Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 92(7)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29321311

RESUMEN

In the process of generating herpes simplex virus 1 (HSV-1) mutations in the viral regulatory gene encoding infected cell protein 0 (ICP0), we isolated a viral mutant, termed KOS-NA, that was severely impaired for acute replication in the eyes and trigeminal ganglia (TG) of mice, defective in establishing a latent infection, and reactivated poorly from explanted TG. To identify the secondary mutation(s) responsible for the impaired phenotypes of this mutant, we sequenced the KOS-NA genome and noted that it contained two nonsynonymous mutations in UL39, which encodes the large subunit of ribonucleotide reductase, ICP6. These mutations resulted in lysine-to-proline (residue 393) and arginine-to-histidine (residue 950) substitutions in ICP6. To determine whether alteration of these amino acids was responsible for the KOS-NA phenotypes in vivo, we recombined the wild-type UL39 gene into the KOS-NA genome and rescued its acute replication phenotypes in mice. To further establish the role of UL39 in KOS-NA's decreased pathogenicity, the UL39 mutations were recombined into HSV-1 (generating UL39mut), and this mutant virus showed reduced ocular and TG replication in mice comparable to that of KOS-NA. Interestingly, ICP6 protein levels were reduced in KOS-NA-infected cells relative to the wild-type protein. Moreover, we observed that KOS-NA does not counteract caspase 8-induced apoptosis, unlike wild-type strain KOS. Based on alignment studies with other HSV-1 ICP6 homologs, our data suggest that amino acid 950 of ICP6 likely plays an important role in ICP6 accumulation and inhibition of apoptosis, consequently impairing HSV-1 pathogenesis in a mouse model of HSV-1 infection.IMPORTANCE HSV-1 is a major human pathogen that infects ∼80% of the human population and can be life threatening to infected neonates or immunocompromised individuals. Effective therapies for treatment of recurrent HSV-1 infections are limited, which emphasizes a critical need to understand in greater detail the events that modulate HSV-1 replication and pathogenesis. In the current study, we identified a neuroattenuated HSV-1 mutant (i.e., KOS-NA) that contains novel mutations in the UL39 gene, which codes for the large subunit of ribonucleotide reductase (also known as ICP6). This mutant form of ICP6 was responsible for the attenuation of KOS-NA in vivo and resulted in diminished ICP6 protein levels and antiapoptotic effect. Thus, we have determined that subtle alteration of the UL39 gene regulates expression and functions of ICP6 and severely impacts HSV-1 pathogenesis, potentially making KOS-NA a promising vaccine candidate against HSV-1.


Asunto(s)
Proteínas de la Cápside , Herpes Simple , Herpesvirus Humano 1/fisiología , Mutación Puntual , Activación Viral/genética , Latencia del Virus/genética , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Herpes Simple/genética , Herpes Simple/metabolismo , Herpes Simple/patología , Vacunas contra el Virus del Herpes Simple/genética , Vacunas contra el Virus del Herpes Simple/metabolismo , Ratones , Células Vero , Proteínas Virales/biosíntesis , Proteínas Virales/genética
2.
J Virol ; 92(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29950407

RESUMEN

We previously isolated a herpes simplex virus 1 (HSV-1) mutant, KOS-NA, that carries two nonsynonymous mutations in UL39, resulting in L393P and R950H amino acid substitutions in infected cell protein 6 (ICP6). Our published data studying KOS-NA pathogenesis strongly suggest that one of these ICP6 substitutions expressed from KOS-NA, R950H, severely impaired acute viral replication in the eyes and trigeminal ganglia of mice after inoculation onto the cornea and consequently impaired establishment and reactivation from latency. Because of its significant neuroattenuation, we tested KOS-NA as a potential prophylactic vaccine against HSV-1 in a mouse model of corneal infection. KOS-NA stimulated stronger antibody and T cell responses than a replication-competent ICP0-null mutant and a replication-incompetent ICP8-null mutant optimized for immunogenicity. Immunizations with the ICP0-, ICP8-, and KOS-NA viruses all reduced replication of wild-type HSV-1 challenge virus in the corneal epithelium to similar extents. Low immunizing doses of KOS-NA and the ICP8- virus, but not the ICP0- virus, protected mice against eyelid disease (blepharitis). Notably, only KOS-NA protected almost completely against corneal disease (keratitis) and greatly reduced latent infection by challenge virus. Thus, vaccination of mice with KOS-NA prior to corneal challenge provides significant protection against HSV-1-mediated disease of the eye, even at a very low immunizing dose. These results suggest that KOS-NA may be the foundation of an effective prophylactic vaccine to prevent or limit HSV-1 ocular diseases.IMPORTANCE HSV-1 is a ubiquitous human pathogen that infects the majority of the world's population. Although most infections are asymptomatic, HSV-1 establishes lifelong latency in infected sensory neurons, from which it can reactivate to cause deadly encephalitis or potentially blinding eye disease. No clinically effective vaccine is available. In this study, we tested the protective potential of a neuroattenuated HSV-1 mutant (KOS-NA) as a vaccine in mice. We compared the effects of immunization with KOS-NA to those of two other attenuated viruses, a replication-competent (ICP0-) virus and a replication-incompetent (ICP8-) virus. Our data show that KOS-NA proved superior to the ICP0- and ICP8-null mutants in protecting mice from corneal disease and latent infection. With its significant neuroattenuation, severe impairment in establishing latency, and excellent protective effect, KOS-NA represents a significant discovery in the field of HSV-1 vaccine development.


Asunto(s)
Herpesvirus Humano 1/genética , Vacunas contra Herpesvirus/inmunología , Queratitis Herpética/prevención & control , Proteínas Virales/genética , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Herpes Simple/inmunología , Herpes Simple/virología , Herpesvirus Humano 1/inmunología , Vacunas contra Herpesvirus/administración & dosificación , Vacunas contra Herpesvirus/genética , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/inmunología , Queratitis Herpética/inmunología , Queratitis Herpética/virología , Ratones , Mutación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Células Vero , Proteínas Virales/inmunología , Latencia del Virus , Replicación Viral
3.
J Virol ; 85(23): 12631-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21937654

RESUMEN

In cell culture experiments, phosphorylation appears to be a critical regulator of the herpes simplex virus 1 (HSV-1) immediate-early (IE) protein, ICP0, which is an E3 ubiquitin ligase that transactivates viral gene expression. Three major regions of phosphorylation in ICP0 (amino acids 224 to 232, 365 to 371, and 508 to 518) have been identified, and mutant viruses that block phosphorylation sites within each region (termed Phos 1, 2, and 3, respectively) have been constructed. Previous studies indicated that replication of Phos 1 is significantly reduced compared to that of wild-type virus in cell culture (C. Boutell, et al., J. Virol. 82:10647-10656, 2008). To determine the effects these phosphorylation site mutations have on the viral life cycle in vivo, mice were ocularly infected with wild-type HSV-1, the Phos mutants, or their marker rescue counterparts. Subsequently, viral replication, establishment of latency, and viral explant-induced reactivation of these viruses were examined. Relative to wild-type virus, Phos 1 eye titers were reduced as much as 7- and 18-fold on days 1 and 5 postinfection, respectively. Phos 2 eye titers showed a decrease of 6-fold on day 1 postinfection. Titers of Phos 1 and 2 trigeminal ganglia were reduced as much as 16- and 20-fold, respectively, on day 5 postinfection. Additionally, the reactivation efficiencies of Phos 1 and 2 were impaired relative to wild-type HSV-1, although both viruses established wild-type levels of latency in vivo. The acute replication, latency, and reactivation phenotypes of Phos 3 were similar to those of wild-type HSV-1. We conclude from these studies that phosphorylation is likely a key modulator of ICP0's biological activities in a mouse ocular model of HSV-1 infection.


Asunto(s)
Oftalmopatías/virología , Herpes Simple/virología , Herpesvirus Humano 1/patogenicidad , Proteínas Inmediatas-Precoces/genética , Mutación/genética , Ganglio del Trigémino/virología , Ubiquitina-Proteína Ligasas/genética , Activación Viral , Replicación Viral , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Oftalmopatías/metabolismo , Femenino , Genoma Viral , Herpes Simple/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Ratones , Datos de Secuencia Molecular , Fosforilación , Homología de Secuencia de Aminoácido , Transcripción Genética , Ganglio del Trigémino/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células Vero , Latencia del Virus
4.
J Neurovirol ; 16(5): 405-9, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20839922

RESUMEN

Previous studies have shown that herpes simplex virus type 1 (HSV-1) replication is inhibited by the cyclin-dependent kinase (cdk) inhibitor roscovitine. One roscovitine-sensitive cdk that functions in neurons is cdk5, which is activated in part by its binding partner, p35. Because HSV establishes latent infections in sensory neurons, we sought to determine the role p35 plays in HSV-1 replication in vivo. For these studies, wild-type (wt) and p35−/− mice were infected with HSV-1 using the mouse ocular model of HSV latency and reactivation. The current results indicate that p35 is an important determinant of viral replication in vivo.


Asunto(s)
Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Proteínas del Tejido Nervioso/fisiología , Animales , Interacciones Huésped-Patógeno , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Viral , Latencia del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA