Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Neurosci ; 42: 385-406, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31283897

RESUMEN

Antisense oligonucleotides represent a novel therapeutic platform for the discovery of medicines that have the potential to treat most neurodegenerative diseases. Antisense drugs are currently in development for the treatment of amyotrophic lateral sclerosis, Huntington's disease, and Alzheimer's disease, and multiple research programs are underway for additional neurodegenerative diseases. One antisense drug, nusinersen, has been approved for the treatment of spinal muscular atrophy. Importantly, nusinersen improves disease symptoms when administered to symptomatic patients rather than just slowing the progression of the disease. In addition to the benefit to spinal muscular atrophy patients, there are discoveries from nusinersen that can be applied to other neurological diseases, including method of delivery, doses, tolerability of intrathecally delivered antisense drugs, and the biodistribution of intrathecal dosed antisense drugs. Based in part on the early success of nusinersen, antisense drugs hold great promise as a therapeutic platform for the treatment of neurological diseases.


Asunto(s)
Atrofia Muscular Espinal/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos/farmacología , Distribución Tisular/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Enfermedades Neurodegenerativas/genética
2.
J Am Chem Soc ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985464

RESUMEN

Nanoscale secondary ion mass spectrometry (NanoSIMS) makes it possible to visualize elements and isotopes in a wide range of samples at a high resolution. However, the fidelity and quality of NanoSIMS images often suffer from distortions because of a requirement to acquire and integrate multiple image frames. We developed an optical flow-based algorithm tool, NanoSIMS Stabilizer, for all-channel postacquisition registration of images. The NanoSIMS Stabilizer effectively deals with the distortions and artifacts, resulting in a high-resolution visualization of isotope and element distribution. It is open source with an easy-to-use ImageJ plugin and is accompanied by a Python version with GPU acceleration.

3.
Annu Rev Pharmacol Toxicol ; 61: 831-852, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33035446

RESUMEN

The genetic basis for most inherited neurodegenerative diseases has been identified, yet there are limited disease-modifying therapies for these patients. A new class of drugs-antisense oligonucleotides (ASOs)-show promise as a therapeutic platform for treating neurological diseases. ASOs are designed to bind to the RNAs either by promoting degradation of the targeted RNA or by elevating expression by RNA splicing. Intrathecal injection into the cerebral spinal fluid results in broad distribution of antisense drugs and long-term effects. Approval of nusinersen in 2016 demonstrated that effective treatments for neurodegenerative diseases can be identified and that treatments not only slow disease progression but also improve some symptoms. Antisense drugs are currently in development for amyotrophic lateral sclerosis, Huntington's disease, Alzheimer's disease, Parkinson's disease, and Angelman syndrome, and several drugs are in late-stage research for additional neurological diseases. This review highlights the advances in antisense technology as potential treatments for neurological diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Preparaciones Farmacéuticas , Humanos , Oligonucleótidos Antisentido , ARN
4.
Hum Mol Genet ; 30(12): 1111-1130, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-33864373

RESUMEN

RNA toxicity underlies the pathogenesis of disorders such as myotonic dystrophy type 1 (DM1). Muscular dystrophy is a key element of the pathology of DM1. The means by which RNA toxicity causes muscular dystrophy in DM1 is unclear. Here, we have used the DM200 mouse model of RNA toxicity due to the expression of a mutant DMPK 3'UTR mRNA to model the effects of RNA toxicity on muscle regeneration. Using a BaCl2-induced damage model, we find that RNA toxicity leads to decreased expression of PAX7, and decreased numbers of satellite cells, the stem cells of adult skeletal muscle (also known as MuSCs). This is associated with a delay in regenerative response, a lack of muscle fiber maturation and an inability to maintain a normal number of satellite cells. Repeated muscle damage also elicited key aspects of muscular dystrophy, including fat droplet deposition and increased fibrosis, and the results represent one of the first times to model these classic markers of dystrophic changes in the skeletal muscles of a mouse model of RNA toxicity. Using a ligand-conjugated antisense (LICA) oligonucleotide ASO targeting DMPK sequences for the first time in a mouse model of RNA toxicity in DM1, we find that treatment with IONIS 877864, which targets the DMPK 3'UTR mRNA, is efficacious in correcting the defects in regenerative response and the reductions in satellite cell numbers caused by RNA toxicity. These results demonstrate the possibilities for therapeutic interventions to mitigate the muscular dystrophy associated with RNA toxicity in DM1.


Asunto(s)
Desarrollo de Músculos/genética , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Oligonucleótidos Antisentido/farmacología , ARN/genética , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Miotónica/patología , Proteína Quinasa de Distrofia Miotónica/antagonistas & inhibidores , ARN/toxicidad , ARN Mensajero/genética , Regeneración/genética
5.
N Engl J Med ; 383(2): 109-119, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32640130

RESUMEN

BACKGROUND: Tofersen is an antisense oligonucleotide that mediates the degradation of superoxide dismutase 1 (SOD1) messenger RNA to reduce SOD1 protein synthesis. Intrathecal administration of tofersen is being studied for the treatment of amyotrophic lateral sclerosis (ALS) due to SOD1 mutations. METHODS: We conducted a phase 1-2 ascending-dose trial evaluating tofersen in adults with ALS due to SOD1 mutations. In each dose cohort (20, 40, 60, or 100 mg), participants were randomly assigned in a 3:1 ratio to receive five doses of tofersen or placebo, administered intrathecally for 12 weeks. The primary outcomes were safety and pharmacokinetics. The secondary outcome was the change from baseline in the cerebrospinal fluid (CSF) SOD1 concentration at day 85. Clinical function and vital capacity were measured. RESULTS: A total of 50 participants underwent randomization and were included in the analyses; 48 participants received all five planned doses. Lumbar puncture-related adverse events were observed in most participants. Elevations in CSF white-cell count and protein were reported as adverse events in 4 and 5 participants, respectively, who received tofersen. Among participants who received tofersen, one died from pulmonary embolus on day 137, and one from respiratory failure on day 152; one participant in the placebo group died from respiratory failure on day 52. The difference at day 85 in the change from baseline in the CSF SOD1 concentration between the tofersen groups and the placebo group was 2 percentage points (95% confidence interval [CI], -18 to 27) for the 20-mg dose, -25 percentage points (95% CI, -40 to -5) for the 40-mg dose, -19 percentage points (95% CI, -35 to 2) for the 60-mg dose, and -33 percentage points (95% CI, -47 to -16) for the 100-mg dose. CONCLUSIONS: In adults with ALS due to SOD1 mutations, CSF SOD1 concentrations decreased at the highest concentration of tofersen administered intrathecally over a period of 12 weeks. CSF pleocytosis occurred in some participants receiving tofersen. Lumbar puncture-related adverse events were observed in most participants. (Funded by Biogen; ClinicalTrials.gov number, NCT02623699; EudraCT number, 2015-004098-33.).


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos/administración & dosificación , Superóxido Dismutasa-1/líquido cefalorraquídeo , Adulto , Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Esclerosis Amiotrófica Lateral/genética , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Cefalea/inducido químicamente , Humanos , Inyecciones Espinales/efectos adversos , Filamentos Intermedios , Leucocitosis/inducido químicamente , Masculino , Persona de Mediana Edad , Mutación , Oligonucleótidos/efectos adversos , Oligonucleótidos/farmacocinética , Oligonucleótidos Antisentido/efectos adversos , Oligonucleótidos Antisentido/farmacocinética , Superóxido Dismutasa-1/genética , Capacidad Vital
6.
Nature ; 544(7650): 362-366, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28405024

RESUMEN

There are no disease-modifying treatments for adult human neurodegenerative diseases. Here we test RNA-targeted therapies in two mouse models of spinocerebellar ataxia type 2 (SCA2), an autosomal dominant polyglutamine disease. Both models recreate the progressive adult-onset dysfunction and degeneration of a neuronal network that are seen in patients, including decreased firing frequency of cerebellar Purkinje cells and a decline in motor function. We developed a potential therapy directed at the ATXN2 gene by screening 152 antisense oligonucleotides (ASOs). The most promising oligonucleotide, ASO7, downregulated ATXN2 mRNA and protein, which resulted in delayed onset of the SCA2 phenotype. After delivery by intracerebroventricular injection to ATXN2-Q127 mice, ASO7 localized to Purkinje cells, reduced cerebellar ATXN2 expression below 75% for more than 10 weeks without microglial activation, and reduced the levels of cerebellar ATXN2. Treatment of symptomatic mice with ASO7 improved motor function compared to saline-treated mice. ASO7 had a similar effect in the BAC-Q72 SCA2 mouse model, and in both mouse models it normalized protein levels of several SCA2-related proteins expressed in Purkinje cells, including Rgs8, Pcp2, Pcp4, Homer3, Cep76 and Fam107b. Notably, the firing frequency of Purkinje cells returned to normal even when treatment was initiated more than 12 weeks after the onset of the motor phenotype in BAC-Q72 mice. These findings support ASOs as a promising approach for treating some human neurodegenerative diseases.


Asunto(s)
Oligonucleótidos Antisentido/uso terapéutico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/terapia , Potenciales de Acción , Animales , Ataxina-2/deficiencia , Ataxina-2/genética , Ataxina-2/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , Movimiento , Fenotipo , Células de Purkinje/metabolismo , Células de Purkinje/patología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/fisiopatología
7.
Nucleic Acids Res ; 49(1): 1-14, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33275144

RESUMEN

Nucleic acid therapeutics (NATs) have proven useful in promoting the degradation of specific transcripts, modifying gene expression, and regulating mRNA splicing. In each situation, efficient delivery of nucleic acids to cells, tissues and intracellular compartments is crucial-both for optimizing efficacy and reducing side effects. Despite successes in NATs, our understanding of their cellular uptake and distribution in tissues is limited. Current methods have yielded insights into distribution of NATs within cells and tissues, but the sensitivity and resolution of these approaches are limited. Here, we show that nanoscale secondary ion mass spectrometry (NanoSIMS) imaging can be used to define the distribution of 5-bromo-2'-deoxythymidine (5-BrdT) modified antisense oligonucleotides (ASO) in cells and tissues with high sensitivity and spatial resolution. This approach makes it possible to define ASO uptake and distribution in different subcellular compartments and to quantify the impact of targeting ligands designed to promote ASO uptake by cells. Our studies showed that phosphorothioate ASOs are associated with filopodia and the inner nuclear membrane in cultured cells, and also revealed substantial cellular and subcellular heterogeneity of ASO uptake in mouse tissues. NanoSIMS imaging represents a significant advance in visualizing uptake and distribution of NATs; this approach will be useful in optimizing efficacy and delivery of NATs for treating human disease.


Asunto(s)
Oligonucleótidos Antisentido/análisis , Oligonucleótidos Fosforotioatos/análisis , Espectrometría de Masa de Ion Secundario/métodos , Células 3T3-L1 , Acetilgalactosamina/administración & dosificación , Acetilgalactosamina/análisis , Animales , Receptor de Asialoglicoproteína/análisis , Cesio , Células HEK293 , Células HeLa , Humanos , Riñón/química , Riñón/ultraestructura , Hígado/química , Hígado/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Miocardio/química , Miocardio/ultraestructura , Oligonucleótidos Antisentido/farmacocinética , Oligonucleótidos Fosforotioatos/farmacocinética , Seudópodos/química , Seudópodos/ultraestructura , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , Fracciones Subcelulares/química , Azufre/análisis , Isótopos de Azufre/análisis , Distribución Tisular
8.
Genes Dev ; 29(3): 288-97, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25583329

RESUMEN

Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically essential. Here, we address the relative importance of SMN restoration in the central nervous system (CNS) versus peripheral tissues in mouse models using a therapeutic splice-switching antisense oligonucleotide to restore SMN and a complementary decoy oligonucleotide to neutralize its effects in the CNS. Increasing SMN exclusively in peripheral tissues completely rescued necrosis in mild SMA mice and robustly extended survival in severe SMA mice, with significant improvements in vulnerable tissues and motor function. Our data demonstrate a critical role of peripheral pathology in the mortality of SMA mice and indicate that peripheral SMN restoration compensates for its deficiency in the CNS and preserves motor neurons. Thus, SMA is not a cell-autonomous defect of motor neurons in SMA mice.


Asunto(s)
Neuronas Motoras/metabolismo , Atrofia Muscular Espinal , Oligonucleótidos Antisentido/uso terapéutico , Proteínas del Complejo SMN/genética , Proteínas del Complejo SMN/metabolismo , Animales , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Terapia Genética , Ratones , Ratones Transgénicos , Neuronas Motoras/citología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología , Atrofia Muscular Espinal/terapia , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Fenotipo
9.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835624

RESUMEN

For SMA patients with only two SMN2 copies, available therapies might be insufficient to counteract lifelong motor neuron (MN) dysfunction. Therefore, additional SMN-independent compounds, supporting SMN-dependent therapies, might be beneficial. Neurocalcin delta (NCALD) reduction, an SMA protective genetic modifier, ameliorates SMA across species. In a low-dose SMN-ASO-treated severe SMA mouse model, presymptomatic intracerebroventricular (i.c.v.) injection of Ncald-ASO at postnatal day 2 (PND2) significantly ameliorates histological and electrophysiological SMA hallmarks at PND21. However, contrary to SMN-ASOs, Ncald-ASOs show a shorter duration of action limiting a long-term benefit. Here, we investigated the longer-term effect of Ncald-ASOs by additional i.c.v. bolus injection at PND28. Two weeks after injection of 500 µg Ncald-ASO in wild-type mice, NCALD was significantly reduced in the brain and spinal cord and well tolerated. Next, we performed a double-blinded preclinical study combining low-dose SMN-ASO (PND1) with 2× i.c.v. Ncald-ASO or CTRL-ASO (100 µg at PND2, 500 µg at PND28). Ncald-ASO re-injection significantly ameliorated electrophysiological defects and NMJ denervation at 2 months. Moreover, we developed and identified a non-toxic and highly efficient human NCALD-ASO that significantly reduced NCALD in hiPSC-derived MNs. This improved both neuronal activity and growth cone maturation of SMA MNs, emphasizing the additional protective effect of NCALD-ASO treatment.


Asunto(s)
Células Madre Pluripotentes Inducidas , Atrofia Muscular Espinal , Ratones , Animales , Humanos , Atrofia Muscular Espinal/genética , Neurocalcina , Células Madre Pluripotentes Inducidas/patología , Neuronas Motoras/patología , Oligonucleótidos/farmacología , Modelos Animales de Enfermedad , Proteína 1 para la Supervivencia de la Neurona Motora
10.
Gene Ther ; 29(12): 698-709, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35075265

RESUMEN

Myotonic dystrophy, or dystrophia myotonica type 1 (DM1), is a multi-systemic disorder and is the most common adult form of muscular dystrophy. It affects not only muscles but also many organs, including the brain. Cerebral impairments include cognitive deficits, daytime sleepiness, and loss of visuospatial and memory functions. The expression of mutated transcripts with CUG repeats results in a gain of toxic mRNA function. The antisense oligonucleotide (ASO) strategy to treat DM1 brain deficits is limited by the fact that ASOs do not cross the blood-brain barrier after systemic administration, indicating that other methods of delivery should be considered. ASO technology has emerged as a powerful tool for developing potential new therapies for a wide variety of human diseases, and its potential has been proven in a recent clinical trial. Targeting DMPK mRNA in neural cells derived from human induced pluripotent stem cells obtained from a DM1 patient with the IONIS 486178 ASO abolished CUG-expanded foci, enabled nuclear redistribution of MBNL1/2, and corrected aberrant splicing. Intracerebroventricular injection of the IONIS 486178 ASO in DMSXL mice decreased the levels of mutant DMPK mRNAs by up to 70% throughout different brain regions. It also reversed behavioral abnormalities following neonatal administration. The present study indicated that the IONIS 486178 ASO targets mutant DMPK mRNAs in the brain and strongly supports the feasibility of a therapy for DM1 patients based on the intrathecal injection of an ASO.


Asunto(s)
Células Madre Pluripotentes Inducidas , Distrofia Miotónica , Adulto , Humanos , Animales , Ratones , Distrofia Miotónica/terapia , Distrofia Miotónica/tratamiento farmacológico , Proteína Quinasa de Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Expansión de Repetición de Trinucleótido , Proteínas de Unión al ARN/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Oligonucleótidos/uso terapéutico , Encéfalo/metabolismo
11.
Hum Mol Genet ; 29(9): 1440-1453, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32242217

RESUMEN

Myotonic dystrophy type 1 (DM1), the most common adult muscular dystrophy, is an autosomal dominant disorder caused by an expansion of a (CTG)n tract within the 3' untranslated region (3'UTR) of the dystrophia myotonica protein kinase (DMPK) gene. Mutant DMPK mRNAs are toxic, present in nuclear RNA foci and correlated with a plethora of RNA splicing defects. Cardinal features of DM1 are myotonia and cardiac conduction abnormalities. Using transgenic mice, we have demonstrated that expression of the mutant DMPK 3'UTR is sufficient to elicit these features of DM1. Here, using these mice, we present a study of systemic treatment with an antisense oligonucleotide (ASO) (ISIS 486178) targeted to a non-CUG sequence within the 3'UTR of DMPK. RNA foci and DMPK 3'UTR mRNA levels were reduced in both the heart and skeletal muscles. This correlated with improvements in several splicing defects in skeletal and cardiac muscles. The treatment reduced myotonia and this correlated with increased Clcn1 expression. Furthermore, functional testing showed improvements in treadmill running. Of note, we demonstrate that the ASO treatment reversed the cardiac conduction abnormalities, and this correlated with restoration of Gja5 (connexin 40) expression in the heart. This is the first time that an ASO targeting a non-CUG sequence within the DMPK 3'UTR has demonstrated benefit on the key DM1 phenotypes of myotonia and cardiac conduction defects. Our data also shows for the first time that ASOs may be a viable option for treating cardiac pathology in DM1.


Asunto(s)
Canales de Cloruro/genética , Conexinas/genética , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Oligonucleótidos Antisentido/farmacología , Regiones no Traducidas 3'/genética , Animales , Núcleo Celular/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos/genética , Distrofia Miotónica/patología , Distrofia Miotónica/terapia , Proteína Quinasa de Distrofia Miotónica/farmacología , Oligonucleótidos/genética , Oligonucleótidos/farmacología , Oligonucleótidos Antisentido/efectos adversos , Oligonucleótidos Antisentido/genética , ARN Mensajero/genética , Expansión de Repetición de Trinucleótido/genética , Proteína alfa-5 de Unión Comunicante
12.
Hum Mol Genet ; 29(10): 1658-1672, 2020 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-32307524

RESUMEN

The spinocerebellar ataxia type 2 (SCA2) gene ATXN2 has a prominent role in the pathogenesis and treatment of amyotrophic lateral sclerosis (ALS). In addition to cerebellar ataxia, motor neuron disease is often seen in SCA2, and ATXN2 CAG repeat expansions in the long normal range increase ALS risk. Also, lowering ATXN2 expression in TDP-43 ALS mice prolongs their survival. Here we investigated the ATXN2 relationship with motor neuron dysfunction in vivo by comparing spinal cord (SC) transcriptomes reported from TDP-43 and SOD1 ALS mice and ALS patients with those from SCA2 mice. SC transcriptomes were determined using an SCA2 bacterial artificial chromosome mouse model expressing polyglutamine expanded ATXN2. SCA2 cerebellar transcriptomes were also determined, and we also investigated the modification of gene expression following treatment of SCA2 mice with an antisense oligonucleotide (ASO) lowering ATXN2 expression. Differentially expressed genes (DEGs) defined three interconnected pathways (innate immunity, fatty acid biosynthesis and cholesterol biosynthesis) in separate modules identified by weighted gene co-expression network analysis. Other key pathways included the complement system and lysosome/phagosome pathways. Of all DEGs in SC, 12.6% were also dysregulated in the cerebellum. Treatment of mice with an ATXN2 ASO also modified innate immunity, the complement system and lysosome/phagosome pathways. This study provides new insights into the underlying molecular basis of SCA2 SC phenotypes and demonstrates annotated pathways shared with TDP-43 and SOD1 ALS mice and ALS patients. It also emphasizes the importance of ATXN2 in motor neuron degeneration and confirms ATXN2 as a therapeutic target.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Ataxina-2/genética , Proteínas de Unión al ADN/genética , Ataxias Espinocerebelosas/genética , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Ataxina-2/antagonistas & inhibidores , Cerebelo/metabolismo , Cerebelo/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Neuronas Motoras/patología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Médula Espinal/metabolismo , Médula Espinal/patología , Ataxias Espinocerebelosas/patología , Transcriptoma/genética
13.
Am J Hum Genet ; 105(1): 221-230, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31230718

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disease causing the most frequent genetic childhood lethality. Recently, nusinersen, an antisense oligonucleotide (ASO) that corrects SMN2 splicing and thereby increases full-length SMN protein, has been approved by the FDA and EMA for SMA therapy. However, the administration of nusinersen in severe and/or post-symptomatic SMA-affected individuals is insufficient to counteract the disease. Therefore, additional SMN-independent therapies are needed to support the function of motoneurons and neuromuscular junctions. We recently identified asymptomatic SMN1-deleted individuals who were protected against SMA by reduced expression of neurocalcin delta (NCALD). NCALD reduction is proven to be a protective modifier of SMA across species, including worm, zebrafish, and mice. Here, we identified Ncald-ASO3-out of 450 developed Ncald ASOs-as the most efficient and non-toxic ASO for the CNS, by applying a stepwise screening strategy in cortical neurons and adult and neonatal mice. In a randomized-blinded preclinical study, a single subcutaneous low-dose SMN-ASO and a single intracerebroventricular Ncald-ASO3 or control-ASO injection were presymptomatically administered in a severe SMA mouse model. NCALD reduction of >70% persisted for about 1 month. While low-dose SMN-ASO rescues multiorgan impairment, additional NCALD reduction significantly ameliorated SMA pathology including electrophysiological and histological properties of neuromuscular junctions and muscle at P21 and motoric deficits at 3 months. The present study shows the additional benefit of a combinatorial SMN-dependent and SMN-independent ASO-based therapy for SMA. This work illustrates how a modifying gene, identified in some asymptomatic individuals, helps to develop a therapy for all SMA-affected individuals.


Asunto(s)
Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Atrofia Muscular Espinal/terapia , Neurocalcina/antagonistas & inhibidores , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos/administración & dosificación , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Ratones , Atrofia Muscular Espinal/genética , Neurocalcina/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética
14.
N Engl J Med ; 380(24): 2307-2316, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31059641

RESUMEN

BACKGROUND: Huntington's disease is an autosomal-dominant neurodegenerative disease caused by CAG trinucleotide repeat expansion in HTT, resulting in a mutant huntingtin protein. IONIS-HTTRx (hereafter, HTTRx) is an antisense oligonucleotide designed to inhibit HTT messenger RNA and thereby reduce concentrations of mutant huntingtin. METHODS: We conducted a randomized, double-blind, multiple-ascending-dose, phase 1-2a trial involving adults with early Huntington's disease. Patients were randomly assigned in a 3:1 ratio to receive HTTRx or placebo as a bolus intrathecal administration every 4 weeks for four doses. Dose selection was guided by a preclinical model in mice and nonhuman primates that related dose level to reduction in the concentration of huntingtin. The primary end point was safety. The secondary end point was HTTRx pharmacokinetics in cerebrospinal fluid (CSF). Prespecified exploratory end points included the concentration of mutant huntingtin in CSF. RESULTS: Of the 46 patients who were enrolled in the trial, 34 were randomly assigned to receive HTTRx (at ascending dose levels of 10 to 120 mg) and 12 were randomly assigned to receive placebo. Each patient received all four doses and completed the trial. Adverse events, all of grade 1 or 2, were reported in 98% of the patients. No serious adverse events were seen in HTTRx-treated patients. There were no clinically relevant adverse changes in laboratory variables. Predose (trough) concentrations of HTTRx in CSF showed dose dependence up to doses of 60 mg. HTTRx treatment resulted in a dose-dependent reduction in the concentration of mutant huntingtin in CSF (mean percentage change from baseline, 10% in the placebo group and -20%, -25%, -28%, -42%, and -38% in the HTTRx 10-mg, 30-mg, 60-mg, 90-mg, and 120-mg dose groups, respectively). CONCLUSIONS: Intrathecal administration of HTTRx to patients with early Huntington's disease was not accompanied by serious adverse events. We observed dose-dependent reductions in concentrations of mutant huntingtin. (Funded by Ionis Pharmaceuticals and F. Hoffmann-La Roche; ClinicalTrials.gov number, NCT02519036.).


Asunto(s)
Proteína Huntingtina/antagonistas & inhibidores , Enfermedad de Huntington/tratamiento farmacológico , Nucleótidos/farmacología , Oligonucleótidos/uso terapéutico , Adulto , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Proteína Huntingtina/líquido cefalorraquídeo , Proteína Huntingtina/genética , Inyecciones Espinales , Masculino , Persona de Mediana Edad , Mutación , Nucleótidos/síntesis química , Oligonucleótidos/líquido cefalorraquídeo
15.
Mol Ther ; 29(2): 838-847, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33290725

RESUMEN

We recently reported the antisense properties of a DNA/RNA heteroduplex oligonucleotide consisting of a phosphorothioate DNA-gapmer antisense oligonucleotide (ASO) strand and its complementary phosphodiester RNA/phosphorothioate 2'-O-methyl RNA strand. When α-tocopherol was conjugated with the complementary strand, the heteroduplex oligonucleotide silenced the target RNA more efficiently in vivo than did the parent single-stranded ASO. In this study, we designed a new type of the heteroduplex oligonucleotide, in which the RNA portion of the complementary strand was replaced with phosphodiester DNA, yielding an ASO/DNA double-stranded structure. The ASO/DNA heteroduplex oligonucleotide showed similar activity and liver accumulation as did the original ASO/RNA design. Structure-activity relationship studies of the complementary DNA showed that optimal increases in the potency and the accumulation were seen when the flanks of the phosphodiester DNA complement were protected using 2'-O-methyl RNA and phosphorothioate modifications. Furthermore, evaluation of the degradation kinetics of the complementary strands revealed that the DNA-complementary strand as well as the RNA strand were completely cleaved in vivo. Our results expand the repertoire of chemical modifications that can be used with the heteroduplex oligonucleotide technology, providing greater design flexibility for future therapeutic applications.


Asunto(s)
ADN/genética , Regulación de la Expresión Génica , Técnicas de Transferencia de Gen , Oligodesoxirribonucleótidos/genética , Células Cultivadas , ADN/administración & dosificación , Silenciador del Gen , Oligodesoxirribonucleótidos/administración & dosificación , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética
16.
Nucleic Acids Res ; 48(6): 2853-2865, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32103257

RESUMEN

Spinal muscular atrophy (SMA) is a motor neuron disease. Nusinersen, a splice-switching antisense oligonucleotide (ASO), was the first approved drug to treat SMA. Based on prior preclinical studies, both 2'-O-methoxyethyl (MOE) with a phosphorothioate backbone and morpholino with a phosphorodiamidate backbone-with the same or extended target sequence as nusinersen-displayed efficient rescue of SMA mouse models. Here, we compared the therapeutic efficacy of these two modification chemistries in rescue of a severe mouse model using ASO10-29-a 2-nt longer version of nusinersen-via subcutaneous injection. Although both chemistries efficiently corrected SMN2 splicing in various tissues, restored motor function and improved the integrity of neuromuscular junctions, MOE-modified ASO10-29 (MOE10-29) was more efficacious than morpholino-modified ASO10-29 (PMO10-29) at the same molar dose, as seen by longer survival, greater body-weight gain and better preservation of motor neurons. Time-course analysis revealed that MOE10-29 had more persistent effects than PMO10-29. On the other hand, PMO10-29 appears to more readily cross an immature blood-brain barrier following systemic administration, showing more robust initial effects on SMN2 exon 7 inclusion, but less persistence in the central nervous system. We conclude that both modifications can be effective as splice-switching ASOs in the context of SMA and potentially other diseases, and discuss the advantages and disadvantages of each.


Asunto(s)
Amidas/química , Morfolinos/uso terapéutico , Atrofia Muscular Espinal/tratamiento farmacológico , Oligonucleótidos Antisentido/uso terapéutico , Ácidos Fosfóricos/química , Animales , Modelos Animales de Enfermedad , Exones/genética , Humanos , Ratones Transgénicos , Morfolinos/farmacología , Actividad Motora/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Músculos/patología , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/fisiopatología , Unión Neuromuscular/patología , Unión Neuromuscular/fisiopatología , Oligonucleótidos Antisentido/farmacología , Fenotipo , Empalme del ARN/efectos de los fármacos , Empalme del ARN/genética , Médula Espinal/patología , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Resultado del Tratamiento
17.
Nucleic Acids Res ; 48(2): 802-816, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31802121

RESUMEN

Splice-switching antisense oligonucleotides (ASOs), which bind specific RNA-target sequences and modulate pre-mRNA splicing by sterically blocking the binding of splicing factors to the pre-mRNA, are a promising therapeutic modality to treat a range of genetic diseases. ASOs are typically 15-25 nt long and considered to be highly specific towards their intended target sequence, typically elements that control exon definition and/or splice-site recognition. However, whether or not splice-modulating ASOs also induce hybridization-dependent mis-splicing of unintended targets has not been systematically studied. Here, we tested the in vitro effects of splice-modulating ASOs on 108 potential off-targets predicted on the basis of sequence complementarity, and identified 17 mis-splicing events for one of the ASOs tested. Based on analysis of data from two overlapping ASO sequences, we conclude that off-target effects are difficult to predict, and the choice of ASO chemistry influences the extent of off-target activity. The off-target events caused by the uniformly modified ASOs tested in this study were significantly reduced with mixed-chemistry ASOs of the same sequence. Furthermore, using shorter ASOs, combining two ASOs, and delivering ASOs by free uptake also reduced off-target activity. Finally, ASOs with strategically placed mismatches can be used to reduce unwanted off-target splicing events.


Asunto(s)
Hibridación Genética , Oligonucleótidos Antisentido/genética , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , Sitios de Unión/genética , Línea Celular , Exones/genética , Humanos , Hibridación de Ácido Nucleico/genética , Precursores del ARN/genética , ARN Mensajero/genética
18.
Annu Rev Med ; 70: 307-321, 2019 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-30691367

RESUMEN

The first published description of therapeutic applications of antisense oligonucleotide (ASO) technology occurred in the late 1970s and was followed by the founding of commercial companies focused on developing antisense therapeutics in the late 1980s. Since the late 1980s, there has been steady progress in improving the technology platform, taking advantage of advances in oligonucleotide chemistry and formulations as well as increased understanding of the distribution and safety of ASOs. There are several approved ASO drugs and a broad pipeline in development. In addition, advances in understanding human disease, including the genetic basis for most monogenic diseases and the availability of the full human genome sequence, have created numerous therapeutic applications for the technology. I summarize the state of the technology and highlight how advances in the technology position ASOs to be an important contributor to future medicines.


Asunto(s)
Genoma Humano/efectos de los fármacos , Terapia Molecular Dirigida/tendencias , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos/administración & dosificación , Farmacogenética/métodos , Ensayos Clínicos Fase I como Asunto , Femenino , Predicción , Humanos , Masculino , Oligonucleótidos Antisentido/farmacología , Seguridad del Paciente , Medición de Riesgo
19.
N Engl J Med ; 378(7): 625-635, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29443664

RESUMEN

BACKGROUND: Nusinersen is an antisense oligonucleotide drug that modulates pre-messenger RNA splicing of the survival motor neuron 2 ( SMN2) gene. It has been developed for the treatment of spinal muscular atrophy (SMA). METHODS: We conducted a multicenter, double-blind, sham-controlled, phase 3 trial of nusinersen in 126 children with SMA who had symptom onset after 6 months of age. The children were randomly assigned, in a 2:1 ratio, to undergo intrathecal administration of nusinersen at a dose of 12 mg (nusinersen group) or a sham procedure (control group) on days 1, 29, 85, and 274. The primary end point was the least-squares mean change from baseline in the Hammersmith Functional Motor Scale-Expanded (HFMSE) score at 15 months of treatment; HFMSE scores range from 0 to 66, with higher scores indicating better motor function. Secondary end points included the percentage of children with a clinically meaningful increase from baseline in the HFMSE score (≥3 points), an outcome that indicates improvement in at least two motor skills. RESULTS: In the prespecified interim analysis, there was a least-squares mean increase from baseline to month 15 in the HFMSE score in the nusinersen group (by 4.0 points) and a least-squares mean decrease in the control group (by -1.9 points), with a significant between-group difference favoring nusinersen (least-squares mean difference in change, 5.9 points; 95% confidence interval, 3.7 to 8.1; P<0.001). This result prompted early termination of the trial. Results of the final analysis were consistent with results of the interim analysis. In the final analysis, 57% of the children in the nusinersen group as compared with 26% in the control group had an increase from baseline to month 15 in the HFMSE score of at least 3 points (P<0.001), and the overall incidence of adverse events was similar in the nusinersen group and the control group (93% and 100%, respectively). CONCLUSIONS: Among children with later-onset SMA, those who received nusinersen had significant and clinically meaningful improvement in motor function as compared with those in the control group. (Funded by Biogen and Ionis Pharmaceuticals; CHERISH ClinicalTrials.gov number, NCT02292537 .).


Asunto(s)
Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos/uso terapéutico , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológico , Edad de Inicio , Niño , Preescolar , Método Doble Ciego , Femenino , Humanos , Lactante , Inyecciones Espinales , Análisis de los Mínimos Cuadrados , Masculino , Destreza Motora , Oligonucleótidos/efectos adversos , Oligonucleótidos Antisentido/efectos adversos , Atrofias Musculares Espinales de la Infancia/fisiopatología
20.
Nature ; 518(7539): 409-12, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25470045

RESUMEN

Angelman syndrome is a single-gene disorder characterized by intellectual disability, developmental delay, behavioural uniqueness, speech impairment, seizures and ataxia. It is caused by maternal deficiency of the imprinted gene UBE3A, encoding an E3 ubiquitin ligase. All patients carry at least one copy of paternal UBE3A, which is intact but silenced by a nuclear-localized long non-coding RNA, UBE3A antisense transcript (UBE3A-ATS). Murine Ube3a-ATS reduction by either transcription termination or topoisomerase I inhibition has been shown to increase paternal Ube3a expression. Despite a clear understanding of the disease-causing event in Angelman syndrome and the potential to harness the intact paternal allele to correct the disease, no gene-specific treatment exists for patients. Here we developed a potential therapeutic intervention for Angelman syndrome by reducing Ube3a-ATS with antisense oligonucleotides (ASOs). ASO treatment achieved specific reduction of Ube3a-ATS and sustained unsilencing of paternal Ube3a in neurons in vitro and in vivo. Partial restoration of UBE3A protein in an Angelman syndrome mouse model ameliorated some cognitive deficits associated with the disease. Although additional studies of phenotypic correction are needed, we have developed a sequence-specific and clinically feasible method to activate expression of the paternal Ube3a allele.


Asunto(s)
Síndrome de Angelman/genética , Síndrome de Angelman/terapia , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , Alelos , Síndrome de Angelman/complicaciones , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Padre , Femenino , Silenciador del Gen/efectos de los fármacos , Impresión Genómica/genética , Masculino , Trastornos de la Memoria/complicaciones , Trastornos de la Memoria/genética , Trastornos de la Memoria/terapia , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Obesidad/complicaciones , Obesidad/genética , Obesidad/terapia , Oligonucleótidos Antisentido/farmacología , Fenotipo , ARN sin Sentido/antagonistas & inhibidores , ARN sin Sentido/deficiencia , ARN sin Sentido/genética , Factores de Tiempo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA