Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477664

RESUMO

Charcot-Marie-Tooth disease (CMT) is a heritable neurodegenerative disease that displays great genetic heterogeneity. The genes and mutations that underlie this heterogeneity have been extensively characterized by molecular genetics. However, the molecular pathogenesis of the vast majority of CMT subtypes remains terra incognita. Any attempts to perform experimental therapy for CMT disease are limited by a lack of understanding of the pathogenesis at a molecular level. In this study, we aim to identify the molecular pathways that are disturbed by mutations in the gene encoding GDAP1 using both yeast and human cell, based models of CMT-GDAP1 disease. We found that some mutations in GDAP1 led to a reduced expression of the GDAP1 protein and resulted in a selective disruption of the Golgi apparatus. These structural alterations are accompanied by functional disturbances within the Golgi. We screened over 1500 drugs that are available on the market using our yeast-based CMT-GDAP1 model. Drugs were identified that had both positive and negative effects on cell phenotypes. To the best of our knowledge, this study is the first report of the Golgi apparatus playing a role in the pathology of CMT disorders. The drugs we identified, using our yeast-based CMT-GDAP1 model, may be further used in translational research.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Complexo de Golgi/genética , Proteínas do Tecido Nervoso/genética , Rede trans-Golgi/genética , Doença de Charcot-Marie-Tooth/patologia , Heterogeneidade Genética , Complexo de Golgi/patologia , Células HeLa , Humanos , Modelos Genéticos , Mutação/genética , Linhagem , Relação Estrutura-Atividade , Leveduras/genética
2.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560077

RESUMO

Charcot-Marie-Tooth (CMT) disease encompasses a group of rare disorders that are characterized by similar clinical manifestations and a high genetic heterogeneity. Such excessive diversity presents many problems. Firstly, it makes a proper genetic diagnosis much more difficult and, even when using the most advanced tools, does not guarantee that the cause of the disease will be revealed. Secondly, the molecular mechanisms underlying the observed symptoms are extremely diverse and are probably different for most of the disease subtypes. Finally, there is no possibility of finding one efficient cure for all, or even the majority of CMT diseases. Every subtype of CMT needs an individual approach backed up by its own research field. Thus, it is little surprise that our knowledge of CMT disease as a whole is selective and therapeutic approaches are limited. There is an urgent need to develop new CMT models to fill the gaps. In this review, we discuss the advantages and disadvantages of yeast as a model system in which to study CMT diseases. We show how this single-cell organism may be used to discriminate between pathogenic variants, to uncover the mechanism of pathogenesis, and to discover new therapies for CMT disease.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Variação Genética , Saccharomyces cerevisiae/genética , Animais , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Medicina de Precisão , Saccharomyces cerevisiae/crescimento & desenvolvimento
3.
Postepy Biochem ; 64(4): 288-299, 2018 Dec 29.
Artigo em Polonês | MEDLINE | ID: mdl-30656913

RESUMO

Hereditary motor and sensory neuropathies (HMSN) also called as Charcot-Marie-Tooth disorders (CMT) are extremely heterogeneous group of disorders of peripheral nervous system. Over 80 genes have been reported in different types of CMT. In all CMT affected patients the main symptoms are slowly progressive wasting of the distal muscles of the lower and upper limbs. To date no efficient therapeutic approach basing upon molecular pathology of CMT has been proposed. This review presents the current state of knowledge concerning clinical, molecular pathogenesis and experimental therapy aspects in CMT disorders. Additionally the possibilities resulting from the use of the yeast model to the identification of new therapeutic substances as well as of neurotoxins are also discussed.


Assuntos
Doença de Charcot-Marie-Tooth/terapia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Humanos , Modelos Biológicos
4.
Am J Hum Genet ; 95(5): 590-601, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25439726

RESUMO

Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-µ-binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 mutations in CMT2 were mainly loss-of-function nonsense in the 5' region of the gene in combination with a truncating frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Exoma/genética , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Fenótipo , Adulto , Sequência de Bases , Doença de Charcot-Marie-Tooth/patologia , Mapeamento Cromossômico , Feminino , Haplótipos/genética , Humanos , Dados de Sequência Molecular , Linhagem , Mapeamento de Interação de Proteínas , Análise de Sequência de DNA , Nervo Sural/patologia
5.
J Peripher Nerv Syst ; 21(1): 22-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26663344

RESUMO

Childhood chronic inflammatory demyelinating polyneuropathy (CIDP) needs to be differentiated from hereditary neuropathy. We aimed to validate existing CIDP nerve conduction study (NCS) criteria in a group of children with demyelinating neuropathies of chronic or subacute onset. Retrospective analysis of clinical and NCS results in 18 children with CIDP, 7 with hereditary neuropathy with pressure palsy (HNPP), and 24 with Charcot-Marie-Tooth 1a (CMT1a). AAN and EFNS electrodiagnostic CIDP criteria were fulfilled in 17 of 18 CIDP, 3 of 7 HNPP, and 23 of 24 CMT1a patients. A distal compound muscle action potential (dCMAP) of >9 ms was observed in 14 of 18 CIDP patients but not in any patients with HNPP. Abnormal median/normal sural SNAP (AMNS) and a 10 m/s difference between conduction velocities (CV) of two corresponding nerves were not observed in any CMT1a patients. NCS in CMT1a, HNPP, and CIDP reflect demyelination. dCMAP duration, sensory AMNS, and a 10 m/s CV difference parameter are most useful in the differential diagnosis of pediatric CIDP.


Assuntos
Doença de Charcot-Marie-Tooth/diagnóstico , Eletrodiagnóstico/métodos , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico , Adolescente , Criança , Pré-Escolar , Diagnóstico Diferencial , Eletrofisiologia/métodos , Feminino , Neuropatia Hereditária Motora e Sensorial/diagnóstico , Humanos , Masculino , Condução Nervosa , Estudos Retrospectivos
6.
Neurogenetics ; 16(1): 27-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25342198

RESUMO

Charcot-Marie-Tooth disease type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP) represent the most common heritable neuromuscular disorders. Molecular diagnostics of CMT1A/HNPP diseases confirm clinical diagnosis, but their value is limited to the clinical course and prognosis. However, no biomarkers of CMT1A/HNPP have been identified. We decided to explore if the LITAF/SIMPLE gene shared a functional link to the PMP22 gene, whose duplication or deletion results in CMT1A and HNPP, respectively. By studying a large cohort of CMT1A/HNPP-affected patients, we found that the LITAF I92V sequence variant predisposes patients to an earlier age of onset of both the CMT1A and HNPP diseases. Using cell transfection experiments, we showed that the LITAF I92V sequence variant partially mislocalizes to the mitochondria in contrast to wild-type LITAF which localizes to the late endosome/lysosomes and is associated with a tendency for PMP22 to accumulate in the cells. Overall, this study shows that the I92V LITAF sequence variant would be a good candidate for a biomarker in the case of the CMT1A/HNPP disorders.


Assuntos
Artrogripose/genética , Doença de Charcot-Marie-Tooth/genética , Neuropatia Hereditária Motora e Sensorial/genética , Proteínas Nucleares/genética , Deleção de Sequência , Fatores de Transcrição/genética , Idade de Início , Animais , Artrogripose/complicações , Artrogripose/diagnóstico , Artrogripose/epidemiologia , Biomarcadores , Células Cultivadas , Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/epidemiologia , Chlorocebus aethiops , Feminino , Predisposição Genética para Doença , Neuropatia Hereditária Motora e Sensorial/complicações , Neuropatia Hereditária Motora e Sensorial/diagnóstico , Neuropatia Hereditária Motora e Sensorial/epidemiologia , Humanos , Masculino , Mitocôndrias/metabolismo , Proteínas da Mielina/metabolismo
7.
Acta Myol ; 32(3): 166-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24803844

RESUMO

Charcot-Marie-Tooth type 2A disease (CMT2A) caused by mutations in the Mitofusin 2 gene (Mfn2) has been shown to be an early-onset axonal neuropathy with severe clinical course in the majority of the patients. In this study we present a unique phenotype of CMT2A disease characterized by late-onset polyneuropathy with a very mild clinical course. This rare form of CMT2A disease is caused by a new splice-site (c.311+1G>T) mutation within the MFN2 gene. Due to disturbance of the MFN2 splicing process, this mutation generates a short transcript which encodes a very short fragment of MFN2 protein. The c.311+1G>T mutation within the MFN2 gene results in the late -onset CMT2 disease.


Assuntos
Doença de Charcot-Marie-Tooth/genética , GTP Fosfo-Hidrolases/genética , Proteínas Mitocondriais/genética , Idade de Início , Feminino , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Mutação , Fenótipo , Polônia , Sítios de Splice de RNA/genética
8.
Brain ; 134(Pt 9): 2664-76, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21840889

RESUMO

Early onset hereditary motor and sensory neuropathies are rare disorders encompassing congenital hypomyelinating neuropathy with disease onset in the direct post-natal period and Dejerine-Sottas neuropathy starting in infancy. The clinical spectrum, however, reaches beyond the boundaries of these two historically defined disease entities. De novo dominant mutations in PMP22, MPZ and EGR2 are known to be a typical cause of very early onset hereditary neuropathies. In addition, mutations in several other dominant and recessive genes for Charcot-Marie-Tooth disease may lead to similar phenotypes. To estimate mutation frequencies and to gain detailed insights into the genetic and phenotypic heterogeneity of early onset hereditary neuropathies, we selected a heterogeneous cohort of 77 unrelated patients who presented with symptoms of peripheral neuropathy within the first year of life. The majority of these patients were isolated in their family. We performed systematic mutation screening by means of direct sequencing of the coding regions of 11 genes: MFN2, PMP22, MPZ, EGR2, GDAP1, NEFL, FGD4, MTMR2, PRX, SBF2 and SH3TC2. In addition, screening for the Charcot-Marie-Tooth type 1A duplication on chromosome 17p11.2-12 was performed. In 35 patients (45%), mutations were identified. Mutations in MPZ, PMP22 and EGR2 were found most frequently in patients presenting with early hypotonia and breathing difficulties. The recessive genes FGD4, PRX, MTMR2, SBF2, SH3TC2 and GDAP1 were mutated in patients presenting with early foot deformities and variable delay in motor milestones after an uneventful neonatal period. Several patients displaying congenital foot deformities but an otherwise normal early development carried the Charcot-Marie-Tooth type 1A duplication. This study clearly illustrates the genetic heterogeneity underlying hereditary neuropathies with infantile onset.


Assuntos
Idade de Início , Neuropatia Hereditária Motora e Sensorial/genética , Adolescente , Adulto , Idoso , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Doença de Charcot-Marie-Tooth/fisiopatologia , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Neuropatia Hereditária Motora e Sensorial/patologia , Neuropatia Hereditária Motora e Sensorial/fisiopatologia , Humanos , Lactente , Pessoa de Meia-Idade , Mutação , Fenótipo , Adulto Jovem
9.
Genes (Basel) ; 13(9)2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36140714

RESUMO

Charcot−Marie−Tooth disorders (CMT) represent a highly heterogeneous group of diseases of the peripheral nervous system in which more than 100 genes are involved. In some CMT patients, a few weak sequence variants toward other CMT genes are detected instead of one leading CMT mutation. Thus, the presence of a few variants in different CMT-associated genes raises the question concerning the pathogenic status of one of them. In this study, we aimed to analyze the pathogenic effect of c.664G>A, p.Glu222Lys variant in the GDAP1 gene, whose mutations are known to be causative for CMT type 4A (CMT4A). Due to low penetrance and a rare occurrence limited to five patients from two Polish families affected by the CMT phenotype, there is doubt as to whether we are dealing with real pathogenic mutation. Thus, we aimed to study the pathogenic effect of the c.664G>A, p.Glu222Lys variant in its natural environment, i.e., the neuronal SH-SY5Y cell line. Additionally, we have checked the pathogenic status of p.Glu222Lys in the broader context of the whole exome. We also have analyzed the impact of GDAP1 gene mutations on the morphology of the transfected cells. Despite the use of several tests to determine the pathogenicity of the p.Glu222Lys variant, we cannot point to one that would definitively solve the problem of pathogenicity.


Assuntos
Doença de Charcot-Marie-Tooth , Neuroblastoma , Doença de Charcot-Marie-Tooth/genética , Humanos , Mutação , Proteínas do Tecido Nervoso/genética , Fenótipo
10.
Neurogenetics ; 12(2): 145-53, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21365284

RESUMO

Charcot-Marie-Tooth disease (CMT) caused by mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene is characterized by a spectrum of phenotypes. Recurrent nonsense mutations (Q163X and S194X) showing regional distribution segregate with an early onset, severe course of recessive CMT disease with early loss of ambulancy. Missense mutations in GDAP1 have been reported in sporadic CMT cases with variable course of disease, among them the recurrent L239F missense GDAP1 mutation occurring in the European population. Finally, some GDAP1 mutations are associated with a mild form of CMT inherited as an autosomal dominant trait. In this study, we characterize the CMT phenotype in one Polish family with recessive trait of inheritance at the clinical, electrophysiological, morphological, cellular, and genetic level associated with a new Gly327Asp mutation in the GDAP1 gene. In spite of the nature of Gly327Asp mutation (missense), the CMT phenotype associated with this variant may be characterized as an early onset, severe axonal neuropathy, with severe skeletal deformities. The mutation lies within the transmembrane domain of GDAP1 and interferes with the mitochondrial targeting of the protein, similar to the loss of the domain in the previously reported Q163X and S194X mutations. We conclude that the loss of mitochondrial targeting is associated with a severe course of disease. Our study shows that clinical outcome of CMT disease caused by mutations in the GDAP1 gene cannot be predicted solely on the basis of genetic results (missense/nonsense mutations).


Assuntos
Doença de Charcot-Marie-Tooth/genética , Membranas Mitocondriais/metabolismo , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Adulto , Animais , Células COS , Doença de Charcot-Marie-Tooth/metabolismo , Chlorocebus aethiops , Aberrações Cromossômicas , Feminino , Genes Recessivos , Células HeLa , Humanos , Masculino , Mutação de Sentido Incorreto/fisiologia , Linhagem , Transporte Proteico/genética , Adulto Jovem
11.
Postepy Biochem ; 57(3): 283-93, 2011.
Artigo em Polonês | MEDLINE | ID: mdl-22235654

RESUMO

Charcot-Marie-Tooth disease 2 is an inherited axonal motor and sensory neuropathy. It is very heterogenous, both clinically and genetically. Till present, 15 types of CMT2, 14 loci and 13 genes are known to be causative of CMT2. Studying mechanisms of molecular pathogenesis is very important for finding a therapy for patients but the diversity of proteins involved in pathogenesis makes this very difficult. Proteins involved in molecular pathogenesis are e.g. proteins of the mitochondrial outer membrane with opposite functions (mitofusin 2 and GDAP1) responsible for fusion and fission of the mitochondrial network. Mutations also occur in genes encoding tRNA-synthetases, neuronal cytoskeletal protein, cation channel protein and molecular chaperones. This review presents knowledge of CMT2 and possible pathogenetic mechanisms responsible for the disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neuropatia Hereditária Motora e Sensorial/genética , Mutação , Proteínas Nucleares/metabolismo , Doença de Charcot-Marie-Tooth/genética , Humanos
12.
Neurogenetics ; 11(3): 357-66, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20232219

RESUMO

Over 40 mutations in the GDAP1 gene have been shown to segregate with Charcot-Marie-Tooth disease (CMT). Among these, only two mutations, i.e., S194X and Q163X have been reported in a sufficient number of CMT families to allow for the construction of reliable phenotype-genotype correlations. Both the S194X and Q163X mutations have been shown to segregate with an early-onset and severe neuropathy resulting in loss of ambulance at the beginning of the second decade of life. In this study, we identified the L239F mutation in the GDAP1 gene in one Bulgarian and five Polish families. We hypothesized that the L239F mutation may result from a founder effect in the European population since this mutation has previously been reported in Belgian, Czech, and Polish patients. In fact, we detected a common disease-associated haplotype within the 8q13-q21 region in the Polish, German, Italian, Czech, and Bulgarian CMT families. Like the previously detected "regional" S194X and Q163X mutations, respectively present in Maghreb countries and in patients of Spanish descent, the L239F mutation seems to be the most common GDAP1 pathogenic variant in the Central and Eastern European population. Given the likely presence of a common ancestor harboring the L239F mutation, we decided to compare the phenotypes of the CMT (L239F) patients collected in this study with those of previously reported cases. In contrast to CMT4A caused by the S194X and Q163X mutations, the CMT phenotype resulting from the L239F substitution represents a milder clinical entity with a long-preserved period of ambulance at least until the end of the second decade of life.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Efeito Fundador , Proteínas do Tecido Nervoso/genética , Adolescente , Adulto , Idade de Início , Doença de Charcot-Marie-Tooth/patologia , Criança , Pré-Escolar , Cromossomos Humanos Par 8/genética , Europa (Continente) , Feminino , Estudos de Associação Genética , Loci Gênicos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Mutação , Proteínas/genética , Adulto Jovem
13.
Genes (Basel) ; 11(3)2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183277

RESUMO

The question of whether a newly identified sequence variant is truly a causative mutation is a central problem of modern clinical genetics. In the current era of massive sequencing, there is an urgent need to develop new tools for assessing the pathogenic effect of new sequence variants. In Charcot-Marie-Tooth disorders (CMT) with their extreme genetic heterogeneity and relatively homogenous clinical presentation, addressing the pathogenic effect of rare sequence variants within 80 CMT genes is extremely challenging. The presence of multiple rare sequence variants within a single CMT-affected patient makes selection for the strongest one, the truly causative mutation, a challenging issue. In the present study we propose a new yeast-based model to evaluate the pathogenic effect of rare sequence variants found within the one of the CMT-associated genes, GDAP1. In our approach, the wild-type and pathogenic variants of human GDAP1 gene were expressed in yeast. Then, a growth rate and mitochondrial morphology and function of GDAP1-expressing strains were studied. Also, the mutant GDAP1 proteins localization and functionality were assessed in yeast. We have shown, that GDAP1 was not only stably expressed but also functional in yeast cell, as it influenced morphology and function of mitochondria and altered the growth of a mutant yeast strain. What is more, the various GDAP1 pathogenic sequence variants caused the specific for them effect in the tests we performed. Thus, the proposed model is suitable for validating the pathogenic effect of known GDAP1 mutations and may be used for testing of unknown sequence variants found in CMT patients.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Heterogeneidade Genética , Mitocôndrias/genética , Proteínas do Tecido Nervoso/genética , Doença de Charcot-Marie-Tooth/patologia , Regulação da Expressão Gênica/genética , Humanos , Mutação/genética , Saccharomyces cerevisiae/genética
14.
Neurology ; 95(24): e3163-e3179, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33144514

RESUMO

OBJECTIVE: To test the hypothesis that monogenic neuropathies such as Charcot-Marie-Tooth disease (CMT) contribute to frequent but often unexplained neuropathies in the elderly, we performed genetic analysis of 230 patients with unexplained axonal neuropathies and disease onset ≥35 years. METHODS: We recruited patients, collected clinical data, and conducted whole-exome sequencing (WES; n = 126) and MME single-gene sequencing (n = 104). We further queried WES repositories for MME variants and measured blood levels of the MME-encoded protein neprilysin. RESULTS: In the WES cohort, the overall detection rate for assumed disease-causing variants in genes for CMT or other conditions associated with neuropathies was 18.3% (familial cases 26.4%, apparently sporadic cases 12.3%). MME was most frequently involved and accounted for 34.8% of genetically solved cases. The relevance of MME for late-onset neuropathies was further supported by detection of a comparable proportion of cases in an independent patient sample, preponderance of MME variants among patients compared to population frequencies, retrieval of additional late-onset neuropathy patients with MME variants from WES repositories, and low neprilysin levels in patients' blood samples. Transmission of MME variants was often consistent with an incompletely penetrant autosomal-dominant trait and less frequently with autosomal-recessive inheritance. CONCLUSIONS: A detectable fraction of unexplained late-onset axonal neuropathies is genetically determined, by variants in either CMT genes or genes involved in other conditions that affect the peripheral nerves and can mimic a CMT phenotype. MME variants can act as completely penetrant recessive alleles but also confer dominantly inherited susceptibility to axonal neuropathies in an aging population.


Assuntos
Envelhecimento , Neuropatia Hereditária Motora e Sensorial/genética , Neprilisina/genética , Idade de Início , Idoso , Envelhecimento/sangue , Doença de Charcot-Marie-Tooth/sangue , Doença de Charcot-Marie-Tooth/genética , Feminino , Predisposição Genética para Doença/genética , Neuropatia Hereditária Motora e Sensorial/sangue , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Neprilisina/sangue , Sequenciamento do Exoma
15.
Neuromuscul Disord ; 18(4): 339-41, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18337101

RESUMO

In the present study, we report a single Polish SMA family in which the 17p11.2-p12 duplication causative for the Charcot-Marie-Tooth type 1A disease (CMT1A) was found in addition to a deletion of exons 7 and 8 of the SMN1 gene. A patient harboring both SMA and CMT1A mutations manifested with SMA3 phenotype and foot deformity. Her electrophysiological testing showed chronic neurogenic changes in proximal muscles that are typical for SMA, but also slowed conduction velocity in motor and sensory fibers that is typical for demyelinating neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth/complicações , Saúde da Família , Atrofias Musculares Espinais da Infância/complicações , Doença de Charcot-Marie-Tooth/genética , Criança , Cromossomos Humanos Par 17 , Éxons/genética , Feminino , Humanos , Fenótipo , Polônia , Atrofias Musculares Espinais da Infância/genética
16.
Neurol Neurochir Pol ; 41(4): 350-4, 2007.
Artigo em Polonês | MEDLINE | ID: mdl-17874344

RESUMO

In contrast to Charcot-Marie-Tooth type 1 disease (CMT1), which is most commonly caused by 17p11.2-p12 duplication (in 70% of CMT1 cases), the axonal form of hereditary motor and sensory neuropathy (CMT2) seemed to be a genetically heterogeneous disease group, with no single gene playing a major pathogenetic role. In 2004, 10 mutations were identified in CMT2A families in the MFN2 gene coding for the mitochondrial protein mitofusin-2, previously mapped to the 1p35-36 locus. In the last two years, MFN2 gene mutations were shown to be the most common cause of autosomal dominant hereditary axonopathy. In addition, MFN2 gene mutations were also identified in CMT type 6 (axonal neuropathy with optic nerve atrophy). Recent reports indicate that some MFN2 gene mutations may by inherited as autosomal recessive traits. As MFN2 gene mutations are the most common cause of autosomal dominant CMT2 disease (33% of cases), MFN2 gene testing may be considered a diagnostic test for CMT2.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mutação , Análise Mutacional de DNA , GTP Fosfo-Hidrolases , Humanos
17.
PLoS One ; 12(1): e0169999, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28076385

RESUMO

Charcot-Marie-Tooth disease type 2A (CMT2A) is an autosomal dominant axonal peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2). Mitofusin 2 is a GTPase protein present in the outer mitochondrial membrane and responsible for regulation of mitochondrial network architecture via the fusion of mitochondria. As that fusion process is known to be strongly dependent on the GTPase activity of mitofusin 2, it is postulated that the MFN2 mutation within the GTPase domain may lead to impaired GTPase activity, and in turn to mitochondrial dysfunction. The work described here has therefore sought to verify the effects of MFN2 mutation within its GTPase domain on mitochondrial and endoplasmic reticulum morphology, as well as the mtDNA content in a cultured primary fibroblast obtained from a CMT2A patient harboring a de novo Arg274Trp mutation. In fact, all the parameters studied were affected significantly by the presence of the mutant MFN2 protein. However, using the stable model for mitofusin 2 obtained by us, we were next able to determine that the Arg274Trp mutation does not impact directly upon GTP binding. Such results were also confirmed for GTP-hydrolysis activity of MFN2 protein in patient fibroblast. We therefore suggest that the biological malfunctions observable with the disease are not consequences of impaired GTPase activity, but rather reflect an impaired contribution of the GTPase domain to other MFN2 activities involving that region, for example protein-protein interactions.


Assuntos
Doença de Charcot-Marie-Tooth/genética , GTP Fosfo-Hidrolases/genética , Proteínas Mitocondriais/genética , Polimorfismo de Nucleotídeo Único , Substituição de Aminoácidos/genética , Arginina/genética , Estudos de Casos e Controles , Células Cultivadas , Doença de Charcot-Marie-Tooth/patologia , Fibroblastos/metabolismo , Humanos , Masculino , Mutação de Sentido Incorreto , Triptofano/genética , Adulto Jovem
18.
J Neurol Sci ; 241(1-2): 7-11, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16343542

RESUMO

Mutations in the gene coding for ganglioside-induced differentiation-associated protein-1 (GDAP1), which maps to chromosome 8q21, have been described in families with autosomal recessive Charcot-Marie-Tooth disease (CMT4A). Interestingly, some mutations in the GDAP1 gene have been reported in the demyelinating form of CMT1 disease, whereas others were found in patients with the axonal type of CMT disease. So far, 23 mutations in the GDAP1 gene have been reported in patients of different ethnic origins. In this study we report a novel mutation Met116Thr in the GDAP1 gene identified in a three generation Polish family with axonal CMT4.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Saúde da Família , Metionina/genética , Mutação , Proteínas do Tecido Nervoso/genética , Treonina/genética , Adulto , Animais , Células COS/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Doença de Charcot-Marie-Tooth/fisiopatologia , Criança , Pré-Escolar , Chlorocebus aethiops , Análise Mutacional de DNA/métodos , Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Indóis , Masculino , Microscopia Eletrônica de Transmissão/métodos , Linhagem , Polônia , Nervo Sural/patologia , Nervo Sural/ultraestrutura , Transfecção/métodos
19.
Acta Biochim Pol ; 51(4): 1047-50, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15625576

RESUMO

To date, 12 cases of heterozygous Ser72Leu mutations in the peripheral myelin protein 22 have been reported in patients suffering from severe demyelinating form of Charcot-Marie-Tooth disease (CMT1) and congenital hypomyelinating neuropathy (CHN) [MIM# 605253]. In the present study we report two cases of de novo S72L mutations in the PMP22 gene detected in patients of Polish origin suffering from CMT1 disease.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteínas da Mielina/genética , Mutação Puntual , Substituição de Aminoácidos , Humanos , Polônia
20.
Eur J Paediatr Neurol ; 8(4): 221-4, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15261887

RESUMO

The spectrum of Charcot-Marie-Tooth (CMT) phenotypes segregating with mutations in the Myelin Protein Zero (MPZ) gene is wide and ranges from congenital hypomyelinating neuropathy (CHN) through demyelinating form of CMT to the axonal type of CMT disease. Within 94 MPZ gene mutations reported up to now, only a few were identified in the exon 4 of the MPZ gene. In this study we have identified a novel Leu190fs mutation in the MPZ gene. The Leu190fs mutation was found in a 14-year-old girl suffering from Charcot-Marie-Tooth type 1 disease (CMT1) with onset in early infancy. Similarly to the other MPZ gene frame-shift mutations reported as far the Leu190fs seems to have a dominant negative effect.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Mutação da Fase de Leitura , Leucina/genética , Proteína P0 da Mielina/genética , Mutação Puntual , Adolescente , Criança , Pré-Escolar , Análise Mutacional de DNA , Éxons , Feminino , Seguimentos , Genes Dominantes , Humanos , Proteínas da Mielina/genética , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA