Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
BMC Oral Health ; 23(1): 413, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349716

RESUMO

BACKGROUND: Oral health is an inherent part of overall health as an important physiological crossroad of functions such as mastication, swallowing or phonation; and plays a central role in the life of relationships facilitating social and emotional expression.Our hypothesis was that in patients with rare diseases, access to dental care could be difficult because of the lack of professionals who know the diseases and accept to treat the patients, but also because some patients with cognitive and intellectual disabilities could not find adequate infrastructure to assist in managing their oral health. METHODS: This study employed a qualitative descriptive design including semi-structured interviews using guiding themes. The transcripts were reviewed to identify key themes and interviews were performed until the data were saturated and no further themes emerged. RESULTS: Twenty-nine patients from 7 to 24 years old were included in the study of which 15 patients had an intellectual delay. The results show that access to care is complicated more by aspects concerning intellectual disability than by the fact that the disease is rare. Oral disorders are also an obstacle to the maintenance of their oral health. CONCLUSION: The oral health of patients with rare diseases, can be greatly enhanced by a pooling of knowledge between health professionals in the various sectors around the patient's care. It is essential that this becomes a focus of national public health action that promotes transdisciplinary care for the benefit of these patients.


Assuntos
Deficiência Intelectual , Doenças Raras , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Pessoal de Saúde , Mastigação , Assistência Odontológica , Pesquisa Qualitativa
2.
Am J Hum Genet ; 96(4): 519-31, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25772936

RESUMO

The endothelin receptor type A (EDNRA) signaling pathway is essential for the establishment of mandibular identity during development of the first pharyngeal arch. We report four unrelated individuals with the syndrome mandibulofacial dysostosis with alopecia (MFDA) who have de novo missense variants in EDNRA. Three of the four individuals have the same substitution, p.Tyr129Phe. Tyr129 is known to determine the selective affinity of EDNRA for endothelin 1 (EDN1), its major physiological ligand, and the p.Tyr129Phe variant increases the affinity of the receptor for EDN3, its non-preferred ligand, by two orders of magnitude. The fourth individual has a somatic mosaic substitution, p.Glu303Lys, and was previously described as having Johnson-McMillin syndrome. The zygomatic arch of individuals with MFDA resembles that of mice in which EDNRA is ectopically activated in the maxillary prominence, resulting in a maxillary to mandibular transformation, suggesting that the p.Tyr129Phe variant causes an EDNRA gain of function in the developing upper jaw. Our in vitro and in vivo assays suggested complex, context-dependent effects of the EDNRA variants on downstream signaling. Our findings highlight the importance of finely tuned regulation of EDNRA signaling during human craniofacial development and suggest that modification of endothelin receptor-ligand specificity was a key step in the evolution of vertebrate jaws.


Assuntos
Alopecia/genética , Disostose Mandibulofacial/genética , Receptor de Endotelina A/genética , Alopecia/patologia , Animais , Sequência de Bases , Endotelina-1/metabolismo , Exoma/genética , Humanos , Hibridização In Situ , Disostose Mandibulofacial/patologia , Dados de Sequência Molecular , Morfolinos/genética , Mutação de Sentido Incorreto/genética , Linhagem , RNA Mensageiro/administração & dosagem , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Endotelina A/metabolismo , Análise de Sequência de DNA , Síndrome , Tomografia Computadorizada por Raios X , Peixe-Zebra , Zigoma/patologia
3.
Am J Hum Genet ; 93(6): 1118-25, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24268655

RESUMO

Auriculocondylar syndrome (ACS) is a rare craniofacial disorder with mandibular hypoplasia and question-mark ears (QMEs) as major features. QMEs, consisting of a specific defect at the lobe-helix junction, can also occur as an isolated anomaly. Studies in animal models have indicated the essential role of endothelin 1 (EDN1) signaling through the endothelin receptor type A (EDNRA) in patterning the mandibular portion of the first pharyngeal arch. Mutations in the genes coding for phospholipase C, beta 4 (PLCB4) and guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 3 (GNAI3), predicted to function as signal transducers downstream of EDNRA, have recently been reported in ACS. By whole-exome sequencing (WES), we identified a homozygous substitution in a furin cleavage site of the EDN1 proprotein in ACS-affected siblings born to consanguineous parents. WES of two cases with vertical transmission of isolated QMEs revealed a stop mutation in EDN1 in one family and a missense substitution of a highly conserved residue in the mature EDN1 peptide in the other. Targeted sequencing of EDN1 in an ACS individual with related parents identified a fourth, homozygous mutation falling close to the site of cleavage by endothelin-converting enzyme. The different modes of inheritance suggest that the degree of residual EDN1 activity differs depending on the mutation. These findings provide further support for the hypothesis that ACS and QMEs are uniquely caused by disruption of the EDN1-EDNRA signaling pathway.


Assuntos
Otopatias/genética , Orelha/anormalidades , Genes Dominantes , Genes Recessivos , Mutação , Fenótipo , Sequência de Aminoácidos , Substituição de Aminoácidos , Análise Mutacional de DNA , Otopatias/diagnóstico , Otopatias/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Feminino , Genótipo , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Alinhamento de Sequência , Transdução de Sinais
4.
Genet Med ; 18(1): 49-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25790162

RESUMO

PURPOSE: Treacher Collins/Franceschetti syndrome (TCS; OMIM 154500) is a disorder of craniofacial development belonging to the heterogeneous group of mandibulofacial dysostoses. TCS is classically characterized by bilateral mandibular and malar hypoplasia, downward-slanting palpebral fissures, and microtia. To date, three genes have been identified in TCS:,TCOF1, POLR1D, and POLR1C. METHODS: We report a clinical and extensive molecular study, including TCOF1, POLR1D, POLR1C, and EFTUD2 genes, in a series of 146 patients with TCS. Phenotype-genotype correlations were investigated for 19 clinical features, between TCOF1 and POLR1D, and the type of mutation or its localization in the TCOF1 gene. RESULTS: We identified 92/146 patients (63%) with a molecular anomaly within TCOF1, 9/146 (6%) within POLR1D, and none within POLR1C. Among the atypical negative patients (with intellectual disability and/or microcephaly), we identified four patients carrying a mutation in EFTUD2 and two patients with 5q32 deletion encompassing TCOF1 and CAMK2A in particular. Congenital cardiac defects occurred more frequently among patients with TCOF1 mutation (7/92, 8%) than reported in the literature. CONCLUSION: Even though TCOF1 and POLR1D were associated with extreme clinical variability, we found no phenotype-genotype correlation. In cases with a typical phenotype of TCS, 6/146 (4%) remained with an unidentified molecular defect.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Disostose Mandibulofacial/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Criança , Feminino , Estudos de Associação Genética , Humanos , Masculino , Disostose Mandibulofacial/diagnóstico , Microcefalia/genética , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Fatores de Alongamento de Peptídeos/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Deleção de Sequência , Adulto Jovem
5.
Am J Hum Genet ; 90(5): 907-14, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22560091

RESUMO

Auriculocondylar syndrome (ACS) is a rare, autosomal-dominant craniofacial malformation syndrome characterized by variable micrognathia, temporomandibular joint ankylosis, cleft palate, and a characteristic "question-mark" ear malformation. Careful phenotypic characterization of severely affected probands in our cohort suggested the presence of a mandibular patterning defect resulting in a maxillary phenotype (i.e., homeotic transformation). We used exome sequencing of five probands and identified two novel (exclusive to the patient and/or family studied) missense mutations in PLCB4 and a shared mutation in GNAI3 in two unrelated probands. In confirmatory studies, three additional novel PLCB4 mutations were found in multigenerational ACS pedigrees. All mutations were confirmed by Sanger sequencing, were not present in more than 10,000 control chromosomes, and resulted in amino-acid substitutions located in highly conserved protein domains. Additionally, protein-structure modeling demonstrated that all ACS substitutions disrupt the catalytic sites of PLCB4 and GNAI3. We suggest that PLCB4 and GNAI3 are core signaling molecules of the endothelin-1-distal-less homeobox 5 and 6 (EDN1-DLX5/DLX6) pathway. Functional studies demonstrated a significant reduction in downstream DLX5 and DLX6 expression in ACS cases in assays using cultured osteoblasts from probands and controls. These results support the role of the previously implicated EDN1-DLX5/6 pathway in regulating mandibular specification in other species, which, when disrupted, results in a maxillary phenotype. This work defines the molecular basis of ACS as a homeotic transformation (mandible to maxilla) in humans.


Assuntos
Otopatias/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Mutação , Fosfolipase C beta/genética , Sequência de Aminoácidos , Estudos de Coortes , Orelha/anormalidades , Orelha/fisiopatologia , Otopatias/fisiopatologia , Endotelina-1/genética , Endotelina-1/metabolismo , Exoma , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Fenótipo , Fosfolipase C beta/metabolismo , Conformação Proteica , Análise de Sequência de RNA
6.
Hum Mutat ; 35(8): 1011-20, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24934569

RESUMO

Mutations in the coding sequence of SOX9 cause campomelic dysplasia (CD), a disorder of skeletal development associated with 46,XY disorders of sex development (DSDs). Translocations, deletions, and duplications within a ∼2 Mb region upstream of SOX9 can recapitulate the CD-DSD phenotype fully or partially, suggesting the existence of an unusually large cis-regulatory control region. Pierre Robin sequence (PRS) is a craniofacial disorder that is frequently an endophenotype of CD and a locus for isolated PRS at ∼1.2-1.5 Mb upstream of SOX9 has been previously reported. The craniofacial regulatory potential within this locus, and within the greater genomic domain surrounding SOX9, remains poorly defined. We report two novel deletions upstream of SOX9 in families with PRS, allowing refinement of the regions harboring candidate craniofacial regulatory elements. In parallel, ChIP-Seq for p300 binding sites in mouse craniofacial tissue led to the identification of several novel craniofacial enhancers at the SOX9 locus, which were validated in transgenic reporter mice and zebrafish. Notably, some of the functionally validated elements fall within the PRS deletions. These studies suggest that multiple noncoding elements contribute to the craniofacial regulation of SOX9 expression, and that their disruption results in PRS.


Assuntos
Displasia Campomélica/genética , Elementos Facilitadores Genéticos , Síndrome de Pierre Robin/genética , Fatores de Transcrição SOX9/genética , Adulto , Animais , Sequência de Bases , Displasia Campomélica/patologia , Criança , Cromossomos Humanos Par 17 , Feminino , Loci Gênicos , Humanos , Masculino , Mandíbula/anormalidades , Mandíbula/metabolismo , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Linhagem , Síndrome de Pierre Robin/patologia , Peixe-Zebra , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
7.
Hum Mutat ; 35(1): 137-46, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24166846

RESUMO

Joubert syndrome (JS) is characterized by a distinctive cerebellar structural defect, namely the << molar tooth sign >>. JS is genetically heterogeneous, involving 20 genes identified to date, which are all required for cilia biogenesis and/or function. In a consanguineous family with JS associated with optic nerve coloboma, kidney hypoplasia, and polydactyly, combined exome sequencing and mapping identified a homozygous splice-site mutation in PDE6D, encoding a prenyl-binding protein. We found that pde6d depletion in zebrafish leads to renal and retinal developmental anomalies and wild-type but not mutant PDE6D is able to rescue this phenotype. Proteomic analysis identified INPP5E, whose mutations also lead to JS or mental retardation, obesity, congenital retinal dystrophy, and micropenis syndromes, as novel prenyl-dependent cargo of PDE6D. Mutant PDE6D shows reduced binding to INPP5E, which fails to localize to primary cilia in patient fibroblasts and tissues. Furthermore, mutant PDE6D is unable to bind to GTP-bound ARL3, which acts as a cargo-release factor for PDE6D-bound INPP5E. Altogether, these results indicate that PDE6D is required for INPP5E ciliary targeting and suggest a broader role for PDE6D in targeting other prenylated proteins to the cilia. This study identifies PDE6D as a novel JS disease gene and provides the first evidence of prenyl-binding-dependent trafficking in ciliopathies.


Assuntos
Doenças Cerebelares/genética , Doenças Cerebelares/metabolismo , Cílios/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Retina/anormalidades , Fatores de Ribosilação do ADP/metabolismo , Anormalidades Múltiplas , Animais , Cerebelo/anormalidades , Exoma , Feminino , Predisposição Genética para Doença , Homozigoto , Humanos , Masculino , Modelos Moleculares , Linhagem , Prenilação de Proteína , Proteômica , Retina/metabolismo , Análise de Sequência de DNA , Peixe-Zebra/anormalidades , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Hum Genet ; 133(3): 367-77, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24178751

RESUMO

Oral-facial-digital syndrome type VI (OFD VI) is a recessive ciliopathy defined by two diagnostic criteria: molar tooth sign (MTS) and one or more of the following: (1) tongue hamartoma (s) and/or additional frenula and/or upper lip notch; (2) mesoaxial polydactyly of one or more hands or feet; (3) hypothalamic hamartoma. Because of the MTS, OFD VI belongs to the "Joubert syndrome related disorders". Its genetic aetiology remains largely unknown although mutations in the TMEM216 gene, responsible for Joubert (JBS2) and Meckel-Gruber (MKS2) syndromes, have been reported in two OFD VI patients. To explore the molecular cause(s) of OFD VI syndrome, we used an exome sequencing strategy in six unrelated families followed by Sanger sequencing. We identified a total of 14 novel mutations in the C5orf42 gene in 9/11 families with positive OFD VI diagnostic criteria including a severe fetal case with microphthalmia, cerebellar hypoplasia, corpus callosum agenesis, polydactyly and skeletal dysplasia. C5orf42 mutations have already been reported in Joubert syndrome confirming that OFD VI and JBS are allelic disorders, thus enhancing our knowledge of the complex, highly heterogeneous nature of ciliopathies.


Assuntos
Proteínas de Membrana/genética , Síndromes Orofaciodigitais/diagnóstico , Síndromes Orofaciodigitais/genética , Anormalidades Múltiplas , Adolescente , Adulto , Alelos , Doenças Cerebelares/diagnóstico , Doenças Cerebelares/genética , Cerebelo/anormalidades , Criança , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Exoma , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Feminino , Hamartoma/diagnóstico , Hamartoma/genética , Humanos , Doenças Hipotalâmicas/diagnóstico , Doenças Hipotalâmicas/genética , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Masculino , Mutação , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , Fenótipo , Polidactilia/diagnóstico , Polidactilia/genética , Retina/anormalidades , Análise de Sequência de DNA , Adulto Jovem
9.
J Med Genet ; 50(3): 174-86, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23315542

RESUMO

BACKGROUND: Auriculocondylar syndrome (ACS) is a rare craniofacial disorder consisting of micrognathia, mandibular condyle hypoplasia and a specific malformation of the ear at the junction between the lobe and helix. Missense heterozygous mutations in the phospholipase C, ß 4 (PLCB4) and guanine nucleotide binding protein (G protein), α inhibiting activity polypeptide 3 (GNAI3) genes have recently been identified in ACS patients by exome sequencing. These genes are predicted to function within the G protein-coupled endothelin receptor pathway during craniofacial development. RESULTS: We report eight additional cases ascribed to PLCB4 or GNAI3 gene lesions, comprising six heterozygous PLCB4 missense mutations, one heterozygous GNAI3 missense mutation and one homozygous PLCB4 intragenic deletion. Certain residues represent mutational hotspots; of the total of 11 ACS PLCB4 missense mutations now described, five disrupt Arg621 and two disrupt Asp360. The narrow distribution of mutations within protein space suggests that the mutations may result in dominantly interfering proteins, rather than haploinsufficiency. The consanguineous parents of the patient with a homozygous PLCB4 deletion each harboured the heterozygous deletion, but did not present the ACS phenotype, further suggesting that ACS is not caused by PLCB4 haploinsufficiency. In addition to ACS, the patient harbouring a homozygous deletion presented with central apnoea, a phenotype that has not been previously reported in ACS patients. CONCLUSIONS: These findings indicate that ACS is not only genetically heterogeneous but also an autosomal dominant or recessive condition according to the nature of the PLCB4 gene lesion.


Assuntos
Otopatias/genética , Orelha/anormalidades , Mutação , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Orelha/patologia , Otopatias/patologia , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Linhagem , Fosfolipase C beta/genética , Reação em Cadeia da Polimerase
10.
Am J Med Genet C Semin Med Genet ; 163C(4): 306-17, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24123988

RESUMO

Among human birth defect syndromes, malformations affecting the face are perhaps the most striking due to cultural and psychological expectations of facial shape. One such syndrome is auriculocondylar syndrome (ACS), in which patients present with defects in ear and mandible development. Affected structures arise from cranial neural crest cells, a population of cells in the embryo that reside in the pharyngeal arches and give rise to most of the bone, cartilage and connective tissue of the face. Recent studies have found that most cases of ACS arise from defects in signaling molecules associated with the endothelin signaling pathway. Disruption of this signaling pathway in both mouse and zebrafish results in loss of identity of neural crest cells of the mandibular portion of the first pharyngeal arch and the subsequent repatterning of these cells, leading to homeosis of lower jaw structures into more maxillary-like structures. These findings illustrate the importance of endothelin signaling in normal human craniofacial development and illustrate how clinical and basic science approaches can coalesce to improve our understanding of the genetic basis of human birth defect syndromes. Further, understanding the genetic basis for ACS that lies outside of known endothelin signaling components may help elucidate unknown aspects critical to the establishment of neural crest cell patterning during facial morphogenesis.


Assuntos
Padronização Corporal/genética , Região Branquial/fisiopatologia , Otopatias/fisiopatologia , Orelha/anormalidades , Transdução de Sinais , Animais , Região Branquial/crescimento & desenvolvimento , Modelos Animais de Doenças , Orelha/fisiopatologia , Otopatias/genética , Face/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mandíbula/crescimento & desenvolvimento , Mandíbula/patologia , Desenvolvimento Maxilofacial/genética , Camundongos , Crista Neural/crescimento & desenvolvimento , Crista Neural/patologia , Peixe-Zebra
11.
Am J Med Genet A ; 161A(9): 2339-46, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23913798

RESUMO

Auriculocondylar syndrome (ACS) is a branchial arch syndrome typically inherited in an autosomal dominant fashion. Patients with ACS display the following core symptoms with varying severity: a specific malformation of the external ear, known as a "question mark ear," micrognathia and mandibular condyle hypoplasia. Recently, phospholipase C, ß 4 (PLCB4) mutations were identified as the major cause of autosomal dominant ACS, with mutations of the PLCB4 catalytic domain predicted to have a dominant negative effect. In addition, one ACS patient born to related parents harbored a homozygous partial deletion of PLCB4, and presented with ACS plus central apnea and macropenis; these features had not been previously reported in association with ACS. His parents, each with a heterozygous partial PLCB4 deletion, were phenotypically normal, suggesting autosomal recessive inheritance of ACS, with complete loss of function of PLCB4 predicted in the patient. We herein describe two brothers with ACS caused by compound heterozygous splice site mutations in PLCB4. The patients were born to the same unrelated and healthy parents, with each parent harboring one of the mutations, indicating autosomal recessive ACS. Both patients reported here had mixed apneas, gastrointestinal transit defects and macropenis, in addition to typical craniofacial features of ACS. This is the first example of ACS caused by compound heterozygous splice site mutations in PLCB4, the second autosomal recessive case of ACS confirmed by molecular analysis, and strengthens the link between complete loss of function of PLCB4 and extra-craniofacial features.


Assuntos
Otopatias/diagnóstico , Otopatias/genética , Orelha/anormalidades , Genes Recessivos , Mutação , Fenótipo , Fosfolipase C beta/genética , Adulto , Otopatias/sangue , Feminino , Humanos , Recém-Nascido , Cariótipo , Masculino , Linhagem , Sítios de Splice de RNA , Análise de Sequência de DNA
12.
Front Pediatr ; 11: 1171277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664547

RESUMO

Introduction: Mandibulo-Facial Dysostosis with Microcephaly (MFDM) is a rare disease with a broad spectrum of symptoms, characterized by zygomatic and mandibular hypoplasia, microcephaly, and ear abnormalities. Here, we aimed at describing the external ear phenotype of MFDM patients, and train an Artificial Intelligence (AI)-based model to differentiate MFDM ears from non-syndromic control ears (binary classification), and from ears of the main differential diagnoses of this condition (multi-class classification): Treacher Collins (TC), Nager (NAFD) and CHARGE syndromes. Methods: The training set contained 1,592 ear photographs, corresponding to 550 patients. We extracted 48 patients completely independent of the training set, with only one photograph per ear per patient. After a CNN-(Convolutional Neural Network) based ear detection, the images were automatically landmarked. Generalized Procrustes Analysis was then performed, along with a dimension reduction using PCA (Principal Component Analysis). The principal components were used as inputs in an eXtreme Gradient Boosting (XGBoost) model, optimized using a 5-fold cross-validation. Finally, the model was tested on an independent validation set. Results: We trained the model on 1,592 ear photographs, corresponding to 1,296 control ears, 105 MFDM, 33 NAFD, 70 TC and 88 CHARGE syndrome ears. The model detected MFDM with an accuracy of 0.969 [0.838-0.999] (p < 0.001) and an AUC (Area Under the Curve) of 0.975 within controls (binary classification). Balanced accuracies were 0.811 [0.648-0.920] (p = 0.002) in a first multiclass design (MFDM vs. controls and differential diagnoses) and 0.813 [0.544-0.960] (p = 0.003) in a second multiclass design (MFDM vs. differential diagnoses). Conclusion: This is the first AI-based syndrome detection model in dysmorphology based on the external ear, opening promising clinical applications both for local care and referral, and for expert centers.

13.
Orphanet J Rare Dis ; 17(1): 317, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987771

RESUMO

BACKGROUND: Around 8000 rare diseases are currently defined. In the context of individual vulnerability and more specifically the one induced by rare diseases, ensuring oral health is a particularly important issue. The objective of the study is to evaluate the pattern of oral health care course for patients with any rare genetic disease. Description of oral phenotypic signs-which predict a theoretical dental health care course-and effective orientation into an oral healthcare were evaluated. MATERIALS AND METHODS: We set up a retrospective cohort study to describe the consideration of patient oral health and potential orientation to an oral health care course who have at least been seen once between 1 January 2017 and 1 January 2020 in Necker Enfants Malades Hospital. We recruited patients from this study using the data warehouse, Dr Warehouse® (DrWH), from Necker-Enfants Malades Hospital. RESULTS: The study sample included 39 rare diseases, 2712 patients, with 54.7% girls and 45.3% boys. In the sample studied, 27.9% of patients had an acquisition delay or a pervasive developmental disorder. Among the patient files studied, oral and dental phenotypic signs were described for 18.40% of the patients, and an orientation in an oral healthcare was made in 15.60% of patients. The overall "network" effect was significantly associated with description of phenotypic signs (corrected p = 1.44e-77) and orientation to an oral healthcare (corrected p = 23.58e-44). Taking the Defiscience network (rare diseases of cerebral development and intellectual disability) as a reference for the odd ratio analysis, OSCAR, TETECOU, FILNEMUS, FIMARAD, MHEMO networks stand out from the other networks for their significantly higher consideration of oral phenotypic signs and orientation in an oral healthcare. CONCLUSION: To our knowledge, no study has explored the management of oral health in so many rare diseases. The expected benefits of this study are, among others, a better understanding, and a better knowledge of the oral care, or at least of the consideration of oral care, in patients with rare diseases. Moreover, with the will to improve the knowledge on genetic diseases, oral heath must have a major place in the deep patient phenotyping. Therefore, interdisciplinary consultations with health professionals from different fields are crucial.


Assuntos
Saúde Bucal , Doenças Raras , Mineração de Dados , Data Warehousing , Feminino , Humanos , Masculino , Estudos Retrospectivos
14.
Eur J Hum Genet ; 30(8): 960-966, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35590056

RESUMO

DNA polymerase δ is one of the three main enzymes responsible for DNA replication. POLD1 heterozygous missense variants in the exonuclease domain result in a cancer predisposition phenotype. In contrast, heterozygous variants in POLD1 polymerase domain have more recently been shown to be the underlying basis of the distinct autosomal dominant multisystem lipodystrophy disorder, MDPL (mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome OMIM # 615381), most commonly a recurrent in-frame deletion of serine at position 604, accounting for 18 of the 21 reported cases of this condition. One patient with an unusually severe phenotype has been reported, caused by a de novo c. 3209 T > A, (p.(Ile1070Asn)) variant in the highly conserved CysB motif in the C-terminal of the POLD1 protein. This region has recently been shown to bind an iron-sulphur cluster of the 4Fe-4S type. This report concerns a novel de novo missense variant in the CysB region, c.3219 G > C, (p.(Ser1073Arg)) in a male child with a milder phenotype. Using in silico analysis in the context of the recently published structure of human Polymerase δ holoenzyme, we compared these and other variants which lie in close proximity but result in differing degrees of severity and varying features. We hypothesise that the c.3219 G > C, (p.(Ser1073Arg)) substitution likely causes reduced binding of the iron-sulphur cluster without significant disruption of protein structure, while the previously reported c.3209 T > A (p.(Ile1070Asn)) variant likely has a more profound impact on structure and folding in the region. Our analysis supports a central role for the CysB region in regulating POLD1 activity in health and disease.


Assuntos
DNA Polimerase III , Proteínas Ferro-Enxofre , Lipodistrofia , Criança , DNA Polimerase III/genética , Humanos , Proteínas Ferro-Enxofre/genética , Lipodistrofia/genética , Masculino , Mutação de Sentido Incorreto , Fenótipo , Síndrome
15.
Hum Mutat ; 32(1): 70-2, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20979233

RESUMO

Hypohidrotic and anhidrotic ectodermal dysplasia (HED/EDA) is a rare genodermatosis characterized by abnormal development of sweat glands, teeth, and hair. Three disease-causing genes have been hitherto identified, namely, (1) EDA1 accounting for X-linked forms, (2) EDAR, and (3) EDARADD, causing both autosomal dominant and recessive forms. Recently, WNT10A gene was identified as responsible for various autosomal recessive forms of ectodermal dysplasias, including onycho-odonto-dermal dysplasia (OODD) and Schöpf-Schulz-Passarge syndrome. We systematically studied EDA1, EDAR, EDARADD, and WNT10A genes in a large cohort of 65 unrelated patients, of which 61 presented with HED/EDA. A total of 50 mutations (including 32 novel mutations) accounted for 60/65 cases in our series. These four genes accounted for 92% (56/61 patients) of HED/EDA cases: (1) the EDA1 gene was the most common disease-causing gene (58% of cases), (2)WNT10A and EDAR were each responsible for 16% of cases. Moreover, a novel disease locus for dominant HED/EDA mapped to chromosome 14q12-q13.1. Although no clinical differences between patients carrying EDA1, EDAR, or EDARADD mutations could be identified, patients harboring WNT10A mutations displayed distinctive clinical features (marked dental phenotype, no facial dysmorphism), helping to decide which gene should be first investigated in HED/EDA.


Assuntos
Displasia Ectodérmica/genética , Ectodisplasinas/genética , Receptor Edar/genética , Proteína de Domínio de Morte Associada a Edar/genética , Mutação , Proteínas Wnt/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Fenótipo , Adulto Jovem
17.
Nat Genet ; 41(3): 359-64, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19234473

RESUMO

Pierre Robin sequence (PRS) is an important subgroup of cleft palate. We report several lines of evidence for the existence of a 17q24 locus underlying PRS, including linkage analysis results, a clustering of translocation breakpoints 1.06-1.23 Mb upstream of SOX9, and microdeletions both approximately 1.5 Mb centromeric and approximately 1.5 Mb telomeric of SOX9. We have also identified a heterozygous point mutation in an evolutionarily conserved region of DNA with in vitro and in vivo features of a developmental enhancer. This enhancer is centromeric to the breakpoint cluster and maps within one of the microdeletion regions. The mutation abrogates the in vitro enhancer function and alters binding of the transcription factor MSX1 as compared to the wild-type sequence. In the developing mouse mandible, the 3-Mb region bounded by the microdeletions shows a regionally specific chromatin decompaction in cells expressing Sox9. Some cases of PRS may thus result from developmental misexpression of SOX9 due to disruption of very-long-range cis-regulatory elements.


Assuntos
Síndrome de Pierre Robin/genética , Fatores de Transcrição SOX9/genética , Regiões não Traduzidas/genética , Animais , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Humanos Par 17 , Sequência Conservada , Família , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Linhagem , Polimorfismo Genético/fisiologia , Elementos Reguladores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA