Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.789
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(7): 1257-1270.e6, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38377993

RESUMEN

Current base editors (BEs) use DNA deaminases, including cytidine deaminase in cytidine BE (CBE) or adenine deaminase in adenine BE (ABE), to facilitate transition nucleotide substitutions. Combining CBE or ABE with glycosylase enzymes can induce limited transversion mutations. Nonetheless, a critical demand remains for BEs capable of generating alternative mutation types, such as T>G corrections. In this study, we leveraged pre-trained protein language models to optimize a uracil-N-glycosylase (UNG) variant with altered specificity for thymines (eTDG). Notably, after two rounds of testing fewer than 50 top-ranking variants, more than 50% exhibited over 1.5-fold enhancement in enzymatic activities. When eTDG was fused with nCas9, it induced programmable T-to-S (G/C) substitutions and corrected db/db diabetic mutation in mice (up to 55%). Our findings not only establish orthogonal strategies for developing novel BEs but also demonstrate the capacities of protein language models for optimizing enzymes without extensive task-specific training data.


Asunto(s)
Ácidos Alcanesulfónicos , Edición Génica , Uracil-ADN Glicosidasa , Animales , Ratones , Mutación , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo
2.
Nature ; 619(7969): 293-299, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37286604

RESUMEN

Although organic-inorganic hybrid materials have played indispensable roles as mechanical1-4, optical5,6, electronic7,8 and biomedical materials9-11, isolated organic-inorganic hybrid molecules (at present limited to covalent compounds12,13) are seldom used to prepare hybrid materials, owing to the distinct behaviours of organic covalent bonds14 and inorganic ionic bonds15 in molecular construction. Here we integrate typical covalent and ionic bonds within one molecule to create an organic-inorganic hybrid molecule, which can be used for bottom-up syntheses of hybrid materials. A combination of the organic covalent thioctic acid (TA) and the inorganic ionic calcium carbonate oligomer (CCO) through an acid-base reaction provides a TA-CCO hybrid molecule with the representative molecular formula TA2Ca(CaCO3)2. Its dual reactivity involving copolymerization of the organic TA segment and inorganic CCO segment generates the respective covalent and ionic networks. The two networks are interconnected through TA-CCO complexes to form a covalent-ionic bicontinuous structure within the resulting hybrid material, poly(TA-CCO), which unifies paradoxical mechanical properties. The reversible binding of Ca2+-CO32- bonds in the ionic network and S-S bonds in the covalent network ensures material reprocessability with plastic-like mouldability while preserving thermal stability. The coexistence of ceramic-like, rubber-like and plastic-like behaviours within poly(TA-CCO) goes beyond current classifications of materials to generate an 'elastic ceramic plastic'. The bottom-up creation of organic-inorganic hybrid molecules provides a feasible pathway for the molecular engineering of hybrid materials, thereby supplementing the classical methodology used for the manufacture of organic-inorganic hybrid materials.

3.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38477640

RESUMEN

Teleost testis development during the annual cycle involves dramatic changes in cellular compositions and molecular events. In this study, the testicular cells derived from adult black rockfish at distinct stages - regressed, regenerating and differentiating - were meticulously dissected via single-cell transcriptome sequencing. A continuous developmental trajectory of spermatogenic cells, from spermatogonia to spermatids, was delineated, elucidating the molecular events involved in spermatogenesis. Subsequently, the dynamic regulation of gene expression associated with spermatogonia proliferation and differentiation was observed across spermatogonia subgroups and developmental stages. A bioenergetic transition from glycolysis to mitochondrial respiration of spermatogonia during the annual developmental cycle was demonstrated, and a deeper level of heterogeneity and molecular characteristics was revealed by re-clustering analysis. Additionally, the developmental trajectory of Sertoli cells was delineated, alongside the divergence of Leydig cells and macrophages. Moreover, the interaction network between testicular micro-environment somatic cells and spermatogenic cells was established. Overall, our study provides detailed information on both germ and somatic cells within teleost testes during the annual reproductive cycle, which lays the foundation for spermatogenesis regulation and germplasm preservation of endangered species.


Asunto(s)
Espermatogonias , Testículo , Adulto , Masculino , Humanos , Células Intersticiales del Testículo , Células de Sertoli , Espermatogénesis
4.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38572957

RESUMEN

The ovarian microenvironment plays a crucial role in ensuring the reproductive success of viviparous teleosts. However, the molecular mechanism underlying the interaction between spermatozoa and the ovarian microenvironment has remained elusive. This study aimed to contribute to a better understanding of this process in black rockfish (Sebastes schlegelii) using integrated multi-omics approaches. The results demonstrated significant upregulation of ovarian complement-related proteins and pattern recognition receptors, along with remodeling of glycans on the surface of spermatozoa at the early spermatozoa-storage stage (1 month after mating). As spermatozoa were stored over time, ovarian complement proteins were progressively repressed by tryptophan and hippurate, indicating a remarkable adaptation of spermatozoa to the ovarian microenvironment. Before fertilization, a notable upregulation of cellular junction proteins was observed. The study revealed that spermatozoa bind to ZPB2a protein through GSTM3 and that ZPB2a promotes spermatozoa survival and movement in a GSTM3-dependent manner. These findings shed light on a key mechanism that influences the dynamics of spermatozoa in the female reproductive tract, providing valuable insights into the molecular networks regulating spermatozoa adaptation and survival in species with internal fertilization.


Asunto(s)
Ovario , Espermatozoides , Animales , Masculino , Femenino , Espermatozoides/metabolismo , Ovario/metabolismo , Fertilización , Viviparidad de Animales no Mamíferos , Proteómica , Proteínas de Peces/metabolismo , Proteínas de Peces/genética , Peces/metabolismo , Microambiente Celular , Multiómica
5.
Plant J ; 117(5): 1517-1527, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38047628

RESUMEN

Elaborate cell-cycle control must be adopted to ensure the continuity of the meiotic second division and termination after that. Despite its importance, however, the genetic controls underlying the meiotic cell cycle have not been reported in maize. Here, we characterized a meiotic cell-cycle controller ZmTDM1, which is a homolog of Arabidopsis TDM1 and encodes a canonical tetratricopeptide repeat domain protein in maize. The Zmtdm1 homozygous plants exhibited complete male sterility and severe female abortion. In Zmtdm1 mutants, cell-cycle progression was almost identical to that of wild type from leptotene to anaphase II. However, chromosomes in the tetrad failed meiotic termination at the end of the second division and underwent additional divisions in succession without DNA replication, reducing the ploidy to less than haploid in the product. In addition, two ZmTDM1-like homologs (ZmTDML1 and ZmTDML2) were not functional in meiotic cell-cycle control. Moreover, ZmTDM1 interacted with RING-type E3 ubiquitin ligase, revealing that it acts as a subunit of the APC/C E3 ubiquitin ligase complex. Overall, our results identified a regulator of meiotic cell cycle in maize and demonstrated that ZmTDM1 is essential for meiotic exit after meiosis II.


Asunto(s)
Arabidopsis , Zea mays , Zea mays/genética , Zea mays/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Repeticiones de Tetratricopéptidos , Meiosis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Arabidopsis/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
Plant Physiol ; 194(4): 2165-2182, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37995374

RESUMEN

N6-methyladenosine (m6A) in mRNA and 5-methylcytosine (5mC) in DNA have critical functions for regulating gene expression and modulating plant growth and development. However, the interplay between m6A and 5mC is an elusive territory and remains unclear mechanistically in plants. We reported an occurrence of crosstalk between m6A and 5mC in maize (Zea mays) via the interaction between mRNA adenosine methylase (ZmMTA), the core component of the m6A methyltransferase complex, and decrease in DNA methylation 1 (ZmDDM1), a key chromatin-remodeling factor that regulates DNA methylation. Genes with m6A modification were coordinated with a much higher level of DNA methylation than genes without m6A modification. Dysfunction of ZmMTA caused severe arrest during maize embryogenesis and endosperm development, leading to a significant decrease in CHH methylation in the 5' region of m6A-modified genes. Instead, loss of function of ZmDDM1 had no noteworthy effects on ZmMTA-related activity. This study establishes a direct link between m6A and 5mC during maize kernel development and provides insights into the interplay between RNA modification and DNA methylation.


Asunto(s)
Metilación de ADN , Zea mays , Metilación de ADN/genética , Zea mays/genética , Zea mays/metabolismo , Metilación de ARN , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN/metabolismo
7.
Plant Physiol ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431291

RESUMEN

DNA methylation affects agronomic traits and the environmental adaptability of crops, but the natural polymorphisms in DNA methylation-related genes and their contributions to phenotypic variation in maize (Zea mays) remain elusive. Here, we show that a polymorphic 10-bp Indel (insertion/deletion) variant in the 3' untranslated region (3'UTR) of Zea methyltransferase2 (ZMET2) alters its transcript level and accounts for variation in the number of maize husk layers. ZMET2 encodes a chromomethylase and is required for maintaining genome-wide DNA methylation in the CHG sequence context. Disruption of ZMET2 increased the number of husk layers and resulted in thousands of differentially methylated regions, a proportion of which were also distinguishable in natural ZMET2 alleles. Population genetic analyses indicated that ZMET2 was a target of selection and might play a role in the spread of maize from tropical to temperate regions. Our results provide important insights into the natural variation of ZMET2 that confers both global and locus-specific effects on DNA methylation, which contribute to phenotypic diversity in maize.

8.
Nucleic Acids Res ; 51(7): 3150-3165, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36869674

RESUMEN

DNA double-strand breaks (DSBs) are functionally linked to genomic instability in spermatocytes and to male infertility. The heavy metal cadmium (Cd) is known to induce DNA damage in spermatocytes by unknown mechanisms. Here, we showed that Cd ions impaired the canonical non-homologous end-joining (NHEJ) repair pathway, but not the homologous recombination (HR) repair pathway, through stimulation of Ser2056 and Thr2609 phosphorylation of DNA-PKcs at DSB sites. Hyper-phosphorylation of DNA-PKcs led to its premature dissociation from DNA ends and the Ku complex, preventing recruitment of processing enzymes and further ligation of DNA ends. Specifically, this cascade was initiated by the loss of PP5 phosphatase activity, which results from the dissociation of PP5 from its activating ions (Mn), that is antagonized by Cd ions through a competitive mechanism. In accordance, in a mouse model Cd-induced genomic instability and consequential male reproductive dysfunction were effectively reversed by a high dosage of Mn ions. Together, our findings corroborate a protein phosphorylation-mediated genomic instability pathway in spermatocytes that is triggered by exchange of heavy metal ions.


Asunto(s)
Cadmio , Inestabilidad Genómica , Infertilidad Masculina , Espermatocitos , Animales , Humanos , Masculino , Ratones , Cadmio/toxicidad , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Inestabilidad Genómica/efectos de los fármacos , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Iones/metabolismo , Fosforilación , Reparación del ADN por Recombinación , Espermatocitos/efectos de los fármacos
9.
J Am Chem Soc ; 146(25): 17114-17121, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38870413

RESUMEN

Near-infrared luminescent rare-earth organic complexes have attracted intensive attention in the field of optical waveguide amplification. However, their optical gains were commonly less than 4 dB/cm due to limited doping concentrations. Herein, two one-dimensional (1D) Nd3+ coordination chains, namely, [Nd(TTA)3(DBTDPO)]n (Nd1) and [Nd(TTA)3(DPEPO)]n (Nd2), bridged by phosphine oxide ligands were developed for the neodymium-doped waveguide amplifier. Despite its P-P distance being similar to DBTDPO, the different P═O orientation of DPEPO renders markedly shorter intra- and interchain Nd-Nd distances for Nd2 in comparison to Nd1. Furthermore, the weaker intermolecular interactions alleviate the quenching effect for Nd2. Therefore, Nd2 can provide more locally concentrated and radiative Nd3+ ions, leading to a larger Nd3+-characteristic 1.06 µm emission intensity and duration than Nd1. Based on embedded and evanescent-field waveguide structures, Nd2 achieves state-of-the-art gain maxima of 5.7 and 4.9 dB/cm as well as outstanding gain stability. These results indicate that controllable coordination assembly of lanthanide ions in multidimension provides a flexible approach to combine local high-density outputs and effective suppression of quenching.

10.
J Am Chem Soc ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560787

RESUMEN

Poly(vinylidene fluoride) (PVDF)-based solid electrolytes with a Li salt-polymer-little residual solvent configuration are promising candidates for solid-state batteries. Herein, we clarify the microstructure of PVDF-based composite electrolyte at the atomic level and demonstrate that the Li+-interaction environment determines both interfacial stability and ion-transport capability. The polymer works as a "solid diluent" and the filler realizes a uniform solvent distribution. We propose a universal strategy of constructing a weak-interaction environment by replacing the conventional N,N-dimethylformamide (DMF) solvent with the designed 2,2,2-trifluoroacetamide (TFA). The lower Li+ binding energy of TFA forms abundant aggregates to generate inorganic-rich interphases for interfacial compatibility. The weaker interactions of TFA with PVDF and filler achieve high ionic conductivity (7.0 × 10-4 S cm-1) of the electrolyte. The solid-state Li||LiNi0.8Co0.1Mn0.1O2 cells stably cycle 4900 and 3000 times with cutoff voltages of 4.3 and 4.5 V, respectively, as well as deliver superior stability at -20 to 45 °C and a high energy density of 300 Wh kg-1 in pouch cells.

11.
Oncologist ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381603

RESUMEN

Anaplastic lymphoma kinase (ALK) rearrangement is a well-known driver oncogene detected in approximately 5% of non-small cell lung cancer. However, ALK rearrangement is much less frequent in other solid tumors outside the lungs, such as colorectal cancer (CRC); thus, the optimal management of CRC with ALK rearrangements has yet to be established. In this report, we describe 2 cases of ALK-positive CRC, both of which benefited from ALK tyrosine kinase inhibitor (ALK-TKI) therapy. Case 1 was a postoperative patient with poorly differentiated colon adenocarcinoma, who was diagnosed with metastatic relapse shortly after surgery. Both fluorouracil, leucovorin, and oxaliplatin (FOLFOX) and bevacizumab combined with 5-fluorouracil, l-leucovorin, and irinotecan (FOLFIRI) proved ineffective against the disease. The patient was then treated with ensartinib, as the CAD-ALK fusion gene was detected by genomic analysis. The patient was initially treated with ensartinib monotherapy for 9 months, then with ensartinib combined with local radiotherapy and fruquintinib for another 4 months for isolated hilar hepatic lymph node metastasis. The patient experienced disease progression with an acquired ALK G1202R resistance mutation that responded well to lorlatinib. Case 2 involved a 72-year-old man with advanced colon cancer (pT4bN2aM1b, stage IV) harboring an EML4-ALK fusion. The patient underwent resection of the right colon tumor due to intestinal obstruction, but the disease continued to progress after 12 courses of FOLFIRI and bevacizumab chemotherapy. However, the patient responded remarkably well to alectinib. Our report emphasizes the importance of gene detection in the treatment of malignant tumors, and the significance of ALK mutations in CRC.

12.
Biochem Biophys Res Commun ; 726: 150274, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38924882

RESUMEN

Alzheimer's disease (AD) is a complex neurodegenerative condition with growing evidence implicating the gut microbiota in its pathogenesis. This study aimed to investigate the effects of NMN synbiotics, a combination of ß-nicotinamide mononucleotide (NMN), Lactobacillus plantarum, and lactulose, on the gut microbiota composition and metabolic profiles in APP/PS1 transgenic mice. Results demonstrated that NMN synbiotics led to a notable restructuring of the gut microbiota, with a decreased Firmicutes/Bacteroidetes ratio in the AD mice, suggesting a potential amelioration of gut dysbiosis. Alpha diversity indices indicated a reduction in microbial diversity following NMN synbiotics supplementation, while beta diversity analyses revealed a shift towards a more balanced microbial community structure. Functional predictions based on the 16S rRNA data highlighted alterations in metabolic pathways, particularly those related to amino acid and energy metabolism, which are crucial for neuronal health. The metabolomic analysis uncovered a significant impact of NMN synbiotics on the gut metabolome, with normalization of metabolic composition in AD mice. Differential metabolite functions were enriched in pathways associated with neurotransmitter synthesis and energy metabolism, pointing to the potential therapeutic effects of NMN synbiotics in modulating the gut-brain axis and synaptic function in AD. Immunohistochemical staining observed a significant reduction of amyloid plaques formed by Aß deposition in the brain of AD mice after NMN synbiotics intervention. The findings underscore the potential of using synbiotics to ameliorate the neurodegenerative processes associated with Alzheimer's disease, opening new avenues for therapeutic interventions.

13.
Plant Biotechnol J ; 22(5): 1372-1386, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38263872

RESUMEN

Fertile pollen is critical for the survival, fitness, and dispersal of flowering plants, and directly contributes to crop productivity. Extensive mutational screening studies have been carried out to dissect the genetic regulatory network determining pollen fertility, but we still lack fundamental knowledge about whether and how pollen fertility is controlled in natural populations. We used a genome-wide association study (GWAS) to show that ZmGEN1A and ZmMSH7, two DNA repair-related genes, confer natural variation in maize pollen fertility. Mutants defective in these genes exhibited abnormalities in meiotic or post-meiotic DNA repair, leading to reduced pollen fertility. More importantly, ZmMSH7 showed evidence of selection during maize domestication, and its disruption resulted in a substantial increase in grain yield for both inbred and hybrid. Overall, our study describes the first systematic examination of natural genetic effects on pollen fertility in plants, providing valuable genetic resources for optimizing male fertility. In addition, we find that ZmMSH7 represents a candidate for improvement of grain yield.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Zea mays/genética , Redes Reguladoras de Genes , Polen/genética , Fertilidad/genética , Grano Comestible/genética
14.
J Virol ; 97(10): e0091623, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37772826

RESUMEN

IMPORTANCE: Gaining insight into the cell-entry mechanisms of swine acute diarrhea syndrome coronavirus (SADS-CoV) is critical for investigating potential cross-species infections. Here, we demonstrated that pretreatment of host cells with tunicamycin decreased SADS-CoV attachment efficiency, indicating that N-linked glycosylation of host cells was involved in SADS-CoV entry. Common N-linked sugars Neu5Gc and Neu5Ac did not interact with the SADS-CoV S1 protein, suggesting that these molecules were not involved in SADS-CoV entry. Additionally, various host proteases participated in SADS-CoV entry into diverse cells with different efficiencies. Our findings suggested that SADS-CoV may exploit multiple pathways to enter cells, providing insights into intervention strategies targeting the cell entry of this virus.


Asunto(s)
Alphacoronavirus , Infecciones por Coronavirus , Endopeptidasas , Glicoproteínas , Enfermedades de los Porcinos , Porcinos , Internalización del Virus , Animales , Alphacoronavirus/fisiología , Infecciones por Coronavirus/enzimología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Endopeptidasas/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Porcinos/virología , Enfermedades de los Porcinos/enzimología , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/virología , Internalización del Virus/efectos de los fármacos , Tunicamicina/farmacología , Glicosilación
15.
J Transl Med ; 22(1): 475, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764033

RESUMEN

PURPOSE: To analyze the role of and mechanism underlying obstructive sleep apnea (OSA)-derived exosomes in inducing non-alcoholic fatty liver (NAFLD). METHODS: The role of OSA-derived exosomes was analyzed in inducing hepatocyte fat accumulation in mice models both in vivo and in vitro. RESULTS: OSA-derived exosomes caused fat accumulation and macrophage activation in the liver tissue. These exosomes promoted fat accumulation; steatosis was more noticeable in the presence of macrophages. Macrophages could internalize OSA-derived exosomes, which promoted macrophage polarization to the M1 type. Moreover, it inhibited sirtuin-3 (SIRT3)/AMP-activated protein kinase (AMPK) and autophagy and promoted the activation of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasomes. The use of 3-methyladenine (3-MA) to inhibit autophagy blocked NLRP3 inflammasome activation and inhibited the M1 polarization of macrophages. miR-421 targeting inhibited SIRT3 protein expression in the macrophages. miR-421 was significantly increased in OSA-derived exosomes. Additionally, miR-421 levels were increased in OSA + NAFLD mice- and patient-derived exosomes. In the liver tissues of OSA and OSA + NAFLD mice, miR-421 displayed similar co-localization with the macrophages. Intermittent hypoxia-induced hepatocytes deliver miR-421 to the macrophages via exosomes to inhibit SIRT3, thereby participating in macrophage M1 polarization. After OSA and NAFLD modeling in miR-421-/- mice, liver steatosis and M1 polarization were significantly reduced. Additionally, in the case of miR-421 knockout, the inhibitory effects of OSA-derived exosomes on SIRT3 and autophagy were significantly alleviated. Furthermore, their effects on liver steatosis and macrophage M1 polarization were significantly reduced. CONCLUSIONS: OSA promotes the delivery of miR-421 from the hepatocytes to macrophages. Additionally, it promotes M1 polarization by regulating the SIRT3/AMPK-autophagy pathway, thereby causing NAFLD.


Asunto(s)
Autofagia , Polaridad Celular , Exosomas , Macrófagos , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Sirtuina 3 , Apnea Obstructiva del Sueño , Animales , Humanos , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Secuencia de Bases , Exosomas/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Inflamasomas/metabolismo , Hígado/patología , Hígado/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , MicroARNs/metabolismo , MicroARNs/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Sirtuina 3/metabolismo , Sirtuina 3/genética , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/metabolismo
16.
Am J Kidney Dis ; 83(4): 477-488, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37838141

RESUMEN

RATIONALE & OBJECTIVE: Metabolic dysfunction-associated fatty liver disease (MAFLD), a risk factor for stroke and all-cause mortality, is highly prevalent among patients with chronic kidney disease (CKD), but it is unclear whether the association of MAFLD with stroke and all-cause mortality differs within and outside of the setting of CKD. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: We enrolled 95,353 participants from the Kailuan Cohort Study, among whom 35,749 had CKD at baseline or developed CKD during the follow-up period, and 59,604 individuals who had no CKD at baseline or during the follow-up period. EXPOSURE: MAFLD. OUTCOME: Stroke (ischemic stroke, hemorrhagic stroke), all-cause mortality. ANALYTICAL APPROACH: Adjusted Cox regression models were used to estimate the influence of MAFLD on stroke outcomes within the subgroups defined by the presence of CKD. RESULTS: After a median follow-up of 12.8 years, 6,140 strokes (6.4%) and 11,975 deaths from any cause (12.6%) occurred. After adjusting for potential confounders, MAFLD was associated with an increased incidence of stroke among the participants with CKD (HR, 1.34 [95% CI, 1.23-1.45]) but not among those without CKD (HR, 1.05 [95% CI, 0.97-1.15]; Pinteraction<0.001). This association was principally related to ischemic stroke (HR, 1.38 [95% CI, 1.26-1.51]) and not hemorrhagic stroke (HR, 1.04 [95% CI, 0.85-1.26]). No association was found between MAFLD and all-cause mortality in the participants with CKD (HR,1.04 [95% CI, 0.98-1.10]) or those without CKD (HR,1.03 [95% CI, 0.97-1.09]). Among the participants with CKD, compared with non-MAFLD, MAFLD with diabetes (HR,1.36 [95% CI, 1.23-1.50]) or overweight/obesity (HR,1.30 [95% CI, 1.14-1.50]) was associated with a higher risk of stroke whereas MAFLD without overweight/obesity or diabetes was not associated with a higher risk (HR,1.08 [95% CI, 0.81-1.43]). LIMITATIONS: This was an observational study and included individuals with CKD who had a relatively high estimated glomerular filtration rate. CONCLUSIONS: MAFLD was associated with an increased risk of stroke in individuals with CKD but not in those without CKD. PLAIN-LANGUAGE SUMMARY: Metabolic dysfunction-associated fatty liver disease (MAFLD), which is recognized as a risk factor for stroke in the general population, is highly prevalent among individuals with chronic kidney disease (CKD). However, the impact of MAFLD on the risk of stroke in patients with CKD remains uncertain. We investigated the association of MAFLD with stroke in individuals with and without CKD. Our analysis revealed that MAFLD was associated with a significantly increased risk of stroke in individuals with CKD, and the magnitude of this increased risk was greater in the setting of CKD. These findings highlight the need for increased attention to MAFLD in patients with CKD and emphasize that addressing and preventing MAFLD in this population may contribute to reduced morbidity from stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Enfermedad del Hígado Graso no Alcohólico , Insuficiencia Renal Crónica , Accidente Cerebrovascular , Humanos , Estudios de Cohortes , Sobrepeso , Estudios Prospectivos , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/etiología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Obesidad , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/epidemiología
17.
Plant Cell Environ ; 47(2): 442-459, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37969013

RESUMEN

Late flowering is a serious bottleneck in pumpkin (Cucurbita moschata Duch.) agriculture production. Although key genes governing flowering time have been reported in many species, the regulatory network of flowering in pumpkin remains largely obscure, thereby impeding the resolution of industry-wide challenges associated with delayed fruit ripening in pumpkin cultivation. Here, we report an early flowering pumpkin germplasm accession (LXX-4). Using LXX-4 and a late flowering germplasm accession (HYM-9), we constructed an F2 segregation population. A significant difference in FLOWERING LOCUS T-LIKE 2 (FTL2) expression level was identified to be the causal factor of the flowering time trait discrepancy in LXX-4 and HYM-9. Moreover, we have shown that a 21 bp InDel in the FTL2 promoter was the key reason for the waxing and waning of its transcript level. The 21 bp deletion excluded a repressor-AGL19 and recruited activators-BBX7, WRKY40 and SVP to the FTL2 promoter in LXX-4. Together, our data add a useful element to our knowledge which could be used to simplify breeding efforts for early-maturing pumpkin.


Asunto(s)
Cucurbita , Cucurbita/genética , Cucurbita/metabolismo , Fenotipo
18.
Opt Express ; 32(8): 13597-13613, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859326

RESUMEN

The hard X-ray nanoprobe beamline is the first beamline to take advantage of the full coherent beam to attain the nanoscale focusing at the Shanghai Synchrotron Radiation Facility (SSRF). Here we introduce the beamline and specially go over the features of the multilayer Kirkpatrick-Baez focusing system and its supporting phase compensator system. The performance and stability of the phase compensator are also put to the test. By using the speckle scanning metrology, the wavefront of a focused beam was characterized and intensity distribution near the focus was reconstructed. The focusing performance was greatly enhanced by two phase compensations based on a global optimization technique, and a two-dimensional focal spot of 26 nm × 17 nm was achieved and maintained with good stability.

19.
Drug Metab Dispos ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849209

RESUMEN

Arsenite is an important heavy metal. Some Chinese traditional medicines contain significant amounts of arsenite. The aim of this study was to investigate subacute exposure of arsenite on activities of cytochrome P450 enzymes and pharmacokinetic behaviors of drugs in rats. Midazolam, tolbutamide, metoprolol, omeprazole, caffeine, and chlorzoxazone, the probe substrates for CYPs3A2, 2C6, 2D2, 2C11, 1A2, and 2E1, were selected as model drugs for the pharmacokinetic study. Significant decreases in AUCs of probe substrates were observed in rats after consecutive 30 day exposure to As at 12 mg/kg. Microsomal incubation study showed that the subacute exposure to arsenite resulted in little changes in effects on the activities of P450 enzymes examined. However, everted gut sac study demonstrated that such exposure induced significant decreases in intestinal absorption of these drugs by both passive diffusion and carrier-mediated transport. In addition, in vivo study showed that the arsenite exposure decreased the rate of peristaltic propulsion. The decreases in intestinal permeability of the probe drugs and peristaltic propulsion rate most likely resulted in the observed decreases in the internal exposure of the probe drugs. Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents co-administered resulting from the observed drug-drug interactions. Significance Statement Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents co-administered resulting from the observed drug-drug interactions. In this study, we found that P450 enzyme probe drug exposure was reduced in arsenic-exposed animals (AUCs) and the intestinal absorption of the drug was reduced in the animals. Subacute arsenic exposure tends to cause damage to intestinal function, which leads to reduced drug absorption.

20.
Electrophoresis ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38415778

RESUMEN

The work describes the use of SYBR Gold to improve the detection sensitivity of plasmid DNA topoisomers by capillary gel electrophoresis with laser induced fluorescence in an uncoated capillary. The impact of different dyes, including ethidium bromide, SYBR Green and SYBR Gold, was compared based on detection and separation of DNA plasmid topoisomers. Use of SYBR Gold enabled improvement of detection sensitivity by 15-fold while maintaining good separation resolution of the different topoisomers. The baseline dropped with the use SYBR Gold but was overcome by the employment of a capillary with longer ineffective length (40 vs. 20 cm). Separation resolution and reproducibility were impacted by the concentration of SYBR Gold and hydroxypropyl methylcellulose. With the use of a short capillary (10 cm effective length and 50 cm total length), fast separations of supercoiled, linear, open circular, and other isoforms were accomplished within 8 min. Appropriate capillary cleaning with 0.1 M sodium hydroxide/0.1 M hydrochloric acid and capillary storage with 0.1 M hydrochloric acid ensured good separation reproducibility of 217 runs during an extended period of use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA