Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.039
Filtrar
1.
J Neuroinflammation ; 21(1): 145, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824526

RESUMEN

BACKGROUND: Recent experimental studies of neuroinflammation in glaucoma pointed to cFLIP as a molecular switch for cell fate decisions, mainly regulating cell type-specific caspase-8 functions in cell death and inflammation. This study aimed to determine the importance of cFLIP for regulating astroglia-driven neuroinflammation in experimental glaucoma by analyzing the outcomes of astroglia-targeted transgenic deletion of cFLIP or cFLIPL. METHODS: Glaucoma was modeled by anterior chamber microbead injections to induce ocular hypertension in mouse lines with or without conditional deletion of cFLIP or cFLIPL in astroglia. Morphological analysis of astroglia responses assessed quantitative parameters in retinal whole mounts immunolabeled for GFAP and inflammatory molecules or assayed for TUNEL. The molecular analysis included 36-plexed immunoassays of the retina and optic nerve cytokines and chemokines, NanoString-based profiling of inflammation-related gene expression, and Western blot analysis of selected proteins in freshly isolated samples of astroglia. RESULTS: Immunoassays and immunolabeling of retina and optic nerve tissues presented reduced production of various proinflammatory cytokines, including TNFα, in GFAP/cFLIP and GFAP/cFLIPL relative to controls at 12 weeks of ocular hypertension with no detectable alteration in TUNEL. Besides presenting a similar trend of the proinflammatory versus anti-inflammatory molecules displayed by immunoassays, NanoString-based molecular profiling detected downregulated NF-κB/RelA and upregulated RelB expression of astroglia in ocular hypertensive samples of GFAP/cFLIP compared to ocular hypertensive controls. Analysis of protein expression also revealed decreased phospho-RelA and increased phospho-RelB in parallel with an increase in caspase-8 cleavage products. CONCLUSIONS: A prominent response limiting neuroinflammation in ocular hypertensive eyes with cFLIP-deletion in astroglia values the role of cFLIP in the molecular regulation of glia-driven neuroinflammation during glaucomatous neurodegeneration. The molecular responses accompanying the lessening of neurodegenerative inflammation also seem to maintain astroglia survival despite increased caspase-8 cleavage with cFLIP deletion. A transcriptional autoregulatory response, dampening RelA but boosting RelB for selective expression of NF-κB target genes, might reinforce cell survival in cFLIP-deleted astroglia.


Asunto(s)
Astrocitos , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD , Glaucoma , Enfermedades Neuroinflamatorias , Animales , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Ratones , Astrocitos/metabolismo , Astrocitos/patología , Glaucoma/metabolismo , Glaucoma/patología , Glaucoma/genética , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Ratones Transgénicos , Modelos Animales de Enfermedad , Citocinas/metabolismo , Retina/metabolismo , Retina/patología , Ratones Endogámicos C57BL , Nervio Óptico/patología , Nervio Óptico/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo
2.
Mikrochim Acta ; 191(6): 325, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739279

RESUMEN

Glial fibrillary acidic protein (GFAP) in serum has been shown as a biomarker of traumatic brain injury (TBI) which is a significant global public health concern. Accurate and rapid detection of serum GFAP is critical for TBI diagnosis. In this study, a time-resolved fluorescence immunochromatographic test strip (TRFIS) was proposed for the quantitative detection of serum GFAP. This TRFIS possessed excellent linearity ranging from 0.05 to 2.5 ng/mL for the detection of serum GFAP and displayed good linearity (Y = 598723X + 797198, R2 = 0.99), with the lowest detection limit of 16 pg/mL. This TRFIS allowed for quantitative detection of serum GFAP within 15 min and showed high specificity. The intra-batch coefficient of variation (CV) and the inter-batch CV were both < 4.0%. Additionally, this TRFIS was applied to detect GFAP in the serum samples from healthy donors and patients with cerebral hemorrhage, and the results of TRFIS could efficiently discern the patients with cerebral hemorrhage from the healthy donors. Our developed TRFIS has the characteristics of high sensitivity, high accuracy, and a wide linear range and is suitable for rapid and quantitative determination of serum GFAP on-site.


Asunto(s)
Cromatografía de Afinidad , Proteína Ácida Fibrilar de la Glía , Límite de Detección , Proteína Ácida Fibrilar de la Glía/sangre , Humanos , Cromatografía de Afinidad/métodos , Tiras Reactivas , Hemorragia Cerebral/sangre , Hemorragia Cerebral/diagnóstico , Biomarcadores/sangre
3.
BMJ Case Rep ; 17(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724215

RESUMEN

Autoimmune encephalitis due to glial fibrillar acidic protein (GFAP) astrocytopathy is a rare cause of subacute neuropsychiatric changes. In this case, a young patient presented with a viral prodrome and meningismus, followed by progressive encephalopathy and movement disorders over the span of 2 weeks. Due to his clinical trajectory, inflammatory cerebrospinal fluid (CSF) analysis, initial normal brain imaging and negative serum autoimmune encephalopathy panel, his initial diagnosis was presumed viral meningoencephalitis. The recurrence and progression of neuropsychiatric symptoms and myoclonus despite antiviral treatment prompted further investigation, inclusive of testing for CSF autoimmune encephalopathy autoantibodies, yielding a clinically meaningful, positive GFAP autoantibody. This case highlights the importance of appropriately testing both serum and CSF autoantibodies when an autoimmune encephalitic process is considered. Through this case, we review the clinical and radiographic manifestations of GFAP astrocytopathy, alongside notable pearls pertaining to this autoantibody syndrome and its management.


Asunto(s)
Autoanticuerpos , Encefalitis , Proteína Ácida Fibrilar de la Glía , Humanos , Masculino , Proteína Ácida Fibrilar de la Glía/sangre , Proteína Ácida Fibrilar de la Glía/inmunología , Proteína Ácida Fibrilar de la Glía/líquido cefalorraquídeo , Encefalitis/diagnóstico , Encefalitis/inmunología , Autoanticuerpos/sangre , Autoanticuerpos/líquido cefalorraquídeo , Astrocitos/patología , Astrocitos/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Enfermedad de Hashimoto/diagnóstico , Enfermedad de Hashimoto/sangre , Diagnóstico Diferencial , Adulto , Imagen por Resonancia Magnética
4.
BMC Med ; 22(1): 192, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735950

RESUMEN

BACKGROUND: Peripheral glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are sensitive markers of neuroinflammation and neuronal damage. Previous studies with highly selected participants have shown that peripheral GFAP and NfL levels are elevated in the pre-clinical phase of Alzheimer's disease (AD) and dementia. However, the predictive value of GFAP and NfL for dementia requires more evidence from population-based cohorts. METHODS: This was a prospective cohort study to evaluate UK Biobank participants enrolled from 2006 to 2010 using plasma GFAP and NfL measurements measured by Olink Target Platform and prospectively followed up for dementia diagnosis. Primary outcome was the risk of clinical diagnosed dementia. Secondary outcomes were cognition. Linear regression was used to assess the associations between peripheral GFAP and NfL with cognition. Cox proportional hazard models with cross-validations were used to estimate associations between elevated GFAP and NfL with risk of dementia. All models were adjusted for covariates. RESULTS: A subsample of 48,542 participants in the UK Biobank with peripheral GFAP and NfL measurements were evaluated. With an average follow-up of 13.18 ± 2.42 years, 1312 new all-cause dementia cases were identified. Peripheral GFAP and NfL increased up to 15 years before dementia diagnosis was made. After strictly adjusting for confounders, increment in NfL was found to be associated with decreased numeric memory and prolonged reaction time. A greater annualized rate of change in GFAP was significantly associated with faster global cognitive decline. Elevation of GFAP (hazard ratio (HR) ranges from 2.25 to 3.15) and NfL (HR ranges from 1.98 to 4.23) increased the risk for several types of dementia. GFAP and NfL significantly improved the predictive values for dementia using previous models (area under the curve (AUC) ranges from 0.80 to 0.89, C-index ranges from 0.86 to 0.91). The AD genetic risk score and number of APOE*E4 alleles strongly correlated with GFAP and NfL levels. CONCLUSIONS: These results suggest that peripheral GFAP and NfL are potential biomarkers for the early diagnosis of dementia. In addition, anti-inflammatory therapies in the initial stages of dementia may have potential benefits.


Asunto(s)
Bancos de Muestras Biológicas , Biomarcadores , Demencia , Proteína Ácida Fibrilar de la Glía , Proteínas de Neurofilamentos , Humanos , Proteínas de Neurofilamentos/sangre , Proteína Ácida Fibrilar de la Glía/sangre , Biomarcadores/sangre , Femenino , Demencia/sangre , Demencia/diagnóstico , Demencia/epidemiología , Masculino , Reino Unido/epidemiología , Estudios Prospectivos , Anciano , Persona de Mediana Edad , Estudios Longitudinales , Biobanco del Reino Unido
5.
Artículo en Chino | MEDLINE | ID: mdl-38802305

RESUMEN

Objective: To explore the effect of the absent in melanoma 2 (AIM2) -mediated neuroinflammation in noise-induced cognitive dysfunction in rats. Methods: In April 2023, sixteen male Wistar rats were randomly divided into control group and noise group, with 8 rats in each group. The rats in the noise group were placed in 50 cm×50 cm×40 cm transparent boxes and exposed to 100 dB (A) white noise with a sound pressure level of 100 dB (A) (4 h/d for 30 d) . At the same time, rats in the control group were kept in similar boxes with environmental noise less than 60 dB (A) . After 30 days of noise exposure, the Morris water maze experiment was applied to test the learning and memory abilities of the rats; the pathological morphology of hippocampal tissues was observed by Hematoxylin-Eosin (HE) staining. Western blot was used to detect the protein expression levels of AIM2, cysteinyl aspartate specific proteinase-1 (caspase-1) , apoptosis-associated speck-like protein (ASC) , interleukin-1ß (IL-1ß) , IL-18, ionic calcium-binding articulation molecule-1 (Iba-1) , and glial fibrillary acidic protein (GFAP) . The expression of both Iba-1 and GFAP in hippocampal tissue was assessed by immunohistochemical staining. The co-localization of AIM2 with Iba-1 or GFAP was determined by immunofluorescence double staining. Results: Compared with the control group, the escape latency of rats in the noise group was increased by 16.29 s, 17.71 s, and 20.26 s on days 3, 4, and 5, respectively. On day 6, the noise-exposed rats spent shorter time in the target quadrant and had fewer times in crossing the platform[ (7.25±2.27) s and (1.13±0.64) times] than the control group[ (15.64±3.99) s and (4.25±2.12) times] (P<0.05) . After noise exposure, hippocampal neurons of rats displayed marked nuclear hyperchromatic and pyknosis phenomenon. The noise-exposed rats had higher numbers of both microglia and astrocytes (27.00±2.65 and 43.33±5.51) in the DG area of the hippocampus relative to the control group (14.67±3.06 and 20.00±4.58) (P<0.05) . Moreover, the glial cells in the noise group had larger cell cytosol with more and thicker branches. The protein expression levels of inflammatory cytokines Cleaved-IL-1ß and Cleaved-IL-18 in the hippocampus of rats in the noise group (1.55±0.19 and 1.74±0.12) were significantly higher than the control group (1.00±0.11 and 1.00±0.13) (P<0.05) . After noise exposure, the protein expression levels of AIM2, Cleaved-Caspase-1 and ASC (1.19±0.09, 1.34±0.07 and 1.14±0.01) were higher than the control group (1.00±0.07, 1.00±0.14 and 1.00±0.06) and differences between the two groups were statistically significant (P<0.05) . A significant increase in the number of cells co-localizing AIM2 with Iba-1 or GFAP in the noise group (28.67±4.04 and 40.67±5.13) compared with the control group (15.67±4.04 and 17.67±3.79) , and statistically significant differences were observed between the two groups (P<0.05) . Conclusion: Noise exposure may activate the AIM2 inflammasome in hippocampal glial cells of rats, releasing excessive inflammatory cytokines and causing neuroinflammation that damages neurons.


Asunto(s)
Disfunción Cognitiva , Hipocampo , Inflamasomas , Interleucina-18 , Ruido , Ratas Wistar , Animales , Ratas , Masculino , Ruido/efectos adversos , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Inflamasomas/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Proteínas de Unión al ADN/metabolismo , Caspasa 1/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Aprendizaje por Laberinto
6.
Int J Mol Sci ; 25(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38791145

RESUMEN

The diagnostic and prognostic value of plasma glial fibrillary acidic protein (pl-GFAP) in sporadic Creutzfeldt-Jakob disease (sCJD) has never been assessed in the clinical setting of rapidly progressive dementia (RPD). Using commercially available immunoassays, we assayed the plasma levels of GFAP, tau (pl-tau), and neurofilament light chain (pl-NfL) and the CSF total tau (t-tau), 14-3-3, NfL, phospho-tau181 (p-tau), and amyloid-beta isoforms 42 (Aß42) and 40 (Aß40) in sCJD (n = 132) and non-prion RPD (np-RPD) (n = 94) patients, and healthy controls (HC) (n = 54). We also measured the CSF GFAP in 67 sCJD patients. Pl-GFAP was significantly elevated in the sCJD compared to the np-RPD and HC groups and affected by the sCJD subtype. Its diagnostic accuracy (area under the curve (AUC) 0.760) in discriminating sCJD from np-RPD was higher than the plasma and CSF NfL (AUCs of 0.596 and 0.663) but inferior to the 14-3-3, t-tau, and pl-tau (AUCs of 0.875, 0.918, and 0.805). Pl-GFAP showed no association with sCJD survival after adjusting for known prognostic factors. Additionally, pl-GFAP levels were associated with 14-3-3, pl-tau, and pl-NfL but not with CSF GFAP, Aß42/Aß40, and p-tau. The diagnostic and prognostic value of pl-GFAP is inferior to established neurodegeneration biomarkers. Nonetheless, pl-GFAP noninvasively detects neuroinflammation and neurodegeneration in sCJD, warranting potential applications in disease monitoring.


Asunto(s)
Péptidos beta-Amiloides , Biomarcadores , Síndrome de Creutzfeldt-Jakob , Demencia , Proteína Ácida Fibrilar de la Glía , Proteínas tau , Humanos , Síndrome de Creutzfeldt-Jakob/sangre , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo , Femenino , Masculino , Proteína Ácida Fibrilar de la Glía/sangre , Proteína Ácida Fibrilar de la Glía/líquido cefalorraquídeo , Anciano , Persona de Mediana Edad , Pronóstico , Proteínas tau/sangre , Proteínas tau/líquido cefalorraquídeo , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Demencia/sangre , Demencia/diagnóstico , Demencia/líquido cefalorraquídeo , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas de Neurofilamentos/sangre , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Progresión de la Enfermedad , Proteínas 14-3-3/líquido cefalorraquídeo , Proteínas 14-3-3/sangre
7.
Int J Mol Sci ; 25(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38791562

RESUMEN

We compared the effects of two different high-caloric diets administered to 4-week-old rats for 12 weeks: a diet rich in sugar (30% sucrose) and a cafeteria diet rich in sugar and high-fat foods. We focused on the hippocampus, particularly on the gamma-aminobutyric acid (GABA)ergic system, including the Ca2+-binding proteins parvalbumin (PV), calretinin (CR), calbindin (CB), and the neuropeptides somatostatin (SST) and neuropeptide Y (NPY). We also analyzed the density of cholinergic varicosities, brain-derived neurotrophic factor (BDNF), reelin (RELN), and cyclin-dependent kinase-5 (CDK-5) mRNA levels, and glial fibrillary acidic protein (GFAP) expression. The cafeteria diet reduced PV-positive neurons in the granular layer, hilus, and CA1, as well as NPY-positive neurons in the hilus, without altering other GABAergic populations or overall GABA levels. The high-sugar diet induced a decrease in the number of PV-positive cells in CA3 and an increase in CB-positive cells in the hilus and CA1. No alterations were observed in the cholinergic varicosities. The cafeteria diet also reduced the relative mRNA expression of RELN without significant changes in BDNF and CDK5 levels. The cafeteria diet increased the number but reduced the length of the astrocyte processes. These data highlight the significance of determining the mechanisms mediating the observed effects of these diets and imply that the cognitive impairments previously found might be related to both the neuroinflammation process and the reduction in PV, NPY, and RELN expression in the hippocampal formation.


Asunto(s)
Astrocitos , Quinasa 5 Dependiente de la Ciclina , Hipocampo , Neurogénesis , Proteína Reelina , Animales , Astrocitos/metabolismo , Ratas , Proteína Reelina/metabolismo , Masculino , Hipocampo/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Neuronas GABAérgicas/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Neuropéptido Y/metabolismo , Neuropéptido Y/genética , Ratas Wistar , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Parvalbúminas/metabolismo
8.
Biomolecules ; 14(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38785974

RESUMEN

Diabetic retinopathy (DR) affects over 140 million people globally. The mechanisms that lead to blindness are still enigmatic but there is evidence that sustained inflammation and hypoxia contribute to vascular damage. Despite efforts to understand the role of inflammation and microglia in DR's pathology, the contribution of astrocytes to hypoxic responses is less clear. To investigate the role of astrocytes in hypoxia-induced retinopathy, we utilized a 7-day systemic hypoxia model using the GFAP-CreERT2:Rosa26iDTR transgenic mouse line. This allows for the induction of inflammatory reactive astrogliosis following tamoxifen and diphtheria toxin administration. We hypothesize that DTx-induced astrogliosis is neuroprotective during hypoxia-induced retinopathy. Glial, neuronal, and vascular responses were quantified using immunostaining, with antibodies against GFAP, vimentin, IBA-1, NeuN, fibrinogen, and CD31. Cytokine responses were measured in both the brain and serum. We report that while both DTx and hypoxia induced a phenotype of reduced microglia morphological activation, DTx, but not hypoxia, induced an increase in the Müller glia marker vimentin. We did not observe that the combination of DTx and hypoxic treatments exacerbated the signs of reactive glial cells, nor did we observe a significant change in the expression immunomodulatory mediators IL-1ß, IL2, IL-4, IL-5, IL-6, IL-10, IL-18, CCL17, TGF-ß1, GM-CSF, TNF-α, and IFN-γ. Overall, our results suggest that, in this hypoxia model, reactive astrogliosis does not alter the inflammatory responses or cause vascular damage in the retina.


Asunto(s)
Modelos Animales de Enfermedad , Células Ependimogliales , Gliosis , Ratones Transgénicos , Microglía , Animales , Gliosis/patología , Gliosis/metabolismo , Gliosis/inducido químicamente , Ratones , Microglía/metabolismo , Microglía/patología , Microglía/efectos de los fármacos , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Células Ependimogliales/efectos de los fármacos , Retina/metabolismo , Retina/patología , Retina/efectos de los fármacos , Hipoxia/metabolismo , Hipoxia/patología , Astrocitos/metabolismo , Astrocitos/patología , Astrocitos/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Citocinas/metabolismo , Vimentina/metabolismo , Vimentina/genética , Toxina Diftérica
9.
Alzheimers Res Ther ; 16(1): 112, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762725

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß (Aß) plaques, neurofibrillary tau tangles, and neurodegeneration in the brain parenchyma. Here, we aimed to (i) assess differences in blood and imaging biomarkers used to evaluate neurodegeneration among cognitively unimpaired APOE ε4 homozygotes, heterozygotes, and non-carriers with varying risk for sporadic AD, and (ii) to determine how different cerebral pathologies (i.e., Aß deposition, medial temporal atrophy, and cerebrovascular pathology) contribute to blood biomarker concentrations in this sample. METHODS: Sixty APOE ε4 homozygotes (n = 19), heterozygotes (n = 21), and non-carriers (n = 20) ranging from 60 to 75 years, were recruited in collaboration with Auria biobank (Turku, Finland). Participants underwent Aß-PET ([11C]PiB), structural brain MRI including T1-weighted and T2-FLAIR sequences, and blood sampling for measuring serum neurofilament light chain (NfL), plasma total tau (t-tau), plasma N-terminal tau fragments (NTA-tau) and plasma glial fibrillary acidic protein (GFAP). [11C]PiB standardized uptake value ratio was calculated for regions typical for Aß accumulation in AD. MRI images were analysed for regional volumes, atrophy scores, and volumes of white matter hyperintensities. Differences in biomarker levels and associations between blood and imaging biomarkers were tested using uni- and multivariable linear models (unadjusted and adjusted for age and sex). RESULTS: Serum NfL concentration was increased in APOE ε4 homozygotes compared with non-carriers (mean 21.4 pg/ml (SD 9.5) vs. 15.5 pg/ml (3.8), p = 0.013), whereas other blood biomarkers did not differ between the groups (p > 0.077 for all). From imaging biomarkers, hippocampal volume was significantly decreased in APOE ε4 homozygotes compared with non-carriers (6.71 ml (0.86) vs. 7.2 ml (0.7), p = 0.029). In the whole sample, blood biomarker levels were differently predicted by the three measured cerebral pathologies; serum NfL concentration was associated with cerebrovascular pathology and medial temporal atrophy, while plasma NTA-tau associated with medial temporal atrophy. Plasma GFAP showed significant association with both medial temporal atrophy and Aß pathology. Plasma t-tau concentration did not associate with any of the measured pathologies. CONCLUSIONS: Only increased serum NfL concentrations and decreased hippocampal volume was observed in cognitively unimpaired APOEε4 homozygotes compared to non-carriers. In the whole population the concentrations of blood biomarkers were affected in distinct ways by different pathologies.


Asunto(s)
Péptidos beta-Amiloides , Apolipoproteína E4 , Atrofia , Biomarcadores , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Femenino , Masculino , Anciano , Biomarcadores/sangre , Atrofia/patología , Persona de Mediana Edad , Apolipoproteína E4/genética , Proteínas tau/sangre , Péptidos beta-Amiloides/sangre , Imagen por Resonancia Magnética/métodos , Proteínas de Neurofilamentos/sangre , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/patología , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Heterocigoto , Proteína Ácida Fibrilar de la Glía/sangre , Compuestos de Anilina , Tiazoles
10.
Alzheimers Res Ther ; 16(1): 110, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755703

RESUMEN

BACKGROUND: Plasma biomarkers of Alzheimer's disease (AD) pathology, neurodegeneration, and neuroinflammation are ideally suited for secondary prevention programs in self-sufficient persons at-risk of dementia. Plasma biomarkers have been shown to be highly correlated with traditional imaging biomarkers. However, their comparative predictive value versus traditional AD biomarkers is still unclear in cognitively unimpaired (CU) subjects and with mild cognitive impairment (MCI). METHODS: Plasma (Aß42/40, p-tau181, p-tau231, NfL, and GFAP) and neuroimaging (hippocampal volume, centiloid of amyloid-PET, and tau-SUVR of tau-PET) biomarkers were assessed at baseline in 218 non-demented subjects (CU = 140; MCI = 78) from the Geneva Memory Center. Global cognition (MMSE) was evaluated at baseline and at follow-ups up to 5.7 years. We used linear mixed-effects models and Cox proportional-hazards regression to assess the association between biomarkers and cognitive decline. Lastly, sample size calculations using the linear mixed-effects models were performed on subjects positive for amyloid-PET combined with tau-PET and plasma biomarker positivity. RESULTS: Cognitive decline was significantly predicted in MCI by baseline plasma NfL (ß=-0.55), GFAP (ß=-0.36), hippocampal volume (ß = 0.44), centiloid (ß=-0.38), and tau-SUVR (ß=-0.66) (all p < 0.05). Subgroup analysis with amyloid-positive MCI participants also showed that only NfL and GFAP were the only significant predictors of cognitive decline among plasma biomarkers. Overall, NfL and tau-SUVR showed the highest prognostic values (hazard ratios of 7.3 and 5.9). Lastly, we demonstrated that adding NfL to the inclusion criteria could reduce the sample sizes of future AD clinical trials by up to one-fourth in subjects with amyloid-PET positivity or by half in subjects with amyloid-PET and tau-PET positivity. CONCLUSIONS: Plasma NfL and GFAP predict cognitive decline in a similar manner to traditional imaging techniques in amyloid-positive MCI patients. Hence, even though they are non-specific biomarkers of AD, both can be implemented in memory clinic workups as important prognostic biomarkers. Likewise, future clinical trials might employ plasma biomarkers as additional inclusion criteria to stratify patients at higher risk of cognitive decline to reduce sample sizes and enhance effectiveness.


Asunto(s)
Péptidos beta-Amiloides , Biomarcadores , Disfunción Cognitiva , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Masculino , Femenino , Biomarcadores/sangre , Disfunción Cognitiva/sangre , Disfunción Cognitiva/diagnóstico por imagen , Anciano , Proteínas tau/sangre , Péptidos beta-Amiloides/sangre , Persona de Mediana Edad , Neuroimagen/métodos , Proteínas de Neurofilamentos/sangre , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Fragmentos de Péptidos/sangre , Proteína Ácida Fibrilar de la Glía/sangre
11.
J Transl Med ; 22(1): 503, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802941

RESUMEN

BACKGROUND: Prion diseases are transmissible and fatal neurodegenerative diseases characterized by accumulation of misfolded prion protein isoform (PrPSc), astrocytosis, microgliosis, spongiosis, and neurodegeneration. Elevated levels of cell membrane associated PrPSc protein and inflammatory cytokines hint towards the activation of death receptor (DR) pathway/s in prion diseases. Activation of DRs regulate, either cell survival or apoptosis, autophagy and necroptosis based on the adaptors they interact. Very little is known about the DR pathways activation in prion disease. DR3 and DR5 that are expressed in normal mouse brain were never studied in prion disease, so also their ligands and any DR adaptors. This research gap is notable and investigated in the present study. METHODS: C57BL/6J mice were infected with Rocky Mountain Laboratory scrapie mouse prion strain. The progression of prion disease was examined by observing morphological and behavioural abnormalities. The levels of PrP isoforms and GFAP were measured as the marker of PrPSc accumulation and astrocytosis respectively using antibody-based techniques that detect proteins on blot and brain section. The levels of DRs, their glycosylation and ectodomain shedding, and associated factors warrant their examination at protein level, hence western blot analysis was employed in this study. RESULTS: Prion-infected mice developed motor deficits and neuropathology like PrPSc accumulation and astrocytosis similar to other prion diseases. Results from this research show higher expression of all DR ligands, TNFR1, Fas and p75NTR but decreased levels DR3 and DR5. The levels of DR adaptor proteins like TRADD and TRAF2 (primarily regulate pro-survival pathways) are reduced. FADD, which primarily regulate cell death, its level remains unchanged. RIPK1, which regulate pro-survival, apoptosis and necroptosis, its expression and proteolysis (inhibits necroptosis but activates apoptosis) are increased. CONCLUSIONS: The findings from the present study provide evidence towards the involvement of DR3, DR5, DR6, TL1A, TRAIL, TRADD, TRAF2, FADD and RIPK1 for the first time in prion diseases. The knowledge obtained from this research discuss the possible impacts of these 16 differentially expressed DR factors on our understanding towards the multifaceted neuropathology of prion diseases and towards future explorations into potential targeted therapeutic interventions for prion disease specific neuropathology.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Enfermedades por Prión , Animales , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Receptores de Muerte Celular/metabolismo , Transducción de Señal , Encéfalo/metabolismo , Encéfalo/patología , Ratones , Proteínas PrPSc/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo
12.
Neurochem Res ; 49(7): 1823-1837, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38727985

RESUMEN

Methylglyoxal (MG) is considered a classical biomarker of diabetes mellitus and its comorbidities. However, a role for this compound in exacerbated immune responses, such as septicemia, is being increasingly observed and requires clarification, particularly in the context of neuroinflammatory responses. Herein, we used two different approaches (in vivo and acute hippocampal slice models) to investigate MG as a biomarker of neuroinflammation and the neuroimmunometabolic shift to glycolysis in lipopolysaccharide (LPS) inflammation models. Our data reinforce the hypothesis that LPS-induced neuroinflammation stimulates the cerebral innate immune response by increasing IL-1ß, a classical pro-inflammatory cytokine, and the astrocyte reactive response, via elevating S100B secretion and GFAP levels. Acute neuroinflammation promotes an early neuroimmunometabolic shift to glycolysis by elevating glucose uptake, lactate release, PFK1, and PK activities. We observed high serum and cerebral MG levels, in association with a reduction in glyoxalase 1 detoxification activity, and a close correlation between serum and hippocampus MG levels with the systemic and neuroinflammatory responses to LPS. Findings strongly suggest a role for MG in immune responses.


Asunto(s)
Biomarcadores , Hipocampo , Lipopolisacáridos , Enfermedades Neuroinflamatorias , Piruvaldehído , Piruvaldehído/metabolismo , Lipopolisacáridos/farmacología , Animales , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Biomarcadores/metabolismo , Masculino , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ratas Wistar , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Glucólisis/efectos de los fármacos , Interleucina-1beta/metabolismo , Inflamación/metabolismo , Inflamación/inducido químicamente , Proteína Ácida Fibrilar de la Glía/metabolismo , Lactoilglutatión Liasa/metabolismo , Ratas , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos
13.
Lakartidningen ; 1212024 May 31.
Artículo en Sueco | MEDLINE | ID: mdl-38818759

RESUMEN

Technical developments have paved the way for the development of ultrasensitive analytical methods that allow for precise quantification of brain-specific proteins in blood samples. Plasma levels of amyloid ß, specifically the Aß42/40 ratio, are reduced in Alzheimer's disease (AD) and show concordance with brain amyloidosis assessed by PET, but the overlap with normal elderly may be too large for reliable use in clinical applications. Plasma phosphorylated tau (P-tau), especially a variant called P-tau217, is markedly increased in the early symptomatic stages of AD but remains normal in other neurodegenerative disorders. Total tau (T-tau) is measurable in blood and shows most promise as a biomarker for acute neuronal injury (e.g. acute traumatic or hypoxic brain injury), where T-tau shows a fast and dramatic increase but does not work well as an AD biomarker due to contributions to blood levels from peripheral tissues. Instead, a novel method for tau protein produced only in the CNS called brain-derived tau (BD-tau) shows promise as a biomarker for AD-type neurodegeneration. Neurofilament light (NFL) levels in blood correlate tightly with levels in CSF and reflect axonal injury irrespective of the underlying cause. Increased blood NFL concentration is found in several neurodegenerative disorders, including AD, but even more so in disorders such as motor neuron disease and frontotemporal dementia. Glial fibrillary acidic protein (GFAP) is expressed with activation of astrocytes, and is mildly increased in AD, but is also very high also in acute brain disorders. These blood tests show promise as tools to identify AD pathophysiology in the first assessment of patients with early cognitive symptoms, also in primary care, to guide clinical management and possible admission to the specialist clinic. A two-step model will result in a very high accuracy to either predict or exclude brain amyloidosis of the Alzheimer type.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Encéfalo , Proteínas de Neurofilamentos , Proteínas tau , Humanos , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/fisiopatología , Biomarcadores/sangre , Proteínas tau/sangre , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Proteínas de Neurofilamentos/sangre , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Proteína Ácida Fibrilar de la Glía/sangre
14.
Sci Rep ; 14(1): 10433, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714696

RESUMEN

Toxoplasma gondii (T. gondii) is a protozoan parasite that infects approximately one-third of the global human population, often leading to chronic infection. While acute T. gondii infection can cause neural damage in the central nervous system and result in toxoplasmic encephalitis, the consequences of T. gondii chronic infection (TCI) are generally asymptomatic. However, emerging evidence suggests that TCI may be linked to behavioral changes or mental disorders in hosts. Astrocyte polarization, particularly the A1 subtype associated with neuronal apoptosis, has been identified in various neurodegenerative diseases. Nevertheless, the role of astrocyte polarization in TCI still needs to be better understood. This study aimed to establish a mouse model of chronic TCI and examine the transcription and expression levels of glial fibrillary acidic protein (GFAP), C3, C1q, IL-1α, and TNF-α in the brain tissues of the mice. Quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay, and Western blotting were employed to assess these levels. Additionally, the expression level of the A1 astrocyte-specific marker C3 was evaluated using indirect fluorescent assay (IFA). In mice with TCI, the transcriptional and expression levels of the inflammatory factors C1q, IL-1α, and TNF-α followed an up-down-up pattern, although they remained elevated compared to the control group. These findings suggest a potential association between astrocyte polarization towards the A1 subtype and synchronized changes in these three inflammatory mediators. Furthermore, immunofluorescence assay (IFA) revealed a significant increase in the A1 astrocytes (GFAP+C3+) proportion in TCI mice. This study provides evidence that TCI can induce astrocyte polarization, a biological process that may be influenced by changes in the levels of three inflammatory factors: C1q, IL-1α, and TNF-α. Additionally, the release of neurotoxic substances by A1 astrocytes may be associated with the development of TCI.


Asunto(s)
Astrocitos , Encéfalo , Toxoplasma , Animales , Astrocitos/metabolismo , Astrocitos/parasitología , Astrocitos/patología , Ratones , Toxoplasma/patogenicidad , Toxoplasma/fisiología , Encéfalo/parasitología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Enfermedad Crónica , Polaridad Celular , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología , Toxoplasmosis/patología , Factor de Necrosis Tumoral alfa/metabolismo , Toxoplasmosis Cerebral/parasitología , Toxoplasmosis Cerebral/patología , Toxoplasmosis Cerebral/metabolismo
15.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732109

RESUMEN

Adipose-derived mesenchymal stem cells (ASCs) are adult multipotent stem cells, able to differentiate toward neural elements other than cells of mesodermal lineage. The aim of this research was to test ASC neural differentiation using melatonin combined with conditioned media (CM) from glial cells. Isolated from the lipoaspirate of healthy donors, ASCs were expanded in a basal growth medium before undergoing neural differentiation procedures. For this purpose, CM obtained from olfactory ensheathing cells and from Schwann cells were used. In some samples, 1 µM of melatonin was added. After 1 and 7 days of culture, cells were studied using immunocytochemistry and flow cytometry to evaluate neural marker expression (Nestin, MAP2, Synapsin I, GFAP) under different conditions. The results confirmed that a successful neural differentiation was achieved by glial CM, whereas the addition of melatonin alone did not induce appreciable changes. When melatonin was combined with CM, ASC neural differentiation was enhanced, as demonstrated by a further improvement of neuronal marker expression, whereas glial differentiation was attenuated. A dynamic modulation was also observed, testing the expression of melatonin receptors. In conclusion, our data suggest that melatonin's neurogenic differentiation ability can be usefully exploited to obtain neuronal-like differentiated ASCs for potential therapeutic strategies.


Asunto(s)
Diferenciación Celular , Melatonina , Células Madre Mesenquimatosas , Melatonina/farmacología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Humanos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Tejido Adiposo/citología , Neuronas/citología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Células de Schwann/citología , Células de Schwann/metabolismo , Células de Schwann/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Adulto , Nestina/metabolismo , Nestina/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/citología , Neuroglía/metabolismo , Sinapsinas/metabolismo
16.
BMJ Open ; 14(5): e083531, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754888

RESUMEN

INTRODUCTION: In light of the burden of traumatic brain injury (TBI) in children and the excessive number of unnecessary CT scans still being performed, new strategies are needed to limit their use while minimising the risk of delayed diagnosis of intracranial lesions (ICLs). Identifying children at higher risk of poor outcomes would enable them to be better monitored. The use of the blood-based brain biomarkers glial fibrillar acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) could help clinicians in this decision. The overall aim of this study is to provide new knowledge regarding GFAP and UCH-L1 in order to improve TBI management in the paediatric population. METHODS AND ANALYSIS: We will conduct a European, prospective, multicentre study, the BRAINI-2 paediatric study, in 20 centres in France, Spain and Switzerland with an inclusion period of 30 months for a total of 2880 children and adolescents included. To assess the performance of GFAP and UCH-L1 used separately and in combination to predict ICLs on CT scans (primary objective), 630 children less than 18 years of age with mild TBI, defined by a Glasgow Coma Scale score of 13-15 and with a CT scan will be recruited. To evaluate the potential of GFAP and UCH-L1 in predicting the prognosis after TBI (secondary objective), a further 1720 children with mild TBI but no CT scan as well as 130 children with moderate or severe TBI will be recruited. Finally, to establish age-specific reference values for GFAP and UCH-L1 (secondary objective), we will include 400 children and adolescents with no history of TBI. ETHICS AND DISSEMINATION: This study has received ethics approval in all participating countries. Results from our study will be disseminated in international peer-reviewed journals. All procedures were developed in order to assure data protection and confidentiality. TRIAL REGISTRATION NUMBER: NCT05413499.


Asunto(s)
Biomarcadores , Lesiones Traumáticas del Encéfalo , Proteína Ácida Fibrilar de la Glía , Tomografía Computarizada por Rayos X , Ubiquitina Tiolesterasa , Humanos , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Ubiquitina Tiolesterasa/sangre , Niño , Biomarcadores/sangre , Estudios Prospectivos , Tomografía Computarizada por Rayos X/métodos , Proteína Ácida Fibrilar de la Glía/sangre , Adolescente , Preescolar , Europa (Continente) , Femenino , Masculino , Lactante , Estudios Multicéntricos como Asunto , Valor Predictivo de las Pruebas
17.
Neuroscience ; 547: 88-97, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38615829

RESUMEN

Down syndrome (DS), also known as trisomy 21, is one of the most common chromosomal disorders associated with intellectual disability. Mouse models are valuable for mechanistic and therapeutic intervention studies. The purpose of this study was to investigate astroglial anomalies in Dp16, a widely used DS mouse model. Brain sections were prepared from one-month-old Dp16 mice and their littermates, immunostained with an anti-GFAP or anti-S100B antibody, and imaged to reconstruct astroglial morphology in three dimensions. No significant difference in the number of astrocytes was found in either the hippocampal CA1 region or cortex between Dp16 and WT mice. However, the average astroglial volume in Dp16 was significantly (P < 0.05) greater than that in WT, suggesting the astroglial activation. Reanalysis of the single-nucleus RNA sequencing data indicated that the genes differentially expressed between WT and Dp16 astrocytes were associated with synapse organization and neuronal projection. In contrast, in vitro cultured neonatal astrocytes did not exhibit significant morphological changes. The expression of Gfap in in vitro cultured Dp16 astrocytes was not increased as it was in in vivo hippocampal tissue. However, after treatment with lipopolysaccharides, the inflammatory response gene IFNß increased significantly more in Dp16 astrocytes than in WT astrocytes. Overall, our results showed that the increase in astrogliogenesis in DS was not apparent in the early life of Dp16 mice, while astrocyte activation, which may be partly caused by increased responses to inflammatory stimulation, was significant. The inflammatory response of astrocytes might be a potential therapeutic target for DS intellectual disability.


Asunto(s)
Astrocitos , Modelos Animales de Enfermedad , Síndrome de Down , Animales , Síndrome de Down/patología , Síndrome de Down/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Ratones , Células Cultivadas , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/patología , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Encéfalo/patología , Encéfalo/metabolismo
18.
J Mol Histol ; 55(3): 279-301, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639812

RESUMEN

Tramadol is a novel centrally acting analgesic. Despite, its implementation during pregnancy may impair neuronal survival and synaptic development in neonatal cerebella. The current investigation assessed the histological and ultrastructural alterations in postnatal cortical cerebellar neuronal development induced by prenatal tramadol. 30 offsprings were divided to control group I: fifteen pups born to mothers given saline from D10 till D21 of gestation. Tramadol-treated group II: fifteen pups born to mothers received tramadol HCL (50 mg/kg/day) from D10 till D21 of gestation. Pups were categorized into three subgroups (a, b, and c) and offered for sacrifice on the seventh, fourteenth and twenty-first post-natal days. Light microscopic examination revealed the overcrowding and signs of red degeneration affecting purkinje cell layer. Neurodegenerative signs of both purkinje and granule cell neurons were also confirmed by TEM in form of chromatin condensation, dilated Golgi channels, disrupted endoplasmic reticulum, marked infolding of the nuclear envelope and decrease in granule cell precursors. In addition, the astrocytic processes and terminal nerve axons appeared with different degrees of demyelination and decreased number of oligodendrocytes and degenerated mitochondria. Furthermore, group II exhibited an increase in P53 immune expression. The area percentage of apoptotic cells detected by TUNEL assay was significantly increased. Besides to the significant decrease of Ki67 immunoreactivity in the stem neuronal cell progenitors. Quantitative PCR results showed a significant decline in micro RNA7 gene expression in tramadol treated groups resulting in affection of multiple target genes in P53 signaling pathways, improper cortical size and defect in neuronal development.


Asunto(s)
Proteína Ácida Fibrilar de la Glía , Antígeno Ki-67 , MicroARNs , Efectos Tardíos de la Exposición Prenatal , Transducción de Señal , Tramadol , Proteína p53 Supresora de Tumor , Animales , Tramadol/farmacología , Tramadol/efectos adversos , MicroARNs/genética , MicroARNs/metabolismo , Embarazo , Transducción de Señal/efectos de los fármacos , Femenino , Ratas , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Cerebelo/efectos de los fármacos , Cerebelo/ultraestructura , Cerebelo/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/ultraestructura , Apoptosis/efectos de los fármacos , Ratas Wistar , Animales Recién Nacidos
19.
Alzheimers Dement ; 20(5): 3485-3494, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38597292

RESUMEN

INTRODUCTION: Recent evidence suggests that exposure to the stress of racism may increase the risk of dementia for Black Americans. METHODS: The present study used 17 years of data from a sample of 255 Black Americans to investigate the extent to which exposure to racial discrimination predicts subsequent changes in serum Alzheimer's Disease Research Center (ADRC) biomarkers: serum phosphorylated tau181(p-tau181), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP). We hypothesized that racial discrimination assessed during middle age would predict increases in these serum biomarkers as the participants aged into their 60s. RESULTS: Our findings indicate that exposure to various forms of racial discrimination during a person's 40s and early 50s predicts an 11-year increase in both serum p-tau181 and NfL. Racial discrimination was not associated with subsequent levels of GFAP. DISCUSSION: These findings suggest that racial discrimination in midlife may contribute to increased AD pathology and neurodegeneration later in life. HIGHLIGHTS: A 17-year longitudinal study of Black Americans. Assessments of change in serum p-tau181, neurofilament light, and glial fibrillary acidic protein. Exposure to racial discrimination during middle age predicted increases in p-tau181 and neurofilament light. Education was positively related to both p-tau181 and exposure to racial discrimination.


Asunto(s)
Envejecimiento , Biomarcadores , Negro o Afroamericano , Proteínas de Neurofilamentos , Racismo , Proteínas tau , Humanos , Proteínas tau/sangre , Proteínas de Neurofilamentos/sangre , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Fosforilación , Estudios Longitudinales , Envejecimiento/sangre , Proteína Ácida Fibrilar de la Glía/sangre , Anciano
20.
J Neuroinflammation ; 21(1): 109, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678300

RESUMEN

BACKGROUND: Identifying individuals with intracranial injuries following mild traumatic brain injury (mTBI), i.e. complicated mTBI cases, is important for follow-up and prognostication. The main aims of our study were (1) to assess the temporal evolution of blood biomarkers of CNS injury and inflammation in individuals with complicated mTBI determined on computer tomography (CT) and magnetic resonance imaging (MRI); (2) to assess the corresponding discriminability of both single- and multi-biomarker panels, from acute to chronic phases after injury. METHODS: Patients with mTBI (n = 207), defined as Glasgow Coma Scale score between 13 and 15, loss of consciousness < 30 min and post-traumatic amnesia < 24 h, were included. Complicated mTBI - i.e., presence of any traumatic intracranial injury on neuroimaging - was present in 8% (n = 16) on CT (CT+) and 12% (n = 25) on MRI (MRI+). Blood biomarkers were sampled at four timepoints following injury: admission (within 72 h), 2 weeks (± 3 days), 3 months (± 2 weeks) and 12 months (± 1 month). CNS biomarkers included were glial fibrillary acidic protein (GFAP), neurofilament light (NFL) and tau, along with 12 inflammation markers. RESULTS: The most discriminative single biomarkers of traumatic intracranial injury were GFAP at admission (CT+: AUC = 0.78; MRI+: AUC = 0.82), and NFL at 2 weeks (CT+: AUC = 0.81; MRI+: AUC = 0.89) and 3 months (MRI+: AUC = 0.86). MIP-1ß and IP-10 concentrations were significantly lower across follow-up period in individuals who were CT+ and MRI+. Eotaxin and IL-9 were significantly lower in individuals who were MRI+ only. FGF-basic concentrations increased over time in MRI- individuals and were significantly higher than MRI+ individuals at 3 and 12 months. Multi-biomarker panels improved discriminability over single biomarkers at all timepoints (AUCs > 0.85 for admission and 2-week models classifying CT+ and AUC ≈ 0.90 for admission, 2-week and 3-month models classifying MRI+). CONCLUSIONS: The CNS biomarkers GFAP and NFL were useful single diagnostic biomarkers of complicated mTBI, especially in acute and subacute phases after mTBI. Several inflammation markers were suppressed in patients with complicated versus uncomplicated mTBI and remained so even after 12 months. Multi-biomarker panels improved diagnostic accuracy at all timepoints, though at acute and 2-week timepoints, the single biomarkers GFAP and NFL, respectively, displayed similar accuracy compared to multi-biomarker panels.


Asunto(s)
Biomarcadores , Conmoción Encefálica , Imagen por Resonancia Magnética , Tomografía Computarizada por Rayos X , Humanos , Masculino , Biomarcadores/sangre , Femenino , Imagen por Resonancia Magnética/métodos , Adulto , Persona de Mediana Edad , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/sangre , Conmoción Encefálica/complicaciones , Adulto Joven , Proteínas de Neurofilamentos/sangre , Proteína Ácida Fibrilar de la Glía/sangre , Anciano , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA