Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
1.
Science ; 377(6603): 276-284, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35857588

RESUMEN

γδ T cells represent a substantial fraction of intestinal lymphocytes at homeostasis, but they also constitute a major lymphocyte population infiltrating colorectal cancers (CRCs); however, their temporal contribution to CRC development or progression remains unclear. Using human CRC samples and murine CRC models, we found that most γδ T cells in premalignant or nontumor colons exhibit cytotoxic markers, whereas tumor-infiltrating γδ T cells express a protumorigenic profile. These contrasting T cell profiles were associated with distinct T cell receptor (TCR)-Vγδ gene usage in both humans and mice. Longitudinal intersectional genetics and antibody-dependent strategies targeting murine γδ T cells enriched in the epithelium at steady state led to heightened tumor development, whereas targeting γδ subsets that accumulate during CRC resulted in reduced tumor growth. Our results uncover temporal pro- and antitumor roles for γδ T cell subsets.


Asunto(s)
Neoplasias Colorrectales , Citotoxicidad Inmunológica , Intestinos , Linfocitos Intraepiteliales , Receptores de Antígenos de Linfocitos T gamma-delta , Animales , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Humanos , Intestinos/inmunología , Linfocitos Intraepiteliales/inmunología , Ratones , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología
2.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845016

RESUMEN

Unlike conventional αß T cells, γδ T cells typically recognize nonpeptide ligands independently of major histocompatibility complex (MHC) restriction. Accordingly, the γδ T cell receptor (TCR) can potentially recognize a wide array of ligands; however, few ligands have been described to date. While there is a growing appreciation of the molecular bases underpinning variable (V)δ1+ and Vδ2+ γδ TCR-mediated ligand recognition, the mode of Vδ3+ TCR ligand engagement is unknown. MHC class I-related protein, MR1, presents vitamin B metabolites to αß T cells known as mucosal-associated invariant T cells, diverse MR1-restricted T cells, and a subset of human γδ T cells. Here, we identify Vδ1/2- γδ T cells in the blood and duodenal biopsy specimens of children that showed metabolite-independent binding of MR1 tetramers. Characterization of one Vδ3Vγ8 TCR clone showed MR1 reactivity was independent of the presented antigen. Determination of two Vδ3Vγ8 TCR-MR1-antigen complex structures revealed a recognition mechanism by the Vδ3 TCR chain that mediated specific contacts to the side of the MR1 antigen-binding groove, representing a previously uncharacterized MR1 docking topology. The binding of the Vδ3+ TCR to MR1 did not involve contacts with the presented antigen, providing a basis for understanding its inherent MR1 autoreactivity. We provide molecular insight into antigen-independent recognition of MR1 by a Vδ3+ γδ TCR that strengthens an emerging paradigm of antibody-like ligand engagement by γδ TCRs.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Linfocitos Intraepiteliales/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Adulto , Presentación de Antígeno , Femenino , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/fisiología , Humanos , Linfocitos Intraepiteliales/fisiología , Ligandos , Masculino , Antígenos de Histocompatibilidad Menor/química , Antígenos de Histocompatibilidad Menor/fisiología , Células T Invariantes Asociadas a Mucosa/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/fisiología , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología
3.
Arch Immunol Ther Exp (Warsz) ; 69(1): 4, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33661375

RESUMEN

A minor subset (approximately 5%) of peripheral T cells has their TCR build up from γ and δ chains instead of α and ß-those are the γδ T lymphocytes. They can be functionally divided into subsets, e.g., Th1-, Th2-, Th9-, Th17-, Tfh-, and Treg-like γδ T cells. They share some specifics of both innate and adaptive immunity, and are capable of rapid response to a range of stimuli, including some viral and bacterial infections. Atopic diseases, including asthma, are one of major health-related problems of modern western societies. Asthma is one of the most common airway diseases, affecting people of all ages and having potential life-threatening consequences. In this paper, we review the current knowledge about the involvement of γδ T cells in the pathogenesis of asthma and its exacerbations. We summarize both the studies performed on human subjects as well as on the murine model of asthma. γδ T cells seem to be involved in the pathogenesis of asthma, different subsets probably perform opposite functions, e.g., symptom-exacerbating Vγ1 and symptom-suppressing Vγ4 in mice model of asthma.


Asunto(s)
Asma/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Subgrupos de Linfocitos T/inmunología , Animales , Asma/etiología , Humanos , Inmunoglobulina E/sangre , Interferón gamma/fisiología , Interleucina-17/biosíntesis , Ratones , Hipersensibilidad Respiratoria/inmunología , Células Th2/inmunología
5.
Proc Natl Acad Sci U S A ; 115(42): 10738-10743, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30279177

RESUMEN

γδ T cells are enriched at barrier sites such as the gut, skin, and lung, where their roles in maintaining barrier integrity are well established. However, how these cells contribute to homeostasis at the gingiva, a key oral barrier and site of the common chronic inflammatory disease periodontitis, has not been explored. Here we demonstrate that the gingiva is policed by γδ T cells with a T cell receptor (TCR) repertoire that diversifies during development. Gingival γδ T cells accumulated rapidly after birth in response to barrier damage, and strikingly, their absence resulted in enhanced pathology in murine models of the oral inflammatory disease periodontitis. Alterations in bacterial communities could not account for the increased disease severity seen in γδ T cell-deficient mice. Instead, gingival γδ T cells produced the wound healing associated cytokine amphiregulin, administration of which rescued the elevated oral pathology of tcrδ-/- mice. Collectively, our results identify γδ T cells as critical constituents of the immuno-surveillance network that safeguard gingival tissue homeostasis.


Asunto(s)
Anfirregulina/metabolismo , Homeostasis , Boca/inmunología , Periodontitis/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Subgrupos de Linfocitos T/inmunología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Boca/metabolismo , Periodontitis/metabolismo , Periodontitis/patología , Subgrupos de Linfocitos T/metabolismo
6.
BMC Infect Dis ; 18(1): 464, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-30219039

RESUMEN

BACKGROUND: Previous studies reported HIV infection alters the distribution and function of γδ T cells and their subsets. γδ T phenotypes in healthy and diseased individuals has received little attention in Ethiopia. We conducted this study to analyze the distribution of γδ T cells, the subsets and levels of expression of activation (CD38), exhaustion or anergy (CD95, PD1), adhesion (N-CAM/CD56 and CD103), among HIV and TB infected patients. METHOD: The distributions of total γδ T cells, Vδ1 and Vδ2 T cells subsets were analyzed in clinical samples collected from asymptomatic HIV, pulmonary TB patients and apparently healthy controls. Multicolor flow cytometry and IFN-γ ELISA were used to assess surface markers and functional responses of Vδ2 T cells to isopentenyl pyrophosphate stimulation, respectively. RESULT: A total of 52 study participants were enrolled in this study, 22 HIV + TB-, 10 HIV-TB+ and 20 healthy controls. No significant differences were observed in the distribution of total γδ T cells and in the proportion of Vδ1 subsets in all study groups, though slightly higher proportions were observed in HIV + TB- patients for the latter, of borderline statistical significance (p = 0.07). However, the proportion of Vδ2 T cells, as well as the IFN-γ response to IPP stimulation, was significantly reduced in HIV + TB- patients compared to healthy controls (p < 0.002). Expression of the activation marker CD38 (p < 0.001) and adhesion marker CD103 (αEß7) were significantly higher in the Vδ1 T cell subset among both HIV + TB- (p = 0.013) and HIV-TB+ (p = 0.006) patients compared to healthy controls. Similarly, exhaustion markers, CD95 and PD1, were significantly higher in these two T cell subsets among both HIV + TB- and HIV-TB+ patients (p < 0.01). Interestingly, we also observed an increased proportion of effector memory (CD45RA-CD27-) and effector cytotoxic (CD45RA + CD27-) Vδ2 T cell subsets in HIV negative pulmonary TB patients. CONCLUSION: In sum, HIV infection was associated with an increase in Vδ1 and a decrease in the function and frequencies of Vδ2 T cells. Moreover, increased effector Vδ2 T cells were observed among HIV negative pulmonary TB patients suggesting a potential role of these T cells in the host response to TB.


Asunto(s)
Infecciones por VIH/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Subgrupos de Linfocitos T/fisiología , Tuberculosis Pulmonar/inmunología , Adulto , Estudios Transversales , Etiopía , Femenino , Infecciones por VIH/patología , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Subgrupos de Linfocitos T/metabolismo , Tuberculosis Pulmonar/patología , Adulto Joven
7.
Front Immunol ; 9: 731, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29686687

RESUMEN

Epithelial tissues line the body providing a protective barrier from the external environment. Maintenance of these epithelial barrier tissues critically relies on the presence of a functional resident T cell population. In some tissues, the resident T cell population is exclusively comprised of γδ T cells, while in others γδ T cells are found together with αß T cells and other lymphocyte populations. Epithelial-resident γδ T cells function not only in the maintenance of the epithelium, but are also central to the repair process following damage from environmental and pathogenic insults. Key to their function is the crosstalk between γδ T cells and neighboring epithelial cells. This crosstalk relies on multiple receptor-ligand interactions through both the T cell receptor and accessory molecules leading to temporal and spatial regulation of cytokine, chemokine, growth factor, and extracellular matrix protein production. As antigens that activate epithelial γδ T cells are largely unknown and many classical costimulatory molecules and coreceptors are not used by these cells, efforts have focused on identification of novel coreceptors and ligands that mediate pivotal interactions between γδ T cells and their neighbors. In this review, we discuss recent advances in the understanding of functions for these coreceptors and their ligands in epithelial maintenance and repair processes.


Asunto(s)
Epitelio/fisiología , Linfocitos Intraepiteliales/fisiología , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Animales , Adhesión Celular , Movimiento Celular , Humanos , Ligandos
8.
Cell Mol Life Sci ; 75(12): 2125-2135, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29520421

RESUMEN

γδ T cells share characteristics of innate and adaptive immune cells and are involved in a broad spectrum of pro-inflammatory functions. Nonetheless, there is accumulating evidence that γδ T cells also exhibit regulatory functions. In this review, we describe the different phenotypes of regulatory γδ T cells in correlation with the identified mechanisms of suppression.


Asunto(s)
Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Linfocitos T Reguladores/fisiología , Animales , Genes cdc/fisiología , Humanos , Fenómenos del Sistema Inmunológico/fisiología , Tolerancia Inmunológica , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
9.
Immunity ; 48(2): 350-363.e7, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29426701

RESUMEN

Despite evidence that γδ T cells play an important role during malaria, their precise role remains unclear. During murine malaria induced by Plasmodium chabaudi infection and in human P. falciparum infection, we found that γδ T cells expanded rapidly after resolution of acute parasitemia, in contrast to αß T cells that expanded at the acute stage and then declined. Single-cell sequencing showed that TRAV15N-1 (Vδ6.3) γδ T cells were clonally expanded in mice and had convergent complementarity-determining region 3 sequences. These γδ T cells expressed specific cytokines, M-CSF, CCL5, CCL3, which are known to act on myeloid cells, indicating that this γδ T cell subset might have distinct functions. Both γδ T cells and M-CSF were necessary for preventing parasitemic recurrence. These findings point to an M-CSF-producing γδ T cell subset that fulfills a specialized protective role in the later stage of malaria infection when αß T cells have declined.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos/fisiología , Malaria/prevención & control , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Subgrupos de Linfocitos T/inmunología , Animales , Femenino , Humanos , Activación de Linfocitos , Malaria/inmunología , Ratones , Parasitemia/prevención & control , Recurrencia
10.
J Exp Med ; 214(9): 2733-2758, 2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-28798028

RESUMEN

In the thymus, hematopoietic progenitors commit to the T cell lineage and undergo sequential differentiation to generate diverse T cell subsets, including major histocompatibility complex (MHC)-restricted αß T cell receptor (TCR) T cells and non-MHC-restricted γδ TCR T cells. The factors controlling precursor commitment and their subsequent maturation and specification into αß TCR versus γδ TCR T cells remain unclear. Here, we show that the tyrosine phosphatase PTPN2 attenuates STAT5 (signal transducer and activator of transcription 5) signaling to regulate T cell lineage commitment and SRC family kinase LCK and STAT5 signaling to regulate αß TCR versus γδ TCR T cell development. Our findings identify PTPN2 as an important regulator of critical checkpoints that dictate the commitment of multipotent precursors to the T cell lineage and their subsequent maturation into αß TCR or γδ TCR T cells.


Asunto(s)
Linaje de la Célula/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 2/fisiología , Receptores de Antígenos de Linfocitos T alfa-beta/fisiología , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Linfocitos T/fisiología , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Multipotentes/fisiología , Factor de Transcripción STAT5/fisiología
11.
Clin Immunol ; 183: 233-239, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28456719

RESUMEN

Celiac disease (CD) is a digestive and autoimmune disorder driven by an immune response to modified gluten peptides. Affected intestines show infiltrates of various T-cell and NK-cell subsets. It is currently unclear if individuals with subclinical CD have systemic abnormalities in immune cells. We here studied whether subclinical CD is associated with changes in blood CD57-expressing and Vδ1-expressing lymphocytes in children, and whether cytomegalovirus (CMV) infection modifies this association. Included were 1068 children from the Generation R Study. Serum Immunoglobulin G (IgG) levels against CMV were measured by ELISA; Tissue transglutaminase type 2 antibody (TG2A) levels with fluorescence enzyme immunoassay (FEIA). Duodenal biopsies, additional Human Leukocyte Antigen (HLA) DQ 2.2, 2.5 and 8 and endomysial antibody (EMA) typing were performed in TG2A positive children. Subclinical CD cases (n=12) had 1.8 fold (95% CI 1.06; 3.1) fewer Vδ1+ T cells which was predominantly observed in CMV seronegative children (p-interaction 0.02), and 2.7 fold (95% CI 1.25; 5.99) more CD57+ T cells than HLA DQ2/-DQ8 positive controls (n=339). Hence, children with subclinical CD have alterations in specific blood T cell subsets that are linked to viral pathology. The observed interaction effect between subclinical CD and CMV may contribute to the understanding of disease pathogenesis.


Asunto(s)
Antígenos CD57/fisiología , Enfermedad Celíaca/inmunología , Infecciones por Citomegalovirus/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Linfocitos T Citotóxicos/fisiología , Enfermedad Celíaca/complicaciones , Niño , Preescolar , Infecciones por Citomegalovirus/complicaciones , Femenino , Humanos , Masculino
12.
Nat Rev Immunol ; 15(11): 683-91, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26449179

RESUMEN

With the promise of T cell-based therapy for cancer finally becoming reality, this Review focuses on the less-studied γδ T cell lineage and its diverse responses to tumours. γδ T cells have well-established protective roles in cancer, largely on the basis of their potent cytotoxicity and interferon-γ production. Besides this, recent studies have revealed a series of tumour-promoting functions that are linked to interleukin-17-producing γδ T cells. Here, we integrate the current knowledge from both human and mouse studies to highlight the potential of γδ T cell modulation to improve cancer immunotherapy.


Asunto(s)
Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Linfocitos T/inmunología , Animales , Citotoxicidad Inmunológica , Humanos , Interleucina-17/fisiología , Ratones , Neoplasias/inmunología , Neoplasias/terapia
13.
Klin Onkol ; 28 Suppl 2: 2S60-8, 2015.
Artículo en Checo | MEDLINE | ID: mdl-26374160

RESUMEN

γδ T cells present a minor population of the T cell family which basically differs in construction of their T cell receptor (TCR). Thanks to the features of γδ TCR, these cells can acquire unique effector functions and play a specific role (not only) in antitumor immune response. In this article, we describe the basic characteristics of this cell population and their connection to cancer. In the experimental part we performed exploratory analysis of circulating γδ T cells in reference population and comparison with melanoma and breast carcinoma patients. The median percentage of γδ T cells from all lymphocytes was 2.9% (interquartile range-IQR 1.7-4%). The median absolute numbers of γδ cells per liter of blood was 5.05×10(7) (IQR 2.9-7.84×10(7)). The median percentage of γδ cells between all CD3 T cells was 3.9% (IQR 2.3-5.6%). No correlation between γδ T cells levels and gender or age was observed in reference population. Detailed immunophenotyping was also conducted describing representation of memory subsets (using CD45RO and CD27 markers) and presence of surface markers HLADr, CD69, CD25, CD28, CCR7, CTLA 4, ICOS, PD 1L and PD 1 between γδ T cells of the controls and breast carcinoma patients. From this analysis, it is evident that γδ T cells do not represent a uniform population but they differ in surface markers as well as in their effector functions.


Asunto(s)
Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Linfocitos T/fisiología , Animales , Humanos , Inmunofenotipificación
14.
J Neuroinflammation ; 12: 134, 2015 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-26186920

RESUMEN

BACKGROUND: Rasmussen encephalitis (RE) is a rare neuroinflammatory disease characterized by intractable seizures and progressive atrophy on one side of the cerebrum. Perivascular cuffing and clusters of T cells in the affected cortical hemisphere are indicative of an active cellular immune response. METHODS: Peripheral blood mononuclear cells (PBMCs) and brain-infiltrating lymphocytes (BILs) were isolated from 20 RE surgery specimens by standard methods, and CD3(+) T cell populations were analyzed by flow cytometry. Gamma delta T cell receptor spectratyping was carried out by nested PCR of reversed transcribed RNA extracted from RE brain tissue, followed by high resolution capillary electrophoresis. A MiSeq DNA sequencing platform was used to sequence the third complementarity determining region (CDR3) of δ1 chains. RESULTS: CD3(+) BILs from all of the RE brain specimens comprised both αß and γδ T cells. The median αß:γδ ratio was 1.9 (range 0.58-5.2) compared with a median ratio of 7.7 (range 2.7-40.8) in peripheral blood from the same patients. The αß T cells isolated from brain tissue were predominantly CD8(+), and the majority of γδ T cells were CD4(-) CD8(-). Staining for the early activation marker CD69 showed that a fraction of the αß and γδ T cells in the BILs were activated (median 42%; range 13-91%, and median 47%; range 14-99%, respectively). Spectratyping T cell receptor (TCR) Vδ1-3 chains from 14 of the RE brain tissue specimens indicated that the γδ T cell repertoire was relatively restricted. Sequencing δ1 chain PCR fragments revealed that the same prevalent CDR3 sequences were found in all of the brain specimens. These CDR3 sequences were also detected in brain tissue from 15 focal cortical dysplasia (FCD) cases. CONCLUSION: Neuroinflammation in RE involves both activated αß and γδ T cells. The presence of γδ T cells with identical TCR δ1 chain CDR3 sequences in all of the brain specimens examined suggests that a non-major histocompatibility complex (MHC)-restricted immune response to the same antigen(s) is involved in the etiology of RE. The presence of the same δ1 clones in CD brain implies the involvement of a common inflammatory pathway in both diseases.


Asunto(s)
Encefalitis/inmunología , Encefalitis/fisiopatología , Inmunidad Celular/fisiología , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Linfocitos T/fisiología , Antígenos CD/inmunología , Antígenos CD/fisiología , Antígenos de Diferenciación de Linfocitos T/inmunología , Antígenos de Diferenciación de Linfocitos T/fisiología , Encéfalo/inmunología , Encéfalo/patología , Encéfalo/fisiopatología , Niño , Preescolar , Estudios de Cohortes , Regiones Determinantes de Complementariedad/inmunología , Regiones Determinantes de Complementariedad/fisiología , Encefalitis/patología , Epilepsia/inmunología , Epilepsia/patología , Epilepsia/fisiopatología , Femenino , Humanos , Inmunidad Celular/inmunología , Lactante , Lectinas Tipo C/inmunología , Lectinas Tipo C/fisiología , Masculino , Malformaciones del Desarrollo Cortical de Grupo I/inmunología , Malformaciones del Desarrollo Cortical de Grupo I/patología , Malformaciones del Desarrollo Cortical de Grupo I/fisiopatología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/fisiología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/inmunología , Linfocitos T/patología
15.
Iran J Allergy Asthma Immunol ; 13(4): 220-30, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24659157

RESUMEN

A central role for T cells and their cytokines in the pathogenesis of psoriasis has been proposed; however, there are controversies over the details of this issue. The goal of this study is to summarise currently available data on the importance of T cells in psoriasis pathogenesis. A systematic review of the English medical literature was conducted by searching PubMed, Embase, ISI Web of Knowledge, and Iranian databases including Iranmedex, and SID for studies on associations between the involvement of T cell subsets and psoriasis. The results of the present study indicate that alterations in the number and function of different subsets of T-cells are associated with psoriasis. It appears that studies on T cell subsets contributed to understanding the immunopathogenesis of psoriasis. In addition, it may have provided novel therapeutic opportunities in ameliorating immunopathologies.


Asunto(s)
Psoriasis/inmunología , Linfocitos T/inmunología , Linfocitos T CD8-positivos/inmunología , Humanos , Psoriasis/etiología , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Células Th17/inmunología , Células Th2/inmunología
16.
J Invest Dermatol ; 134(8): 2231-2240, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24662766

RESUMEN

UVB is a component of solar radiation primarily responsible for causing damage and cancer in irradiated skin, and disrupting immune homeostasis. The immediate harm and long-term health risks of excessive sunlight exposure are affecting the lives of nearly all people worldwide. Inflammation is a key mechanism underlying UVB's various detrimental effects. Here we show that activation of the protein kinase p38α is restricted to the epidermis in UVB-exposed skin, and that p38α ablation targeted to the epithelial compartment is sufficient to suppress UVB-induced inflammation. Mechanistically, loss of epithelial p38α signaling attenuates the expression of genes required to induce vascular leakage and edema, and also increases the steady-state abundance of epidermal γδ T cells, which are known to promote the repair of damaged epidermis. These effects of p38α deficiency delineate a molecular network operating at the organism-environment interface, and reveal conditions crucial to preventing the pathology resulting from sun-damaged skin.


Asunto(s)
Dermatitis/prevención & control , Epidermis/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Rayos Ultravioleta/efectos adversos , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Animales , Ciclooxigenasa 2/fisiología , Dermatitis/etiología , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología
17.
Cancer Res ; 74(7): 1969-82, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24525743

RESUMEN

Interleukin (IL)-17A is expressed in the tumor microenvironment where it appears to contribute to tumor development, but its precise role in tumor immunity remains controversial. Here, we report mouse genetic evidence that IL-17A is critical for tumor growth. IL-17A-deficient mice exhibited reduced tumor growth, whereas systemic administration of recombinant mouse IL-17A promoted the growth of hepatocellular carcinoma. The tumor-promoting effect of IL-17A was mediated through suppression of antitumor responses, especially CD8(+) T-cell responses. Furthermore, we found that IL-17A was produced mainly by Vγ4 γδ T cells, insofar as depleting Vγ4 γδ T cells reduced tumor growth, whereas adoptive transfer of Vγ4 γδ T cells promoted tumor growth. Mechanistic investigations showed that IL-17A induced CXCL5 production by tumor cells to enhance the infiltration of myeloid-derived suppressor cells (MDSC) to tumor sites in a CXCL5/CXCR2-dependent manner. IL-17A also promoted the suppressive activity of MDSC to reinforce suppression of tumoral immunity. Moreover, we found that MDSC could induce IL-17A-producing γδ T cells via production of IL-1ß and IL-23. Conversely, IL-17A could also enhance production of IL-1ß and IL-23 in MDSC as a positive feedback. Together, our results revealed a novel mechanism involving cross-talk among γδ T cells, MDSCs, and tumor cells through IL-17A production. These findings offer new insights into how IL-17A influences tumor immunity, with potential implications for the development of tumor immunotherapy.


Asunto(s)
Carcinoma Hepatocelular/inmunología , Interleucina-17/fisiología , Neoplasias Hepáticas/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Linfocitos T/inmunología , Animales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos C57BL , Células Mieloides/fisiología , Receptores de Interleucina-8B/fisiología
18.
Int J Biol Sci ; 10(2): 119-35, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24520210

RESUMEN

Vγ9Vδ2 (also termed Vγ2Vδ2) T cells, a major human peripheral blood γδ T cell subset, recognize microbial (E)-4-hydroxy-3-methylbut-2-enyl diphosphate and endogenous isopentenyl diphosphate in a TCR-dependent manner. The recognition does not require specific accessory cells, antigen uptake, antigen processing, or MHC class I, class II, or class Ib expression. This subset of T cells plays important roles in mediating innate immunity against a wide variety of infections and displays potent and broad cytotoxic activity against human tumor cells. Because γδT cells express both natural killer receptors such as NKG2D and γδ T cell receptors, they are considered to represent a link between innate and adaptive immunity. In addition, activated γδ T cells express a high level of antigen-presenting cell-related molecules and can present peptide antigens derived from destructed cells to αß T cells. Utilizing these antimicrobial and anti-tumor properties of γδ T cells, preclinical and clinical trials have been conducted to develop novel immunotherapies for infections and malignancies. Here, we review the immunological properties of γδ T cells including the underlying recognition mechanism of nonpeptitde antigens and summarize the results of γδ T cell-based therapies so far performed. Based on the results of the reported trials, γδ T cells appear to be a promising tool for novel immunotherapies against certain types of diseases.


Asunto(s)
Inmunoterapia , Linfocitos T/inmunología , Enfermedades Autoinmunes/terapia , Enfermedades Transmisibles/terapia , Citocinas/metabolismo , Humanos , Hipersensibilidad/terapia , Inmunidad Innata , Activación de Linfocitos , Modelos Inmunológicos , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T gamma-delta/química , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología
19.
J Invest Dermatol ; 134(8): 2122-2130, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24480880

RESUMEN

Atopic dermatitis (AD) is generally regarded as a type 2 helper T (Th2)-mediated inflammatory skin disease. Although the number of IL-17A-producing cells is increased in the peripheral blood and in acute skin lesion of AD patients, the role of IL-17A in the pathogenesis of AD remains unclear. To clarify this issue, we used murine AD models in an IL-17A-deficient condition. In a repeated hapten application-induced AD model, skin inflammation, IL-4 production in the draining lymph nodes (LNs), and hapten-specific IgG1 and IgE induction were suppressed in IL-17A-deficient mice. Vγ4(+) γδ T cells in the skin-draining LNs and Vγ5(-) dermal γδ T cells in the skin were the major sources of IL-17A. Consistently, in flaky-tail (Flg(ft/ft) ma/ma) mice, spontaneous development of AD-like dermatitis and IgE induction were attenuated by IL-17A deficiency. Moreover, Th2 differentiation from naive T cells was promoted in vitro by the addition of IL-17A. Taken together, our results suggest that IL-17A mediates Th2-type immune responses and that IL-17A signal may be a therapeutic target of AD.


Asunto(s)
Dermatitis Atópica/inmunología , Interleucina-17/fisiología , Células Th2/inmunología , Animales , Quimiocinas/biosíntesis , Dermatitis Atópica/etiología , Modelos Animales de Enfermedad , Inmunoglobulina E/biosíntesis , Interleucina-4/biosíntesis , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Linfocitos T/inmunología
20.
Scand J Immunol ; 78(1): 44-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23659436

RESUMEN

γδ T cell comprises about 5% of the overall T cell population, and they differ from conventional αß T cells. Previous studies have indicated the contribution of γδ T cell to acute allograft rejection, but the role of γδ T cell in cardiac allograft vasculopathy (CAV) is not investigated. Hearts of adult B6.C-H-2(bm12) KhEg were heterotopically transplanted into major histocompatibility complex (MHC) class II-mismatched C57BL/6 mice (wild-type, γδ TCR(-/-)), which is an established murine model of chronic allograft rejection without immunosuppression. The survival of grafts was monitored daily by abdominal palpation until the complete cessation of cardiac contractility. Our current study demonstrated that γδ T cell receptor (TCR) deficiency significantly attenuated CAV, and this effect coincides with low expression of Hmgb1, IFN-γ and IL-17 while increased number of CD4(+) CD25(+) Foxp3(+) regulatory T cells, and depletion of regulatory T cells abrogated the prolonged allograft survival induced by γδ TCR deficiency. γδ TCR deficiency resulted in attenuated CAV and prolonged graft survival in murine models of cardiac transplantation, and this effect was associated with enhanced expansion of regulatory T cells.


Asunto(s)
Trasplante de Corazón/efectos adversos , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Linfocitos T Reguladores/inmunología , Enfermedades Vasculares/inmunología , Animales , Factores de Transcripción Forkhead/análisis , Supervivencia de Injerto , Proteína HMGB1/análisis , Interferón gamma/análisis , Interleucina-17/análisis , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T gamma-delta/deficiencia , Trasplante Homólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA