Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biophys J ; 108(5): 1125-32, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25762324

RESUMO

Lipid composition of the membrane and rhodopsin packing density strongly modulate the early steps of the visual response of photoreceptor membranes. In this study, lipid-order and bovine rhodopsin function in proteoliposomes composed of the sn-1 chain perdeuterated lipids 14:0d27-14:1-PC, 16:0d31-16:1-PC, 18:0d35-18:1-PC, or 20:0d39-20:1-PC at rhodopsin/lipid molar ratios from 1:70 to 1:1000 (mol/mol) were investigated. Clear evidence for matching of hydrophobic regions on rhodopsin transmembrane helices and hydrophobic thickness of lipid bilayers was observed from (2)H nuclear magnetic resonance order parameter measurements at low rhodopsin concentrations. Thin bilayers stretched to match the length of transmembrane helices observed as increase of sn-1 chain order, while thicker bilayers were compressed near the protein. A quantitative analysis of lipid-order parameter changes suggested that the protein adjusts its conformation to bilayer hydrophobic thickness as well, which confirmed our earlier circular-dichroism measurements. Changes in lipid order parameters upon rhodopsin incorporation vanished for bilayers with a hydrophobic thickness of 27 ± 1 Å, suggesting that this is the bilayer thickness at which rhodopsin packs in bilayers at the lowest membrane perturbation. The lipid-order parameter studies also indicated that a hydrophobic mismatch between rhodopsin and lipids triggers rhodopsin oligomerization with increasing rhodopsin concentrations. Both hydrophobic mismatch and rhodopsin oligomerization result in substantial shifts of the equilibrium between the photointermediates metarhodopsin I and metarhodopsin II; increasing bilayer thickness favors formation of metarhodopsin II while oligomerization favors metarhodopsin I. The results highlight the importance of hydrophobic matching for rhodopsin structure, oligomerization, and function.


Assuntos
Bicamadas Lipídicas/química , Multimerização Proteica , Rodopsina/química , Animais , Bovinos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química
2.
Proteins ; 82(3): 452-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23999926

RESUMO

The global fold of human cannabinoid type 2 (CB2 ) receptor in the agonist-bound active state in lipid bilayers was investigated by solid-state (13)C- and (15)N magic-angle spinning (MAS) NMR, in combination with chemical-shift prediction from a structural model of the receptor obtained by microsecond-long molecular dynamics (MD) simulations. Uniformly (13)C- and (15)N-labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into liposomes. (13)C MAS NMR spectra were recorded without sensitivity enhancement for direct comparison of Cα, Cß, and C=O bands of superimposed resonances with predictions from protein structures generated by MD. The experimental NMR spectra matched the calculated spectra reasonably well indicating agreement of the global fold of the protein between experiment and simulations. In particular, the (13) C chemical shift distribution of Cα resonances was shown to be very sensitive to both the primary amino acid sequence and the secondary structure of CB2. Thus the shape of the Cα band can be used as an indicator of CB2 global fold. The prediction from MD simulations indicated that upon receptor activation a rather limited number of amino acid residues, mainly located in the extracellular Loop 2 and the second half of intracellular Loop 3, change their chemical shifts significantly (≥ 1.5 ppm for carbons and ≥ 5.0 ppm for nitrogens). Simulated two-dimensional (13) Cα(i)-(13)C=O(i) and (13)C=O(i)-(15)NH(i + 1) dipolar-interaction correlation spectra provide guidance for selective amino acid labeling and signal assignment schemes to study the molecular mechanism of activation of CB2 by solid-state MAS NMR.


Assuntos
Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/metabolismo , Isótopos de Carbono/química , Escherichia coli , Humanos , Lipossomos , Isótopos de Nitrogênio/química , Dobramento de Proteína , Receptor CB2 de Canabinoide/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
J Biol Chem ; 287(6): 4076-87, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22134924

RESUMO

Human cannabinoid type 2 (CB(2)) receptor expressed in Escherichia coli was purified and successfully reconstituted in the functional form into lipid bilayers composed of POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS), and cholesteryl hemisuccinate (CHS). Reconstitution was performed by detergent removal from the protein/lipid/detergent mixed micelles either on an adsorbent column, or by rapid dilution to below the critical micelle concentration of detergent followed by removal of detergent monomers on a concentrator. Proteoliposomes prepared at a protein/phospholipid/CHS molar ratio of 1/620-650/210-220 are free of detergent as shown by (1)H NMR, have a homogeneous protein/lipid ratio shown by isopycnic gradient ultracentrifugation, and are small in size with a mean diameter of 150-200 nm as measured by dynamic light scattering. Functional integrity of the reconstituted receptor was confirmed by quantitative binding of (2)H-labeled agonist CP-55,940-d(6) measured by (2)H magic angle spinning NMR, as well as by activation of G protein. The efficiency of G protein activation by agonist-bound CB(2) receptor was affected by negative electric surface potentials of proteoliposomes controlled by the content of anionic CHS or POPS. The activation was highest at an anionic lipid content of about 50 mol %. There was no correlation between the efficiency of G protein activation and an increase of hydrocarbon chain order induced by CHS or cholesterol. The results suggest the importance of anionic lipids in regulating signal transduction by CB(2) receptor and other class A GPCR. The successful reconstitution of milligram quantities of pure, functional CB(2) receptor enables a wide variety of structural studies.


Assuntos
Ésteres do Colesterol/química , Proteínas de Ligação ao GTP/química , Lipossomos/química , Fosfolipídeos/química , Receptor CB2 de Canabinoide/química , Ésteres do Colesterol/metabolismo , Cicloexanóis/química , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Lipossomos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fosfolipídeos/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Biophys J ; 99(3): 817-24, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20682259

RESUMO

We considered the issue of whether shifts in the metarhodopsin I (MI)-metarhodopsin II (MII) equilibrium from lipid composition are fully explicable by differences in bilayer curvature elastic stress. A series of six lipids with known spontaneous radii of monolayer curvature and bending elastic moduli were added at increasing concentrations to the matrix lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and the MI-MII equilibrium measured by flash photolysis followed by recording UV-vis spectra. The average area-per-lipid molecule and the membrane hydrophobic thickness were derived from measurements of the (2)H NMR order parameter profile of the palmitic acid chain in POPC. For the series of ethanolamines with different levels of headgroup methylation, shifts in the MI-MII equilibrium correlated with changes in membrane elastic properties as expressed by the product of spontaneous radius of monolayer curvature, bending elastic modulus, and lateral area per molecule. However, for the entire series of lipids, elastic energy explained the shifts only partially. Additional contributions correlated with the capability of the ethanolamine headgroups to engage in hydrogen bonding with the protein, independent of the state of ethanolamine methylation, with introduction of polyunsaturated sn-2 hydrocarbon chains, and with replacement of the palmitic acid sn-1 chains by oleic acid. The experiments point to the importance of interactions of rhodopsin with particular lipid species in the first layer of lipids surrounding the protein as well as to membrane elastic stress in the lipid-protein domain.


Assuntos
Elasticidade , Membranas Artificiais , Rodopsina/metabolismo , Animais , Bovinos , Hidrocarbonetos/metabolismo , Ligação de Hidrogênio , Lipídeos de Membrana/química , Estresse Mecânico , Termodinâmica , Água
5.
Nat Chem Biol ; 4(4): 248-55, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18311130

RESUMO

Using linewidth and spinning sideband intensities of lipid hydrocarbon chain resonances in proton magic angle spinning NMR spectra, we detected the temperature-dependent phase state of naturally occurring lipids of intact influenza virus without exogenous probes. Increasingly, below 41 degrees C ordered and disordered lipid domains coexisted for the viral envelope and extracts thereof. At 22 degrees C much lipid was in a gel phase, the fraction of which reversibly increased with cholesterol depletion. Diffusion measurements and fluorescence microscopy independently confirmed the existence of gel-phase domains. Thus the existence of ordered regions of lipids in biological membranes is now demonstrated. Above the physiological temperatures of influenza infection, the physical properties of viral envelope lipids, regardless of protein content, were indistinguishable from those of the disordered fraction. Viral fusion appears to be uncorrelated to ordered lipid content. Lipid ordering may contribute to viral stability at lower temperatures, which has recently been found to be critical for airborne transmission.


Assuntos
Lipídeos de Membrana/química , Microdomínios da Membrana/química , Orthomyxoviridae/química , Fosfolipídeos/química , Temperatura , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Membranas Artificiais , Microscopia de Fluorescência , Tamanho da Partícula , Padrões de Referência , Propriedades de Superfície , Fatores de Tempo , Internalização do Vírus
6.
Protein Expr Purif ; 70(2): 236-47, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20044006

RESUMO

We developed a bacterial fermentation protocol for production of a stable isotope-labeled cannabinoid receptor CB2 for subsequent structural studies of this protein by nuclear magnetic resonance spectroscopy. The human peripheral cannabinoid receptor was expressed in Escherichia coli as a fusion with maltose binding protein and two affinity tags. The fermentation was performed in defined media comprised of mineral salts, glucose and (15)N(2)-L-tryptophan to afford incorporation of the labeled amino acid into the protein. Medium, growth and expression conditions were optimized so that the fermentation process produced about 2mg of purified, labeled CB2/L of culture medium. By performing a mass spectroscopic characterization of the purified CB2, we determined that one of the two (15)N atoms in tryptophan was incorporated into the recombinant protein. NMR analysis of (15)N chemical shifts strongly suggests that the (15)N atoms are located in Trp-indole rings. Importantly, analysis of the peptides derived from the CNBr cleavage of the purified protein confirmed a minimum of 95% incorporation of the labeled tryptophan into the CB2 sequence. The labeled CB2, purified and reconstituted into liposomes at a protein-to-lipid molar ratio of 1:500, was functional as confirmed by activation of cognate G proteins in an in vitro coupled assay. To our knowledge, this is the first reported production of a biologically active, stable isotope-labeled G protein-coupled receptor by bacterial fermentation.


Assuntos
Marcação por Isótopo/métodos , Receptor CB2 de Canabinoide/biossíntese , Receptor CB2 de Canabinoide/genética , Escherichia coli/metabolismo , Fermentação , Humanos , Lipossomos/metabolismo , Espectrometria de Massas , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes de Fusão/biossíntese , Temperatura
7.
Methods Mol Biol ; 398: 107-26, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18214377

RESUMO

Methods for detection of lateral domains by solid-state 2H nuclear magnetic resonance (NMR) and 1H magic angle spinning (MAS)-NMR in model- and biomembranes are presented. 2H NMR has been used for decades to distinguish between liquid-ordered and solid-ordered lamellar phases of phospholipids with deuterated hydrocarbon chains. More recently, it was shown that superposition of liquid-ordered and -disordered phases is detected as well, taking advantage of the large differences in chain order parameters between them. Experiments require preparation of samples with deuterated lipids. In contrast, 1H MAS-NMR utilizes the natural proton NMR signals of lipids in model- and biomembranes. Very good resolution of resonances according to their chemical shifts is achieved by rapid spinning of samples at the "magic angle" (54.7 degrees) to the main magnetic field. Phase transitions to ordered states are detected as broadening of resonances. The method distinguishes liquid-disordered, liquid-ordered, and solid-ordered phases, has much higher sensitivity than 2H NMR, and does not require labeling. In combination with pulsed magnetic field gradients, 1H MAS-NMR yields diffusion rates that may report confinement of lipids to domains with submicrometer dimensions.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Lipídeos de Membrana/análise , Microdomínios da Membrana/química , Colesterol/química , Difusão , Etanolaminas/química , Lipossomos/química , Lipídeos de Membrana/química , Fosfatidilcolinas/química , Prótons , Temperatura
8.
Proc Natl Acad Sci U S A ; 104(45): 17650-5, 2007 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17962417

RESUMO

Critical fluctuations are investigated in lipid membranes near miscibility critical points in bilayers composed of dioleoylphosphatidylcholine, chain perdeuterated dipalmitoylphosphatidylcholine, and cholesterol. Phase boundaries are mapped over the temperature range from 10 degrees C to 60 degrees C by deuterium NMR. Tie-lines and three-phase triangles are evaluated across two-phase and three-phase regions, respectively. In addition, a line of miscibility critical points is identified. NMR resonances are broadened in the vicinity of critical points, and broadening is attributed to increased transverse relaxation rates arising from modulation of chain order with correlation times on a microsecond time scale. We conclude that spectral broadening arises from composition fluctuations in the membrane plane with dimensions of <50 nm and speculate that similar fluctuations are commonly found in cholesterol-containing membranes.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Lipossomos/química , Fosfatidilcolinas/química , Deutério , Cinética , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Solubilidade , Termodinâmica
9.
Eur Biophys J ; 36(4-5): 281-91, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17333162

RESUMO

The stability of lipid bilayers is ultimately linked to the hydrophobic effect and the properties of water of hydration. Magic angle spinning (MAS) nuclear Overhauser enhancement spectroscopy (NOESY) with application of pulsed magnetic field gradients (PFG) was used to study the interaction of water with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers in the fluid phase. NOESY cross-relaxation between water and polar groups of lipids, but also with methylene resonances of hydrophobic hydrocarbon chains, has been observed previously. This observation led to speculations that substantial amounts of water may reside in the hydrophobic core of bilayers. Here, the results of a quantitative analysis of cross-relaxation in a lipid 1-palmitoyl-2-oleoyl-sn-glycero-3 phosphocholine (POPC)/water mixture are reported. Coherences were selected via application of pulsed magnetic field gradients. This technique shortens acquisition times of NOESY spectra to 20 min and reduces t (1)-spectral noise, enabling detection of weak crosspeaks, like those between water and lipids, with higher precision than with non-gradient NOESY methods. The analysis showed that water molecules interact almost exclusively with sites of the lipid-water interface, including choline, phosphate, glycerol, and carbonyl groups. The lifetime of lipid-water associations is rather short, on the order of 100 ps, at least one order of magnitude shorter than the lifetime of lipid-lipid associations. The distribution of water molecules over the lipid bilayer was measured at identical water content by neutron diffraction. Water molecules penetrate deep into the interfacial region of bilayers but water concentration in the hydrophobic core is below the detection limit of one water molecule per lipid, in excellent agreement with the cross-relaxation data.


Assuntos
Bicamadas Lipídicas/química , Lipossomos/química , Fosfatidilcolinas/química , Água/química , Absorção , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Difração de Nêutrons , Prótons , Soluções
10.
Biophys J ; 90(12): 4428-36, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16565062

RESUMO

Vesicles containing ternary mixtures of diphytanoylphosphatidylcholine, dipalmitoylphosphatidylcholine (DPPC), and cholesterol produce coexisting liquid phases over an unusually large range of temperature and composition. Liquid domains persist well above the DPPC chain melting temperature (41 degrees C), resulting in a closed-loop miscibility gap bounded by two critical points at fixed temperature. Quantitative tie-lines are determined directly from 2H NMR spectra using a novel analysis, and are found to connect a liquid-disordered phase rich in diphytanoyl PC with a liquid-ordered phase rich in DPPC. The direction of the tie-lines implies that binary DPPC/cholesterol mixtures are in one uniform phase above 41 degrees C. All 2H NMR results for tie-lines are verified by independent fluorescence microscopy results.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Lipossomos/química , Fluidez de Membrana , Modelos Químicos , Modelos Moleculares , Fosfatidilcolinas/química , Simulação por Computador , Emulsões/química , Membranas Artificiais , Transição de Fase
11.
Biophys J ; 89(4): 2504-12, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16085761

RESUMO

Cholesterol content is critical for membrane functional properties. We studied the influence of cholesterol and its precursors desmosterol and lanosterol on lateral diffusion of phospholipids and sterols by1H pulsed field gradients (PFG) magic angle spinning (MAS) NMR spectroscopy. The high resolution of resonances afforded by MAS NMR permitted simultaneous diffusion measurements on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and sterols. The cholesterol diffusion mirrored the DPPC behavior, but rates were slightly higher at all cholesterol concentrations. DPPC and cholesterol diffusion rates decreased and became cholesterol concentration dependent with the onset of liquid-ordered phase formation. The activation energies of diffusion in the coexistence region of liquid-ordered/liquid-disordered phases are higher by about a factor of 2 compared to pure DPPC and to the pure liquid-ordered state formed at higher cholesterol concentrations. We assume that the higher activation energies are a reflection of lipid diffusion across domain boundaries. In lanosterol- and desmosterol-containing membranes, the DPPC and sterol diffusion coefficients are somewhat higher. Whereas the desmosterol rates are only slightly higher than those of DPPC, the lanosterol diffusion rates significantly exceed DPPC rates, indicating a weaker interaction between DPPC and lanosterol.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Bicamadas Lipídicas/química , Lipossomos/química , Espectroscopia de Ressonância Magnética/métodos , Fluidez de Membrana , Difusão , Conformação Molecular , Transição de Fase , Prótons , Marcadores de Spin , Temperatura
12.
Magn Reson Chem ; 42(2): 115-22, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14745790

RESUMO

The benefits of gradient techniques in the study of lipid membranes are demonstrated on a sample of 1-palmitoyl-2-oleoyl-sn-glycero-3 phosphocholine (POPC) liposomes embedded with ibuprofen. Most techniques from gradient NMR spectroscopy on solution samples are directly applicable to membrane samples subjected to magic angle spinning (MAS). Gradient-enhanced homo- and heteronuclear chemical shift correlation techniques were used to make resonance assignments. Gradient NOESY experiments provide insight into the location and dynamics of lipids, ibuprofen and water. Application of gradients not only reduces experiment time but also the t(1) noise in the multi-dimensional spectra. Diffusion measurements with pulsed field gradients characterize lateral movements of lipid and drug molecules in membranes. The theoretical framework for data analysis of MAS diffusion experiments on randomly oriented multilamellar liposomes is presented.


Assuntos
Ibuprofeno/química , Fosfatidilcolinas/química , Calibragem , Óxido de Deutério , Lipossomos/química , Espectroscopia de Ressonância Magnética/métodos , Membranas Artificiais , Termodinâmica
13.
Biophys J ; 85(3): 1734-40, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12944288

RESUMO

The lateral diffusion constants of 1-palmitoyl-2-oleoyl-sn-glycero-3 phosphocholine (POPC), water, and ibuprofen were measured in multilamellar liposomes using pulsed field gradient magic-angle spinning (PFG-MAS) (1)H NMR. The analysis of diffusion data obtained in powder samples and a method for liposome curvature correction are presented. At 322 K POPC has a diffusion constant of (8.6 +/- 0.2) x 10(-12) m(2)/s when dehydrated (8.2 waters/lipid) and (1.9 +/- 0.1) x 10(-11) m(2)/s in excess water. The diffusion constant of water in dehydrated POPC was found to be (4.7 +/- 0.1) x 10(-10) m(2)/s. The radius of curvature is 21 +/- 2 microm for the dehydrated sample and 4.5 +/- 0.5 microm for POPC sample containing excess water. The activation energies of diffusion are 40.6 +/- 0.4 kJ/mole for dehydrated POPC, 30.7 +/- 0.9 kJ/mole for POPC with excess water, and 28.6 +/- 1.5 kJ/mole for water in dehydrated POPC. The diffusion constants and activation energies for a sample of POPC/ibuprofen/water (1:0.56:15) were also measured. The ibuprofen, which locates in the lipid-water interface, diffuses faster than POPC but has a slightly higher activation energy of lateral diffusion. Within certain restrictions, PFG-MAS NMR provides a useful method for characterizing membrane organization and mobility.


Assuntos
Bicamadas Lipídicas/química , Lipídeos/química , Lipossomos/química , Fosfatidilcolinas/química , Água/química , Anti-Inflamatórios não Esteroides/farmacologia , Fenômenos Biofísicos , Biofísica , Calibragem , Difusão , Ibuprofeno/farmacologia , Espectroscopia de Ressonância Magnética , Modelos Químicos , Temperatura , Fatores de Tempo
14.
J Am Chem Soc ; 125(21): 6409-21, 2003 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-12785780

RESUMO

Insufficient supply to the developing brain of docosahexaenoic acid (22:6n3, DHA), or its omega-3 fatty acid precursors, results in replacement of DHA with docosapentaenoic acid (22:5n6, DPA), an omega-6 fatty acid that is lacking a double bond near the chain's methyl end. We investigated membranes of 1-stearoyl(d(35))-2-docosahexaenoyl-sn-glycero-3-phosphocholine and 1-stearoyl(d(35))-2-docosapentaenoyl-sn-glycero-3-phosphocholine by solid-state NMR, X-ray diffraction, and molecular dynamics simulations to determine if the loss of this double bond alters membrane physical properties. The low order parameters of polyunsaturated chains and the NMR relaxation data indicate that both DHA and DPA undergo rapid conformational transitions with correlation times of the order of nanoseconds at carbon atom C(2) and of picoseconds near the terminal methyl group. However, there are important differences between DHA- and DPA-containing lipids: the DHA chain with one additional double bond is more flexible at the methyl end and isomerizes with shorter correlation times. Furthermore, the stearic acid paired with the DHA in mixed-chain lipids has lower order, in particular in the middle of the chain near carbons C(10)(-)(12), indicating differences in the packing of hydrocarbon chains. Such differences are also reflected in the electron density profiles of the bilayers and in the simulation results. The DHA chain has a higher density near the lipid-water interface, whereas the density of the stearic acid chain is higher in the bilayer center. The loss of a single double bond from DHA to DPA results in a more even distribution of chain densities along the bilayer normal. We propose that the function of integral membrane proteins such as rhodopsin is sensitive to such a redistribution.


Assuntos
Ácidos Docosa-Hexaenoicos/química , Ácidos Graxos Insaturados/química , Bicamadas Lipídicas/química , Simulação por Computador , Análise de Fourier , Membranas Artificiais , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular , Relação Estrutura-Atividade , Termodinâmica , Difração de Raios X
15.
Langmuir ; 20(18): 7711-9, 2004 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-15323523

RESUMO

Lipid bilayers were deposited inside the 0.2 microm pores of anodic aluminum oxide (AAO) filters by extrusion of multilamellar liposomes and their properties studied by 2H, 31P, and 1H solid-state NMR. Only the first bilayer adhered strongly to the inner surface of the pores. Additional layers were washed out easily by a flow of water as demonstrated by 1H magic angle spinning NMR experiments with addition of Pr3+ ions to shift accessible lipid headgroup resonances. A 13 mm diameter Anopore filter of 60 microm thickness oriented approximately 2.5 x 10(-7) mol of lipid as a single bilayer, corresponding to a total membrane area of about 500 cm2. The 2H NMR spectra of chain deuterated POPC are consistent with adsorption of wavy, tubular bilayers to the inner pore surface. By NMR diffusion experiments, we determined the average length of those lipid tubules to be approximately 0.4 microm. There is evidence for a thick water layer between lipid tubules and the pore surface. The ends of tubules are well sealed against the pore such that Pr3+ ions cannot penetrate into the water underneath the bilayers. We successfully trapped poly(ethylene glycol) (PEG) with a molecular weight of 8000 in this water layer. From the quantity of trapped PEG, we calculated an average water layer thickness of 3 nm. Lipid order parameters and motional properties are unperturbed by the solid support, in agreement with existence of a water layer. Such unperturbed, solid supported membranes are ideal for incorporation of membrane-spanning proteins with large intra- and extracellular domains. The experiments suggest the promise of such porous filters as membrane support in biosensors.


Assuntos
Óxido de Alumínio/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética/métodos , Nanoestruturas/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Polietilenoglicóis/química , Porosidade , Água/química
16.
Biophys J ; 86(3): 1574-86, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14990484

RESUMO

Using x-ray diffraction and NMR spectroscopy, we present structural and material properties of phosphatidylserine (PS) bilayers that may account for the well documented implications of PS headgroups in cell activity. At 30 degrees C, the 18-carbon monounsaturated DOPS in the fluid state has a cross-sectional area of 65.3 A(2) which is remarkably smaller than the area 72.5 A(2) of the DOPC analog, despite the extra electrostatic repulsion expected for charged PS headgroups. Similarly, at 20 degrees C, the 14-carbon disaturated DMPS in the gel phase has an area of 40.8 A(2) vs. 48.1 A(2) for DMPC. This condensation of area suggests an extra attractive interaction, perhaps hydrogen bonding, between PS headgroups. Unlike zwitterionic lipids, stacks of PS bilayers swell indefinitely as water is added. Data obtained for osmotic pressure versus interbilayer water spacing for fluid phase DOPS are well fit by electrostatic interactions calculated for the Gouy-Chapman regime. It is shown that the electrostatic interactions completely dominate the fluctuational pressure. Nevertheless, the x-ray data definitively exhibit the effects of fluctuations in fluid phase DOPS. From our measurements of fluctuations, we obtain the product of the bilayer bending modulus K(C) and the smectic compression modulus B. At the same interbilayer separation, the interbilayer fluctuations are smaller in DOPS than for DOPC, showing that B and/or K(C) are larger. Complementing the x-ray data, (31)P-chemical shift anisotropy measured by NMR suggest that the DOPS headgroups are less sensitive to osmotic pressure than DOPC headgroups, which is consistent with a larger K(C) in DOPS. Quadrupolar splittings for D(2)O decay less rapidly with increasing water content for DOPS than for DOPC, indicating greater perturbation of interlamellar water and suggesting a greater interlamellar hydration force in DOPS. Our comparisons between bilayers of PS and PC lipids with the same chains and the same temperature enable us to focus on the effects of these headgroups on bilayer properties.


Assuntos
Bicamadas Lipídicas/química , Fluidez de Membrana , Fosfatidilserinas/química , Substâncias Macromoleculares , Membranas Artificiais , Conformação Molecular , Pressão Osmótica , Transição de Fase , Sais/química , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA