Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Intervalo de año de publicación
1.
Int J Mol Sci ; 23(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35563647

RESUMEN

Fatigue and other deleterious mood alterations resulting from prolonged efforts such as a long work shift can lead to a decrease in vigilance and cognitive performance, increasing the likelihood of errors during the execution of attention-demanding activities such as piloting an aircraft or performing medical procedures. Thus, a method to rapidly and objectively assess the risk for such cognitive fatigue would be of value. The objective of the study was the identification in saliva-borne exosomes of molecular signals associated with changes in mood and fatigue that may increase the risk of reduced cognitive performance. Using integrated multiomics analysis of exosomes from the saliva of medical residents before and after a 12 h work shift, we observed changes in the abundances of several proteins and miRNAs that were associated with various mood states, and specifically fatigue, as determined by a Profile of Mood States questionnaire. The findings herein point to a promising protein biomarker, phosphoglycerate kinase 1 (PGK1), that was associated with fatigue and displayed changes in abundance in saliva, and we suggest a possible biological mechanism whereby the expression of the PGK1 gene is regulated by miR3185 in response to fatigue. Overall, these data suggest that multiomics analysis of salivary exosomes has merit for identifying novel biomarkers associated with changes in mood states and fatigue. The promising biomarker protein presents an opportunity for the development of a rapid saliva-based test for the assessment of these changes.


Asunto(s)
Exosomas , MicroARNs , Biomarcadores/metabolismo , Exosomas/genética , Exosomas/metabolismo , MicroARNs/metabolismo , Saliva/metabolismo
2.
Lab Invest ; 101(12): 1605-1617, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34462532

RESUMEN

Synaptic transfer of tau has long been hypothesized from the human pathology pattern and has been demonstrated in vitro and in vivo, but the precise mechanisms remain unclear. Extracellular vesicles such as exosomes have been suggested as a mechanism, but not all tau is exosomal. The present experiments use a novel flow cytometry assay to quantify depolarization of synaptosomes by KCl after loading with FM2-10, which induces a fluorescence reduction associated with synaptic vesicle release; the degree of reduction in cryopreserved human samples equaled that seen in fresh mouse synaptosomes. Depolarization induced the release of vesicles in the size range of exosomes, along with tetraspanin markers of extracellular vesicles. A number of tau peptides were released, including tau oligomers; released tau was primarily unphosphorylated and C-terminal truncated, with Aß release just above background. When exosomes were immunopurified from release supernatants, a prominent tau band showed a dark smeared appearance of SDS-stable oligomers along with the exosomal marker syntenin-1, and these exosomes induced aggregation in the HEK tau biosensor assay. However, the flow-through did not seed aggregation. Size exclusion chromatography of purified released exosomes shows faint signals from tau in the same fractions that show a CD63 band, an exosomal size signal, and seeding activity. Crude synaptosomes from control, tauopathy, and AD cases demonstrated lower seeding in tauopathy compared to AD that is correlated with the measured Aß42 level. These results show that AD synapses release exosomal tau that is C-terminal-truncated, oligomeric, and with seeding activity that is enhanced by Aß. Taken together with previous findings, these results are consistent with a direct prion-like heterotypic seeding of tau by Aß within synaptic terminals, with subsequent loading of aggregated tau onto exosomes that are released and competent for tau seeding activity.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Sinapsis/metabolismo , Sinaptosomas/metabolismo , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Agregación Patológica de Proteínas
3.
Tetrahedron Lett ; 60(3): 322-326, 2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30631216

RESUMEN

This study describes our development of a microfluidic reaction scheme for the synthesis of fused indoline ring systems found in several bioactive compounds. We have utilized a continuous-flow microfluidic reactor for the reaction of hydrazines with latent aldehydes through the interrupted Fischer indolization reaction to form fused indoline and azaindoline products. We have identified optimal conditions and evaluated the scope of this microfluidic reaction using various hydrazine and latent aldehyde surrogates. This green chemistry approach can be of general utility to rapidly produce indoline scaffolds and intermediates in a continuous manner.

4.
Biochem Biophys Res Commun ; 499(4): 751-757, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29604274

RESUMEN

Targeting of molecular pathways involved in the cell-to-cell propagation of pathological tau species is a novel approach for development of disease-modifying therapies that could block tau pathology and attenuate cognitive decline in patients with Alzheimer's disease and other tauopathies. We discovered cambinol through a screening effort and show that it is an inhibitor of cell-to-cell tau propagation. Our in vitro data demonstrate that cambinol inhibits neutral sphingomyelinase 2 (nSMase2) enzyme activity in dose response fashion, and suppresses extracellular vesicle (EV) production while reducing tau seed propagation. Our in vivo testing with cambinol shows that it can reduce the nSMase2 activity in the brain after oral administration. Our molecular docking and simulation analysis reveals that cambinol can target the DK-switch in the nSMase2 active site.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Naftalenos/farmacología , Pirimidinonas/farmacología , Esfingomielina Fosfodiesterasa/química , Proteínas tau/metabolismo , Animales , Técnicas Biosensibles , Encéfalo/metabolismo , Sistema Libre de Células , Inhibidores Enzimáticos/química , Vesículas Extracelulares/metabolismo , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Modelos Moleculares , Naftalenos/química , Permeabilidad , Dominios Proteicos , Pirimidinonas/química , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Esfingomielina Fosfodiesterasa/metabolismo , Extractos de Tejidos , Proteínas tau/antagonistas & inhibidores
5.
Ann Rheum Dis ; 77(5): 760-769, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29436471

RESUMEN

OBJECTIVE: Human adult articular cartilage (AC) has little capacity for repair, and joint surface injuries often result in osteoarthritis (OA), characterised by loss of matrix, hypertrophy and chondrocyte apoptosis. Inflammation mediated by interleukin (IL)-6 family cytokines has been identified as a critical driver of proarthritic changes in mouse and human joints, resulting in a feed-forward process driving expression of matrix degrading enzymes and IL-6 itself. Here we show that signalling through glycoprotein 130 (gp130), the common receptor for IL-6 family cytokines, can have both context-specific and cytokine-specific effects on articular chondrocytes and that a small molecule gp130 modulator can bias signalling towards anti-inflammatory and antidegenerative outputs. METHODS: High throughput screening of 170 000 compounds identified a small molecule gp130 modulator termed regulator of cartilage growth and differentiation (RCGD 423) that promotes atypical homodimeric signalling in the absence of cytokine ligands, driving transient increases in MYC and pSTAT3 while suppressing oncostatin M- and IL-6-mediated activation of ERK and NF-κB via direct competition for gp130 occupancy. RESULTS: This small molecule increased proliferation while reducing apoptosis and hypertrophic responses in adult chondrocytes in vitro. In a rat partial meniscectomy model, RCGD 423 greatly reduced chondrocyte hypertrophy, loss and degeneration while increasing chondrocyte proliferation beyond that observed in response to injury. Moreover, RCGD 423 improved cartilage healing in a rat full-thickness osteochondral defect model, increasing proliferation of mesenchymal cells in the defect and also inhibiting breakdown of cartilage matrix in de novo generated cartilage. CONCLUSION: These results identify a novel strategy for AC remediation via small molecule-mediated modulation of gp130 signalling.


Asunto(s)
Enfermedades de los Cartílagos/tratamiento farmacológico , Cartílago Articular/metabolismo , Receptor gp130 de Citocinas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Genes myc/efectos de los fármacos , Ratas , Factor de Transcripción STAT3/metabolismo
6.
Tetrahedron Lett ; 57(19): 2059-2062, 2016 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-27152054

RESUMEN

This study describes our development of a novel and efficient procedure for C-O bond formation under mild conditions, for coupling heteroaryl chlorides with phenols or primary aliphatic alcohols. We utilized a continuous-flow microfluidic reactor for C-O bond formation in electron-deficient pyrimidines and pyridines in a much more facile manner with a cleaner reaction profile, high yield, quick scalability and without the need for the transition metal catalyst. This approach can be of general utility to make C-O bond containing intermediates of industrial importance in a continuous and safe manner.

7.
Proc Natl Acad Sci U S A ; 110(45): 18303-8, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24145446

RESUMEN

The canonical pathogenesis of Alzheimer's disease links the expression of apolipoprotein E ε4 allele (ApoE) to amyloid precursor protein (APP) processing and Aß peptide accumulation by a set of mechanisms that is incompletely defined. The development of a simple system that focuses not on a single variable but on multiple factors and pathways would be valuable both for dissecting the underlying mechanisms and for identifying candidate therapeutics. Here we show that, although both ApoE3 and ApoE4 associate with APP with nanomolar affinities, only ApoE4 significantly (i) reduces the ratio of soluble amyloid precursor protein alpha (sAPPα) to Aß; (ii) reduces Sirtuin T1 (SirT1) expression, resulting in markedly differing ratios of neuroprotective SirT1 to neurotoxic SirT2; (iii) triggers Tau phosphorylation and APP phosphorylation; and (iv) induces programmed cell death. We describe a subset of drug candidates that interferes with the APP-ApoE interaction and returns the parameters noted above to normal. Our data support the hypothesis that neuronal connectivity, as reflected in the ratios of critical mediators such as sAPPα:Aß, SirT1:SirT2, APP:phosphorylated (p)-APP, and Tau:p-Tau, is programmatically altered by ApoE4 and offer a simple system for the identification of program mediators and therapeutic candidates.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Apolipoproteína E4/metabolismo , Regulación de la Expresión Génica/fisiología , Sirtuinas/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Análisis de Varianza , Apolipoproteína E3/metabolismo , Western Blotting , Descubrimiento de Drogas , Humanos , Inmunoprecipitación , Fosforilación , Reacción en Cadena en Tiempo Real de la Polimerasa , Resonancia por Plasmón de Superficie , Proteínas tau/metabolismo
8.
J Neurosci Methods ; 406: 110137, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626853

RESUMEN

BACKGROUND: The neuronal and gliaI populations within the brain are tightly interwoven, making isolation and study of large populations of a single cell type from brain tissue a major technical challenge. Concurrently, cell-type specific extracellular vesicles (EVs) hold enormous diagnostic and therapeutic potential in neurodegenerative disorders including Alzheimer's disease (AD). NEW METHOD: Postmortem AD cortical samples were thawed and gently dissociated. Following filtration, myelin and red blood cell removal, cell pellets were immunolabeled with fluorescent antibodies and analyzed by flow cytometry. The cell pellet supernatant was applied to a triple sucrose cushion for brain EV isolation. RESULTS: Neuronal, astrocyte and microglial cell populations were identified. Cell integrity was demonstrated using calcein AM, which is retained by cells with esterase activity and an intact membrane. For some experiments cell pellets were fixed, permeabilized, and immunolabeled for cell-specific markers. Characterization of brain small EV fractions showed the expected size, depletion of EV negative markers, and enrichment in positive and cell-type specific markers. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: We optimized and integrated established protocols, aiming to maximize information obtained from each human autopsy brain sample. The uniqueness of our method lies in its capability to isolate cells and EVs from a single cryopreserved brain sample. Our results not only demonstrate the feasibility of isolating specific brain cell subpopulations for RNA-seq but also validate these subpopulations at the protein level. The accelerated study of EVs from human samples is crucial for a better understanding of their contribution to neuron/glial crosstalk and disease progression.


Asunto(s)
Enfermedad de Alzheimer , Separación Celular , Corteza Cerebral , Vesículas Extracelulares , Enfermedad de Alzheimer/patología , Vesículas Extracelulares/patología , Separación Celular/métodos , Corteza Cerebral/patología , Humanos , Criopreservación , Autopsia , RNA-Seq , Neuroglía/patología , Neuronas/patología
9.
Bioorg Med Chem Lett ; 23(16): 4674-9, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23856050

RESUMEN

The structure activity relationship of the prime region of conformationally restricted hydroxyethylamine (HEA) BACE inhibitors is described. Variation of the P1' region provided selectivity over Cat-D with a series of 2,2-dioxo-isothiochromanes and optimization of the P2' substituent of chromane-HEA(s) with polar substituents provided improvements in the compound's in vitro permeability. Significant potency gains were observed with small aliphatic substituents such as methyl, n-propyl, and cyclopropyl when placed at the C-2 position of the chromane.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Cromanos/química , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Sitios de Unión , Células Cultivadas , Etilaminas/síntesis química , Etilaminas/química , Etilaminas/farmacología , Concentración 50 Inhibidora , Modelos Moleculares , Relación Estructura-Actividad
10.
Neurotox Res ; 41(3): 256-269, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36867391

RESUMEN

Down syndrome (DS) is characterized by the trisomy of chromosome 21 and by cognitive deficits that have been related to neuronal morphological alterations in humans, as well as in animal models. The gene encoding for amyloid precursor protein (APP) is present in autosome 21, and its overexpression in DS has been linked to neuronal dysfunction, cognitive deficit, and Alzheimer's disease-like dementia. In particular, the neuronal ability to extend processes and branching is affected. Current evidence suggests that APP could also regulate neurite growth through its role in the actin cytoskeleton, in part by influencing p21-activated kinase (PAK) activity. The latter effect is carried out by an increased abundance of the caspase cleavage-released carboxy-terminal C31 fragment. In this work, using a neuronal cell line named CTb, which derived from the cerebral cortex of a trisomy 16 mouse, an animal model of human DS, we observed an overexpression of APP, elevated caspase activity, augmented cleavage of the C-terminal fragment of APP, and increased PAK1 phosphorylation. Morphometric analyses showed that inhibition of PAK1 activity with FRAX486 increased the average length of the neurites, the number of crossings per Sholl ring, the formation of new processes, and stimulated the loss of processes. Considering our results, we propose that PAK hyperphosphorylation impairs neurite outgrowth and remodeling in the cellular model of DS, and therefore we suggest that PAK1 may be a potential pharmacological target.


Asunto(s)
Síndrome de Down , Ratones , Humanos , Animales , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/genética , Trisomía , Neuronas/metabolismo , Neuritas/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proyección Neuronal , Caspasas/metabolismo
11.
bioRxiv ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38106006

RESUMEN

Brain rhythms provide the timing and concurrence of brain activity required for linking together neuronal ensembles engaged in specific tasks. In particular, the γ-oscillations (30-120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here we report on a potent brain permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a new class of therapeutics for AD. As a first in CNS pharmacotherapy, our lead candidate acts as a potent, efficacious, and selective negative allosteric modulator (NAM) of the γ-aminobutyric acid type A receptors (GABA A Rs) assembled from α1ß2δ subunits. We identified these receptors through anatomical and pharmacological means to mediate the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.

12.
J Parkinsons Dis ; 13(7): 1127-1147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638450

RESUMEN

BACKGROUND: Evidence supports a role for the gut-brain axis in Parkinson's disease (PD). Mice overexpressing human wild type α- synuclein (Thy1-haSyn) exhibit slow colonic transit prior to motor deficits, mirroring prodromal constipation in PD. Identifying molecular changes in the gut could provide both biomarkers for early diagnosis and gut-targeted therapies to prevent progression. OBJECTIVE: To identify early molecular changes in the gut-brain axis in Thy1-haSyn mice through gene expression profiling. METHODS: Gene expression profiling was performed on gut (colon) and brain (striatal) tissue from Thy1-haSyn and wild-type (WT) mice aged 1 and 3 months using 3' RNA sequencing. Analysis included differential expression, gene set enrichment and weighted gene co-expression network analysis (WGCNA). RESULTS: At one month, differential expression (Thy1-haSyn vs. WT) of mitochondrial genes and pathways related to PD was discordant between gut and brain, with negative enrichment in brain (enriched in WT) but positive enrichment in gut. Linear regression of WGCNA modules showed partial independence of gut and brain gene expression changes. Thy1-haSyn-associated WGCNA modules in the gut were enriched for PD risk genes and PD-relevant pathways including inflammation, autophagy, and oxidative stress. Changes in gene expression were modest at 3 months. CONCLUSIONS: Overexpression of haSyn acutely disrupts gene expression in the colon. While changes in colon gene expression are highly related to known PD-relevant mechanisms, they are distinct from brain changes, and in some cases, opposite in direction. These findings are in line with the emerging view of PD as a multi-system disease.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Humanos , Ratones , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Colon , Modelos Animales de Enfermedad , Expresión Génica , Ratones Transgénicos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo
13.
J Neurol Neurosurg Psychiatry ; 83(9): 894-902, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22791904

RESUMEN

AIM: A first in human study to evaluate tolerability and pharmacokinetics followed by an early proof of mechanism (POM) study to determine whether the small orally, available molecule, Posiphen tartrate (Posiphen), lowers secreted (s) amyloid-ß precursor protein (APP) α and -ß, amyloid-ß peptide (Aß), tau (τ) and inflammatory markers in CSF of patients with mild cognitive impairment (MCI). STUDY DESIGN: Posiphen single and multiple ascending dose phase 1 randomised, double blind, placebo-controlled safety, tolerance, pharmacokinetic studies were undertaken in a total of 120 healthy volunteers to define a dose that was then used in a small non-randomised study of five MCI subjects, used as their own controls, to define target engagement. MAIN OUTCOME MEASURES: Pharmacodynamic: sAPPα, sAPPß, Aß(42), τ (total (t) and phosphorylated (p)) and inflammatory marker levels were time-dependently measured over 12 h and compared prior to and following 10 days of oral Posiphen treatment in four MCI subjects who completed the study. Pharmacokinetic: plasma and CSF drug and primary metabolite concentrations with estimated brain levels extrapolated from steady-state drug administration in rats. RESULTS: Posiphen proved well tolerated and significantly lowered CSF levels of sAPPα, sAPPß, t-τ, p-τ and specific inflammatory markers, and demonstrated a trend to lower CSF Aß(42). CONCLUSIONS: These results confirm preclinical POM studies, demonstrate that pharmacologically relevant drug/metabolite levels reach brain and support the continued clinical optimisation and evaluation of Posiphen for MCI and Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/líquido cefalorraquídeo , Precursor de Proteína beta-Amiloide/líquido cefalorraquídeo , Disfunción Cognitiva/tratamiento farmacológico , Fragmentos de Péptidos/líquido cefalorraquídeo , Fisostigmina/análogos & derivados , Proteínas tau/líquido cefalorraquídeo , Animales , Disfunción Cognitiva/sangre , Disfunción Cognitiva/líquido cefalorraquídeo , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Humanos , Mediadores de Inflamación/líquido cefalorraquídeo , Masculino , Fisostigmina/efectos adversos , Fisostigmina/farmacocinética , Fisostigmina/farmacología , Ratas , Ratas Endogámicas F344
14.
Elife ; 112022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36017995

RESUMEN

Bisphosphonate-related osteonecrosis of the jaw (BRONJ) presents as a morbid jawbone lesion in patients exposed to a nitrogen-containing bisphosphonate (N-BP). Although it is rare, BRONJ has caused apprehension among patients and healthcare providers and decreased acceptance of this antiresorptive drug class to treat osteoporosis and metastatic osteolysis. We report here a novel method to elucidate the pathological mechanism of BRONJ by the selective removal of legacy N-BP from the jawbone using an intra-oral application of hydroxymethylene diphosphonate (HMDP) formulated in liposome-based deformable nanoscale vesicles (DNV). After maxillary tooth extraction, zoledronate-treated mice developed delayed gingival wound closure, delayed tooth extraction socket healing and increased jawbone osteonecrosis consistent with human BRONJ lesions. Single cell RNA sequencing of mouse gingival cells revealed oral barrier immune dysregulation and unresolved proinflammatory reaction. HMDP-DNV topical applications to nascent mouse BRONJ lesions resulted in accelerated gingival wound closure and bone socket healing as well as attenuation of osteonecrosis development. The gingival single cell RNA sequencing demonstrated resolution of chronic inflammation by increased anti-inflammatory signature gene expression of lymphocytes and myeloid-derived suppressor cells. This study suggests that BRONJ pathology is related to N-BP levels in jawbones and demonstrates the potential of HMDP-DNV as an effective BRONJ therapy.


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos , Animales , Osteonecrosis de los Maxilares Asociada a Difosfonatos/etiología , Osteonecrosis de los Maxilares Asociada a Difosfonatos/patología , Osteonecrosis de los Maxilares Asociada a Difosfonatos/terapia , Difosfonatos/efectos adversos , Humanos , Liposomas , Ratones , Nitrógeno , Ácido Zoledrónico
15.
Commun Med (Lond) ; 2: 112, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36082175

RESUMEN

Background: Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a rare but serious side effect of nitrogen-containing bisphosphonate drugs (N-BPs) frequently prescribed to reduce skeletal-related events in bone malignancies and osteoporosis. BRONJ is associated with abnormal oral wound healing after dentoalveolar surgery and tooth extraction. We previously found that N-BP chemisorbed to bone mineral hydroxyapatite was dissociated by secondary applied N-BP. This study investigated the effect of the surface equilibrium-based removal of N-BP from jawbone on tooth extraction wound healing of zoledronate (ZOL)-treated mice. Methods: A pharmacologically inactive N-BP derivative (the 4-pyridyl isomer of risedronate equipped with a near-infrared 800CW fluorescent imaging dye, 800CW-pRIS) was designed and synthesized. 800CW-pRIS was intra-orally injected or topically applied in a deformable nano-scale vesicle formulation (DNV) to the palatal tissue of mice pretreated with ZOL, a potent N-BP. The female C56BL6/J mice were subjected to maxillary molar extraction and oral wound healing was compared for 800CW-pRIS/ZOL, ZOL and untreated control groups. Results: 800CW-pRIS is confirmed to be inactive in inhibiting prenylation in cultured osteoclasts while retaining high affinity for hydroxyapatite. ZOL-injected mice exhibit delayed tooth extraction wound healing with osteonecrosis relative to the untreated controls. 800CW-pRIS applied topically to the jaw one week before tooth extraction significantly reduces gingival oral barrier inflammation, improves extraction socket bone regeneration, and prevents development of osteonecrosis in ZOL-injected mice. Conclusions: Topical pre-treatment with 800CW-RIS in DNV is a promising approach to prevent the complication of abnormal oral wound healing associated with BRONJ while retaining the anti-resorptive benefit of legacy N-BP in appendicular or vertebrate bones.

16.
Pharmacology ; 87(1-2): 81-4, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21228614

RESUMEN

Neuroglobin (Ngb) is an intracellular, oxygen-binding neuronal protein with protective effects against ischemia and related pathological processes. To identify small molecules capable of inducing Ngb protein expression, which might have therapeutic benefit, we examined Ngb expression by Western blot in cultured HN33 (mouse hippocampal neuron x N18TG2 neuroblastoma) cells. In addition to deferoxamine, which was shown previously to enhance Ngb levels, Ngb expression was increased by the short-chain fatty acids cinnamic acid and valproic acid (≥ 100 µmol/l), but not by other short-chain fatty acids, histone deacetylase inhibitors, or anticonvulsants. Drugs that stimulate the expression of neuroprotective proteins like Ngb may have therapeutic potential in the treatment of stroke and other neurological disorders.


Asunto(s)
Cinamatos/farmacología , Globinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Ácido Valproico/farmacología , Animales , Anticonvulsivantes/farmacología , Línea Celular , Descubrimiento de Drogas , Inducción Enzimática/efectos de los fármacos , Ratones , Neuroglobina
17.
J Alzheimers Dis ; 79(2): 875-893, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33361597

RESUMEN

BACKGROUND: Alpha-synuclein (α-syn) is involved in pathology of Parkinson's disease, and 90% of α-syn in Lewy bodies is phosphorylated at serine 129 (pS129 α-syn). OBJECTIVE: To assess behavior impairments and brain levels of α-syn and pS129 α-syn in mice overexpressing human α-syn under Thy1 promoter (Thy1-α-syn) and wild type (wt) littermates. METHODS: Motor and non-motor behaviors were monitored, brain human α-syn levels measured by ELISA, and α-syn and pS129 α-syn mapped by immunohistochemistry. RESULTS: Male and female wt littermates did not show differences in the behavioral tests. Male Thy1-α-syn mice displayed more severe impairments than female counterparts in cotton nesting, pole tests, adhesive removal, finding buried food, and marble burying. Concentrations of human α-syn in the olfactory regions, cortex, nigrostriatal system, and dorsal medulla were significantly increased in Thy1-α-syn mice, higher in males than females. Immunoreactivity of α-syn was not simply increased in Thy1-α-syn mice but had altered localization in somas and fibers in a few brain areas. Abundant pS129 α-syn existed in many brain areas of Thy1-α-syn mice, while there was none or only a small amount in a few brain regions of wt mice. The substantia nigra, olfactory regions, amygdala, lateral parabrachial nucleus, and dorsal vagal complex displayed different distribution patterns between wt and transgenic mice, but not between sexes. CONCLUSION: The severer abnormal behaviors in male than female Thy1-α-syn mice may be related to higher brain levels of human α-syn, in the absence of sex differences in the altered brain immunoreactivity patterns of α-syn and pS129 α-syn.


Asunto(s)
Encéfalo/metabolismo , alfa-Sinucleína/metabolismo , Animales , Conducta Animal , Encéfalo/patología , Química Encefálica , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , Serina/metabolismo , Factores Sexuales , alfa-Sinucleína/análisis
18.
Front Neurorobot ; 15: 727534, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35250527

RESUMEN

Designing the physical coupling between the human body and the wearable robot is a challenging endeavor. The typical approach of tightening the wearable robot against the body, and softening the interface materials does not work well. It makes the task of simultaneously improving comfort, and anchoring the robot to the body at the physical human robot interaction interface (PHRII), difficult. Characterizing this behavior experimentally with sensors at the interface is challenging due to the soft-soft interactions between the PHRII materials and the human tissue. Therefore, modeling the interaction between the wearable robot and the hand is a necessary step to improve design. In this paper, we introduce a methodology to systematically improve the design of the PHRII by combining experimentally measured characteristics of the biological tissue with a novel dynamic modeling tool. Using a novel and scalable simulation framework, HuRoSim, we quantified the interaction between the human hand and an exoskeleton. In the first of our experiments, we use HuRoSim to predict complex interactions between the hand and the coupled exoskeleton. In our second experiment, we then demonstrate how HuRoSim can be coupled with experimental measurements of the stiffness of the dorsal surface of the hand to optimize the design of the PHRII. This approach of data-driven modeling of the interaction between the body and a wearable robot, such as a hand exoskeleton, can be generalized to other forms of wearable devices as well, demonstrating a scalable and systematic method for improving the design of the PHRII for future devices coupled to the body.

19.
Front Pharmacol ; 12: 766082, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925024

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia, yet there is no cure or diagnostics available prior to the onset of clinical symptoms. Extracellular vesicles (EVs) are lipid bilayer-delimited particles that are released from almost all types of cell. Genome-wide association studies have linked multiple AD genetic risk factors to microglia-specific pathways. It is plausible that microglia-derived EVs may play a role in the progression of AD by contributing to the dissemination of insoluble pathogenic proteins, such as tau and Aß. Despite the potential utility of EVs as a diagnostic tool, our knowledge of human brain EV subpopulations is limited. Here we present a method for isolating microglial CD11b-positive small EVs from cryopreserved human brain tissue, as well as an integrated multiomics analysis of microglial EVs enriched from the parietal cortex of four late-stage AD (Braak V-VI) and three age-matched normal/low pathology (NL) cases. This integrated analysis revealed 1,000 proteins, 594 lipids, and 105 miRNAs using shotgun proteomics, targeted lipidomics, and NanoString nCounter technology, respectively. The results showed a significant reduction in the abundance of homeostatic microglia markers P2RY12 and TMEM119, and increased levels of disease-associated microglia markers FTH1 and TREM2, in CD11b-positive EVs from AD brain compared to NL cases. Tau abundance was significantly higher in AD brain-derived microglial EVs. These changes were accompanied by the upregulation of synaptic and neuron-specific proteins in the AD group. Levels of free cholesterol were elevated in microglial EVs from the AD brain. Lipidomic analysis also revealed a proinflammatory lipid profile, endolysosomal dysfunction, and a significant AD-associated decrease in levels of docosahexaenoic acid (DHA)-containing polyunsaturated lipids, suggesting a potential defect in acyl-chain remodeling. Additionally, four miRNAs associated with immune and cellular senescence signaling pathways were significantly upregulated in the AD group. Our data suggest that loss of the homeostatic microglia signature in late AD stages may be accompanied by endolysosomal impairment and the release of undigested neuronal and myelin debris, including tau, through extracellular vesicles. We suggest that the analysis of microglia-derived EVs has merit for identifying novel EV-associated biomarkers and providing a framework for future larger-scale multiomics studies on patient-derived cell-type-specific EVs.

20.
Mol Brain ; 14(1): 70, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33875010

RESUMEN

AIM: We have previously reported that cambinol (DDL-112), a known inhibitor of neutral sphingomyelinase-2 (nSMase2), suppressed extracellular vesicle (EV)/exosome production in vitro in a cell model and reduced tau seed propagation. The enzyme nSMase2 is involved in the production of exosomes carrying proteopathic seeds and could contribute to cell-to-cell transmission of pathological protein aggregates implicated in neurodegenerative diseases such as Parkinson's disease (PD). Here, we performed in vivo studies to determine if DDL-112 can reduce brain EV/exosome production and proteopathic alpha synuclein (αSyn) spread in a PD mouse model. METHODS: The acute effects of single-dose treatment with DDL-112 on interleukin-1ß-induced extracellular vesicle (EV) release in brain tissue of Thy1-αSyn PD model mice and chronic effects of 5 week DDL-112 treatment on behavioral/motor function and proteinase K-resistant αSyn aggregates in the PD model were determined. RESULTS/DISCUSSION: In the acute study, pre-treatment with DDL-112 reduced EV/exosome biogenesis and in the chronic study, treatment with DDL-112 was associated with a reduction in αSyn aggregates in the substantia nigra and improvement in motor function. Inhibition of nSMase2 thus offers a new approach to therapeutic development for neurodegenerative diseases with the potential to reduce the spread of disease-specific proteopathic proteins.


Asunto(s)
Encéfalo/metabolismo , Inhibidores Enzimáticos/farmacología , Exosomas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , alfa-Sinucleína/metabolismo , Animales , Modelos Animales de Enfermedad , Exosomas/ultraestructura , Ratones Transgénicos , Naftalenos/farmacología , Agregado de Proteínas/efectos de los fármacos , Pirimidinonas/farmacología , Sirtuinas/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA