

Parkinson's disease (PD) is a disorder that is characterized by progressive and selective neuronal injury and cell death. Recent studies have provided accumulating evidence for a significant role of the immune system and neuroinflammation in PD pathogenesis. On this basis, many scientific articles have highlighted the anti-inflammatory and neuroprotective properties of Antrodia camphorata (AC), an edible fungus containing various bioactive compounds. This study aimed to evaluate the inhibitory effect of AC administration on neuroinflammation and oxidative stress in a murine model of MPTP-induced dopaminergic degeneration. AC (10, 30, 100 mg/kg) was administered daily by oral gavage starting 24 h after the first administration of MPTP, and mice were sacrificed 7 days after MPTP induction. In this study, treatment with AC significantly reduced the alteration of PD hallmarks, increasing tyrosine hydroxylase expression and reducing the number of alpha-synuclein-positive neurons. In addition, AC treatment restored the myelination process of neurons associated with PD and attenuated the neuroinflammatory state. Furthermore, our study demonstrated that AC was able to reduce the oxidative stress induced by MPTP injection. In conclusion, this study highlighted that AC could be a potential therapeutic agent for the treatment of neurodegenerative disorders such as PD.


Asunto(s)
Intoxicación por MPTP , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Modelos Animales de Enfermedad , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL , Neuronas Dopaminérgicas/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Intoxicación por MPTP/metabolismo
13.
Mol Neurobiol ; 60(9): 5137-5154, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37266763

RESUMEN

Neuroinflammation mediated by brain glial cells is one of the pathological drivers of Parkinson's disease (PD). Recent studies have shown that higher circulating trimethylamine N-oxide (TMAO, a gut microbiota-derived metabolite) can induce neuroinflammation and are strongly related to a variety of central nervous system diseases and adverse brain events. Herein, we explored the effect of pre-existing higher circulating TMAO on dopamine system and neuroinflammation in acute PD model mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydroxypyridine (MPTP). TMAO pretreatment was given by adding 3% (w/v) TMAO to drinking water of mice for 21 days to induce higher circulating TMAO status, then mice were administered with MPTP (20 mg/kg, i.p) for four times in one day to construct an acute PD model mice and treated with TMAO continuously until the end of the experiment. Results demonstrated that TMAO treatment significantly increased serum TMAO levels. Moreover, high serum TMAO significantly increased activation of microglia and astrocytes both in striatum and in substantia nigra. And strikingly, high serum TMAO significantly promoted the metabolism of striatal dopamine (DA) of PD model mice, although it had no significant effect on the number of dopaminergic neurons or the content of DA. Furthermore, immunofluorescence, ELISA, and RT-qPCR results of the hippocampus also showed that high serum TMAO significantly promoted the activation of microglia and astrocytes in the dentate gyrus, increased the levels of TNF-α and IL-1ß, and upregulated gene expression of M1 microglia-related markers (including CD16, CD32, and iNOS) and A2 astrocyte-related markers (including S100a10, Ptx3, and Emp1) in mRNA levels. In summary, we found that pre-existing high serum levels of TMAO worsened the PD-related brain pathology by promoting DA metabolism, aggravating neuroinflammation and regulating glial cell polarization.


Asunto(s)
Intoxicación por MPTP , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/patología , Dopamina/metabolismo , Intoxicación por MPTP/metabolismo , Enfermedades Neuroinflamatorias , Microglía/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología
14.
Mol Neurobiol ; 60(8): 4778-4794, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37162724

RESUMEN

Identification of genetic mutations in Parkinson's disease (PD) promulgates the genetic nature of disease susceptibility. Resilience-associated genes being unknown till date, the normal genetic makeup of an individual may be determinative too. Our earlier studies comparing the substantia nigra (SN) and striatum of C57BL/6J, CD-1 mice, and their F1-crossbreds demonstrated the neuroprotective role of admixing against the neurotoxin MPTP. Furthermore, the differences in levels of mitochondrial fission/fusion proteins in the SN of parent strains imply effects on mitochondrial biogenesis. Our present investigations suggest that the baseline levels of apoptotic factors Bcl-2, Bax, and AIF differ across the three strains and are differentially altered in SN following MPTP administration. The reduction in complex-I levels exclusively in MPTP-injected C57BL/6J reiterates mitochondrial involvement in PD pathogenesis. The MPTP-induced increase in complex-IV, in the nigra of both parent strains, may be compensatory in nature. The ultrastructural evaluation showed fairly preserved mitochondria in the dopaminergic neurons of CD-1 and F1-crossbreds. However, in CD-1, the endoplasmic reticulum demonstrated distinct luminal enlargement, bordering onto ballooning, suggesting proteinopathy as a possible initial trigger.The increase in α-synuclein in the pars reticulata of crossbreds suggests a supportive role for this output nucleus in compensating for the lost function of pars compacta. Alternatively, since α-synuclein over-expression occurs in different brain regions in PD, the α-synuclein increase here may suggest a similar pathogenic outcome. Further understanding is required to resolve this biological contraption. Nevertheless, admixing reduces the risk to MPTP by favoring anti-apoptotic consequences. Similar neuroprotection may be envisaged in the admixed populace of Anglo-Indians.


Asunto(s)
Intoxicación por MPTP , Enfermedad de Parkinson , Animales , Ratones , Neurotoxinas/metabolismo , alfa-Sinucleína/metabolismo , Ratones Endogámicos C57BL , Sustancia Negra/patología , Enfermedad de Parkinson/patología , Neuronas Dopaminérgicas/metabolismo , Mitocondrias/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Intoxicación por MPTP/metabolismo
15.
J Pharmacol Sci ; 152(1): 30-38, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37059489

RESUMEN

Parkinson's disease (PD) is characterized by dopaminergic (DAergic) neuronal loss in the substantia nigra pars compacta (SNpc), resulting from α-synuclein (αSyn) toxicity. We previously reported that αSyn oligomerization and toxicity are regulated by the fatty-acid binding protein 3 (FABP3), and the therapeutic effects of the FABP3 ligand, MF1, was successfully demonstrated in PD models. Here, we developed a novel and potent ligand, HY-11-9, which has a higher affinity for FABP3 (Kd = 11.7 ± 8.8) than MF1 (Kd = 302.8 ± 130.3). We also investigated whether the FABP3 ligand can ameliorate neuropathological deterioration after the onset of disease in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism. Motor deficits were observed two weeks after MPTP treatment. Notably, oral administration of HY-11-9 (0.03 mg/kg) improved motor deficits in both beam-walking and rotarod tasks, whereas MF1 failed to improve the motor deficits in both tasks. Consistent with the behavioral tasks, HY-11-9 recovered dopamine neurons from MPTP toxicity in the substantia nigra and ventral tegmental areas. Furthermore, HY-11-9 reduced the accumulation of phosphorylated-serine129-α-synuclein (pS129-αSyn) and colocalization with FABP3 in tyrosine hydroxylase (TH)-positive DA neurons in the PD mouse model. Overall, HY-11-9 significantly improved MPTP-induced behavioral and neuropathological deterioration, suggesting that it may be a potential candidate for PD therapy.


Asunto(s)
Intoxicación por MPTP , Enfermedad de Parkinson , Trastornos Parkinsonianos , Ratones , Animales , alfa-Sinucleína/metabolismo , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/patología , Ligandos , Trastornos Parkinsonianos/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico , Sustancia Negra/metabolismo , Sustancia Negra/patología , Neuronas Dopaminérgicas/metabolismo , Ratones Endogámicos C57BL , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Modelos Animales de Enfermedad , Proteína 3 de Unión a Ácidos Grasos/metabolismo
16.
Psychopharmacology (Berl) ; 240(5): 1103-1118, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36881113

RESUMEN

RATIONALE: Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder. Increasing evidence suggests the role of the gut-microbiota-brain axis in the pathogenesis of PD. Mesenchymal stem-cell-derived microvesicles (MSC-MVs) have emerged as a therapeutic potential for neurological disorders over the last years. OBJECTIVE: The objective of this study was to investigate whether MSC-MVs could improve PD-like neurotoxicity in mice after administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). RESULTS: MPTP-induced reductions in the dopamine transporter and tyrosine hydroxylase expressions in the striatum and substantia nigra (SNr) were attenuated after a subsequent single administration of MSC-MVs. Increases in the phosphorylated α-synuclein (p-α-Syn)/α-Syn ratio in the striatum, SNr, and colon after MPTP injection were also attenuated after MSC-MVs injection. Furthermore, MSC-MVs restored MPTP-induced abnormalities of the gut microbiota composition. Interestingly, positive correlations between the genus Dubosiella and the p-α-Syn/α-Syn ratio were observed in the brain and colon, suggesting their roles in the gut-microbiota-brain communication. Moreover, MSC-MVs attenuated MPTP-induced reduction of the metabolite, 3,6-dihydroxy-2-[3-methoxy-4-(sulfooxy)phenyl]-7-(sulfinooxy)-3,4-dihydro-2H-1-benzopyran-5-olate, in the blood. Interestingly, a negative correlation between this compound and the p-α-Syn/α-Syn ratio was observed in the brain and colon. CONCLUSIONS: These data suggest that MSC-MVs could ameliorate MPTP-induced neurotoxicity in the brain and colon via the gut-microbiota-brain axis. Therefore, MSC-MVs would have a new therapeutic potential for neurological disorders such as PD.


Asunto(s)
Microbioma Gastrointestinal , Intoxicación por MPTP , Enfermedad de Parkinson , Animales , Ratones , Intoxicación por MPTP/terapia , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/patología , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína/metabolismo , alfa-Sinucleína/uso terapéutico , Encéfalo/metabolismo , Sustancia Negra/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
17.
Cell Mol Neurobiol ; 43(6): 2815-2829, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36708421

RESUMEN

Parkinson Disease (PD) is one of the most common neurodegenerative disorders characterized by loss of dopaminergic neurons involved in motor functions. Growing evidence indicates that gut microbiota communicates with the brain known as the gut-brain axis (GBA). Mitochondrial toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used in animal studies to investigate the GBA in PD. Various MPTP administration regimens are performed in PD mouse models involving one to multiple injections in 1 day or one injection per day for several days. The aim of this study is to investigate if the impact of MPTP on gut microbiota differs depending on the administration regimen. C57BL/6 mice were treated with acute or subchronic regimens of MPTP. Motor functions were assessed by open-field, catalepsy, and wire hanging tests. The cecum and the brain samples were obtained for microbiota and gene expression analyses, respectively. MPTP administration regimens differed in their ability to alter the gut microbiota. Firmicutes and Bacteroidota were both increased in subchronic mice while did not change and decreased, respectively, in acute mice. Verrucomicrobiota was elevated in acute MPTP mice but dropped in subchronic MPTP mice. Muribaculaceae was the predominant genus in all groups but acute mice. In acute mice, Akkermansia was increased and Colidextribacter was decreased; however, they showed an opposite trend in subchronic mice. These data suggest that MPTP mouse model cause a gut microbiota dysbiosis in an administration regimen dependent manner, and it is important to take consideration of mouse model to investigate the GBA in neurodegenerative diseases including PD.


Asunto(s)
Microbioma Gastrointestinal , Intoxicación por MPTP , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Ratones , Intoxicación por MPTP/metabolismo , Ratones Endogámicos C57BL , Neuronas Dopaminérgicas/metabolismo , Modelos Animales de Enfermedad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología
18.
Neurotoxicol Teratol ; 95: 107146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36481438

RESUMEN

Tyrosine hydroxylase (Th) is an allosteric rate-limiting enzyme in catecholamine (CA) biosynthesis. The CAs, dopamine (DA), norepinephrine (NE), and epinephrine are important neurotransmitters wherein DA contributes a key role in the central nervous system of vertebrates. The present study evaluated DA and Th's significance in DA-ergic activity and neurodegeneration upon 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exposure in catfish. Further, the expression of certain brain-and ovary-related genes measured through qPCR were downregulated upon MPTP treatment which is in accordance with the decreased levels of L-Dopa, DA, and NE levels estimated through HPLC-ECD. Additionally, TEM analysis depicted structural disarray of brain upon MPTP exposure and also decreased serum levels of testosterone, 11-ketotestosterone, and estradiol-17ß. MPTP treatment, in vitro, using primary brain cell culture resulted in diminished cell viability and increased ROS levels leading to elevated apoptotic cells significantly. Consequently, the study highlights the MPTP-induced neurodegeneration of the Th and DA-ergic activity in corroboration with female brain-related genes downregulation, also gonadal function as evidenced by depleted sex steroids level and low expression of ovary-related genes.


Asunto(s)
Dopamina , Intoxicación por MPTP , Animales , Femenino , Ratones , Dopamina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Encéfalo/metabolismo , Levodopa/metabolismo , Norepinefrina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Ratones Endogámicos C57BL , Cuerpo Estriado/metabolismo , Intoxicación por MPTP/metabolismo
19.
Biotechnol Appl Biochem ; 70(1): 268-280, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35420720

RESUMEN

One of the main pathological features of Parkinson's disease (PD) is the loss of dopaminergic neurons in the substantia nigra compacta (SNc). Cistanoside A (CA) has a strong neuroprotective effect in PD, but the exact mechanism is unclear. In the present study, the MPTP-stimulated mouse model of PD and MPP+ -treated PD model in the MES23.5 neuronal cell model of PD were used to investigate the neuroprotective effects of CA on PD and its potential mechanism. The in vivo experiment results indicated that CA improved the motor function in mice and increased the number of tyrosine hydroxylase positive cells in SNc. In vitro experiments showed that CA reduced the MPP+ -induced decrease in neurons and mitochondrial membrane potential and promoted the activation of autophagosomes. Furthermore, we found that CA promoted the recruitment of PINK1 and Parkin aggregation to impair mitochondrial membranes and inhibited mitochondrial damage via LC3- and p62-mediated autophagy. In conclusion, CA protects against MPTP-induced neurotoxicity in vivo and MPP+ -induced neurotoxicity in vitro, possibly by promoting the PINK1/Parkin/p62 pathway to accelerate the degradation of damaged mitochondria thereby reducing oxidative stress.


Asunto(s)
Intoxicación por MPTP , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Mitofagia , Intoxicación por MPTP/metabolismo , Fármacos Neuroprotectores/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas/farmacología , Ratones Endogámicos C57BL
20.
Phytomedicine ; 108: 154512, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36288652

RESUMEN

BACKGROUND: Feruloylated oligosaccharides (FOs) are natural esterification products of ferulic acid and oligosaccharides. STUDY DESIGN: In this study, we examined whether FOs contribute to the ensured survival of nigrostriatal dopamine neurons and inhibition of neuroinflammation in Parkinson's disease (PD). METHODS: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg) was injected intraperitoneally into mice to establish a Parkinson's disease (PD) mouse model. FOs (15 and 30 mg/kg) were orally administered daily to the MPTP-treated mice. The rotarod test, balance beam test, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), quantitative PCR (qPCR), and western blot analyses were performed to examine the neuroprotective effects of FOs on MPTP-treated mice. RESULTS: Our study indicated that FOs increased the survival of dopamine neurons in the substantia nigra pars compacta (SNc) of the MPTP-treated mice. The neuroprotective effects of FOs were accompanied by inhibited glial activation and reduced inflammatory cytokine production. The mechanistic experiments revealed that the neuroprotective effects of FOs might be mediated through the activation of the ERK/CREB/BDNF/TrkB signalling pathway. CONCLUSION: This study provides new insights into the mechanism underlying the anti-neuroinflammatory effect of phytochemicals and may facilitate the development of dietary supplements for PD patients. Our results indicate that FOs can be used as potential modulators for the prevention and treatment of PD.


Asunto(s)
Intoxicación por MPTP , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratones Endogámicos C57BL , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/prevención & control , Neuronas Dopaminérgicas , Modelos Animales de Enfermedad , Oligosacáridos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA