Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(4): 817-32, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25957687

RESUMEN

Rod-derived cone viability factor (RdCVF) is an inactive thioredoxin secreted by rod photoreceptors that protects cones from degeneration. Because the secondary loss of cones in retinitis pigmentosa (RP) leads to blindness, the administration of RdCVF is a promising therapy for this untreatable neurodegenerative disease. Here, we investigated the mechanism underlying the protective role of RdCVF in RP. We show that RdCVF acts through binding to Basigin-1 (BSG1), a transmembrane protein expressed specifically by photoreceptors. BSG1 binds to the glucose transporter GLUT1, resulting in increased glucose entry into cones. Increased glucose promotes cone survival by stimulation of aerobic glycolysis. Moreover, a missense mutation of RdCVF results in its inability to bind to BSG1, stimulate glucose uptake, and prevent secondary cone death in a model of RP. Our data uncover an entirely novel mechanism of neuroprotection through the stimulation of glucose metabolism.


Asunto(s)
Proteínas del Ojo/metabolismo , Glucólisis , Tiorredoxinas/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Basigina/genética , Basigina/metabolismo , Proteínas del Ojo/genética , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Ratones , Mutación Missense , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/metabolismo , Retinitis Pigmentosa/metabolismo , Tiorredoxinas/genética
2.
Immunity ; 53(2): 429-441.e8, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32814029

RESUMEN

A minor haplotype of the 10q26 locus conveys the strongest genetic risk for age-related macular degeneration (AMD). Here, we examined the mechanisms underlying this susceptibility. We found that monocytes from homozygous carriers of the 10q26 AMD-risk haplotype expressed high amounts of the serine peptidase HTRA1, and HTRA1 located to mononuclear phagocytes (MPs) in eyes of non-carriers with AMD. HTRA1 induced the persistence of monocytes in the subretinal space and exacerbated pathogenic inflammation by hydrolyzing thrombospondin 1 (TSP1), which separated the two CD47-binding sites within TSP1 that are necessary for efficient CD47 activation. This HTRA1-induced inhibition of CD47 signaling induced the expression of pro-inflammatory osteopontin (OPN). OPN expression increased in early monocyte-derived macrophages in 10q26 risk carriers. In models of subretinal inflammation and AMD, OPN deletion or pharmacological inhibition reversed HTRA1-induced pathogenic MP persistence. Our findings argue for the therapeutic potential of CD47 agonists and OPN inhibitors for the treatment of AMD.


Asunto(s)
Antígeno CD47/metabolismo , Cromosomas Humanos Par 10/genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Degeneración Macular/genética , Osteopontina/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Sitios de Unión/fisiología , Células COS , Línea Celular , Chlorocebus aethiops , Ojo/patología , Predisposición Genética a la Enfermedad/genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Humanos , Macrófagos/inmunología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Transducción de Señal/genética
3.
Bull Math Biol ; 86(3): 29, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345678

RESUMEN

Both the rod and cone photoreceptors, along with the retinal pigment epithelium have been experimentally and mathematically shown to work interdependently to maintain vision. Further, the theoredoxin-like rod-derived cone viability factor (RdCVF) and its long form (RdCVFL) have proven to increase photoreceptor survival in experimental results. Aerobic glycolysis is the primary source of energy production for photoreceptors and RdCVF accelerates the intake of glucose into the cones. RdCVFL helps mitigate the negative effects of reactive oxidative species and has shown promise in slowing the death of cones in mouse studies. However, this potential treatment and its effects have never been studied in mathematical models. In this work, we examine an optimal control with the treatment of RdCVFL. We mathematically illustrate the potential this treatment might have for treating degenerative retinal diseases such as retinitis pigmentosa, as well as compare this to the results of an updated control model with RdCVF.


Asunto(s)
Modelos Biológicos , Retinitis Pigmentosa , Animales , Ratones , Conceptos Matemáticos , Retina , Células Fotorreceptoras Retinianas Conos , Retinitis Pigmentosa/terapia
4.
J Biomed Sci ; 29(1): 107, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539812

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder that primarily affects the cerebellum and retina. SCA7 is caused by a polyglutamine expansion in the ATXN7 protein, a subunit of the transcriptional coactivator SAGA that acetylates histone H3 to deposit narrow H3K9ac mark at DNA regulatory elements of active genes. Defective histone acetylation has been presented as a possible cause for gene deregulation in SCA7 mouse models. However, the topography of acetylation defects at the whole genome level and its relationship to changes in gene expression remain to be determined. METHODS: We performed deep RNA-sequencing and chromatin immunoprecipitation coupled to high-throughput sequencing to examine the genome-wide correlation between gene deregulation and alteration of the active transcription marks, e.g. SAGA-related H3K9ac, CBP-related H3K27ac and RNA polymerase II (RNAPII), in a SCA7 mouse retinopathy model. RESULTS: Our analyses revealed that active transcription marks are reduced at most gene promoters in SCA7 retina, while a limited number of genes show changes in expression. We found that SCA7 retinopathy is caused by preferential downregulation of hundreds of highly expressed genes that define morphological and physiological identities of mature photoreceptors. We further uncovered that these photoreceptor genes harbor unusually broad H3K9ac profiles spanning the entire gene bodies and have a low RNAPII pausing. This broad H3K9ac signature co-occurs with other features that delineate superenhancers, including broad H3K27ac, binding sites for photoreceptor specific transcription factors and expression of enhancer-related non-coding RNAs (eRNAs). In SCA7 retina, downregulated photoreceptor genes show decreased H3K9 and H3K27 acetylation and eRNA expression as well as increased RNAPII pausing, suggesting that superenhancer-related features are altered. CONCLUSIONS: Our study thus provides evidence that distinctive epigenetic configurations underlying high expression of cell-type specific genes are preferentially impaired in SCA7, resulting in a defect in the maintenance of identity features of mature photoreceptors. Our results also suggest that continuous SAGA-driven acetylation plays a role in preserving post-mitotic neuronal identity.


Asunto(s)
Enfermedades de la Retina , Ataxias Espinocerebelosas , Ratones , Animales , Ataxias Espinocerebelosas/genética , Factores de Transcripción/genética , Modelos Animales de Enfermedad , Enfermedades de la Retina/genética , Expresión Génica , Epigénesis Genética
5.
Clin Genet ; 99(2): 298-302, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33124039

RESUMEN

Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD.


Asunto(s)
Proteínas Portadoras/genética , Distrofias de Conos y Bastones/genética , Adulto , Estudios de Asociación Genética , Humanos , Masculino , Linaje , Repeticiones WD40
6.
J Theor Biol ; 520: 110642, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-33636201

RESUMEN

Recent experimental and mathematical work has shown the interdependence of the rod and cone photoreceptors with the retinal pigment epithelium in maintaining sight. Accelerated intake of glucose into the cones via the theoredoxin-like rod-derived cone viability factor (RdCVF) is needed as aerobic glycolysis is the primary source of energy production. Reactive oxidative species (ROS) result from the rod and cone metabolism and recent experimental work has shown that the long form of RdCVF (RdCVFL) helps mitigate the negative effects of ROS. In this work we investigate the role of RdCVFL in maintaining the health of the photoreceptors. The results of our mathematical model show the necessity of RdCVFL and also demonstrate additional stable modes that are present in this system. The sensitivity analysis shows the importance of glucose uptake, nutrient levels, and ROS mitigation in maintaining rod and cone health in light-damaged mouse models. Together, these suggests areas on which to focus treatment in order to prolong the photoreceptors, especially in situations where ROS is a contributing factor to their death such as retinitis pigmentosa.


Asunto(s)
Retinitis Pigmentosa , Tiorredoxinas , Animales , Ratones , Modelos Teóricos , Oxidación-Reducción , Células Fotorreceptoras Retinianas Conos/metabolismo , Tiorredoxinas/metabolismo
7.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360642

RESUMEN

The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated.


Asunto(s)
Distrofias de Conos y Bastones/patología , Genes Recesivos , Proteínas Mitocondriales/genética , Mutación , Canales de Potasio/genética , Adulto , Distrofias de Conos y Bastones/etiología , Distrofias de Conos y Bastones/metabolismo , Femenino , Humanos , Masculino , Linaje , Fenotipo
8.
J Neuroinflammation ; 17(1): 358, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243251

RESUMEN

BACKGROUND: Rhegmatogenous retinal detachment (RD) involving the macula is a major cause of visual impairment despite high surgical success rate, mainly because of cone death. RD causes the infiltration of activated immune cells, but it is not clear whether and how infiltrating inflammatory cells contribute to cone cell loss. METHODS: Vitreous samples from patients with RD and from control patients with macular hole were analyzed to characterize the inflammatory response to RD. A mouse model of RD and retinal explants culture were then used to explore the mechanisms leading to cone death. RESULTS: Analysis of vitreous samples confirms that RD induces a marked inflammatory response with increased cytokine and chemokine expression in humans, which is closely mimicked by experimental murine RD. In this model, we corroborate that myeloid cells and T-lymphocytes contribute to cone loss, as the inhibition of their accumulation by Thrombospondin 1 (TSP1) increased cone survival. Using monocyte/retinal co-cultures and TSP1 treatment in RD, we demonstrate that immune cell infiltration downregulates rod-derived cone viability factor (RdCVF), which physiologically regulates glucose uptake in cones. Insulin and the insulin sensitizers rosiglitazone and metformin prevent in part the RD-induced cone loss in vivo, despite the persistence of inflammation CONCLUSION: Our results describe a new mechanism by which inflammation induces cone death in RD, likely through cone starvation due to the downregulation of RdCVF that could be reversed by insulin. Therapeutic inhibition of inflammation and stimulation of glucose availability in cones by insulin signaling might prevent RD-associated cone death until the RD can be surgically repaired and improve visual outcome after RD. TRIAL REGISTRATION: ClinicalTrials.gov NCT03318588.


Asunto(s)
Insulina/farmacología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Desprendimiento de Retina/metabolismo , Desprendimiento de Retina/patología , Adulto , Animales , Muerte Celular/fisiología , Proteínas del Ojo/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Hipoglucemiantes/farmacología , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Masculino , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Desprendimiento de Retina/inmunología , Rosiglitazona/farmacología , Tiorredoxinas/metabolismo
9.
Int J Mol Sci ; 21(5)2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32120883

RESUMEN

The loss of cone photoreceptor function in retinitis pigmentosa (RP) severely impacts the central and daily vision and quality of life of patients affected by this disease. The loss of cones follows the degeneration of rods, in a manner independent of the causing mutations in numerous genes associated with RP. We have explored this phenomenon and proposed that the loss of rods triggers a reduction in the expression of rod-derived cone viability factor (RdCVF) encoded by the nucleoredoxin-like 1 (NXNL1) gene which interrupts the metabolic and redox signaling between rods and cones. After providing scientific evidence supporting this mechanism, we propose a way to restore this lost signaling and prevent the cone vision loss in animal models of RP. We also explain how we could restore this signaling to prevent cone vision loss in animal models of the disease and how we plan to apply this therapeutic strategy by the administration of both products of NXNL1 encoding the trophic factor RdCVF and the thioredoxin enzyme RdCVFL using an adeno-associated viral vector. We describe in detail all the steps of this translational program, from the design of the drug, its production, biological validation, and analytical and preclinical qualification required for a future clinical trial that would, if successful, provide a treatment for this incurable disease.


Asunto(s)
Terapia Genética/métodos , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/terapia , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Oxidación-Reducción , Enfermedades de la Retina/congénito , Enfermedades de la Retina/enzimología , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/terapia , Retinitis Pigmentosa/enzimología , Retinitis Pigmentosa/genética , Transducción de Señal/genética , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo
10.
Mol Ther ; 26(1): 219-237, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28988713

RESUMEN

Inherited retinal degenerations are blinding diseases characterized by the loss of photoreceptors. Their extreme genetic heterogeneity complicates treatment by gene therapy. This has motivated broader strategies for transplantation of healthy retinal pigmented epithelium to protect photoreceptors independently of the gene causing the disease. The limited clinical benefit for visual function reported up to now is mainly due to dedifferentiation of the transplanted cells that undergo an epithelial-mesenchymal transition. We have studied this mechanism in vitro and revealed the role of the homeogene OTX2 in preventing dedifferentiation through the regulation of target genes. We have overexpressed OTX2 in retinal pigmented epithelial cells before their transplantation in the eye of a model of retinitis pigmentosa carrying a mutation in Mertk, a gene specifically expressed by retinal pigmented epithelial cells. OTX2 increases significantly the protection of photoreceptors as seen by histological and functional analyses. We observed that the beneficial effect of OTX2 is non-cell autonomous, and it is at least partly mediated by unidentified trophic factors. Transplantation of OTX2-genetically modified cells may be medically effective for other retinal diseases involving the retinal pigmented epithelium as age-related macular degeneration.


Asunto(s)
Células Epiteliales/metabolismo , Factores de Transcripción Otx/genética , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/trasplante , Epitelio Pigmentado de la Retina/citología , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Biomarcadores , Pollos , Transición Epitelial-Mesenquimal , Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Ratas , Elementos de Respuesta , Porcinos
11.
Int J Mol Sci ; 20(19)2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-31590277

RESUMEN

The retina is the light sensitive part of the eye and nervous tissue that have been used extensively to characterize the function of the central nervous system. The retina has a central position both in fundamental biology and in the physiopathology of neurodegenerative diseases. We address the contribution of functional genomics to the understanding of retinal biology by reviewing key events in their historical perspective as an introduction to major findings that were obtained through the study of the retina using genomics, transcriptomics and proteomics. We illustrate our purpose by showing that most of the genes of interest for retinal development and those involved in inherited retinal degenerations have a restricted expression to the retina and most particularly to photoreceptors cells. We show that the exponential growth of data generated by functional genomics is a future challenge not only in terms of storage but also in terms of accessibility to the scientific community of retinal biologists in the future. Finally, we emphasize on novel perspectives that emerge from the development of redox-proteomics, the new frontier in retinal biology.


Asunto(s)
Células Fotorreceptoras/metabolismo , Proteoma , Degeneración Retiniana/genética , Transcriptoma , Animales , Genómica/métodos , Humanos , Células Fotorreceptoras/patología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología
12.
Int J Mol Sci ; 20(3)2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30696106

RESUMEN

The transplantation of retinal cells has been studied in animals to establish proof of its potential benefit for the treatment of blinding diseases. Photoreceptor precursors have been grafted in animal models of Mendelian-inherited retinal degenerations, and retinal pigmented epithelial cells have been used to restore visual function in animal models of age-related macular degeneration (AMD) and recently in patients. Cell therapy over corrective gene therapy in inherited retinal degeneration can overcome the genetic heterogeneity by providing one treatment for all genetic forms of the diseases. In AMD, the existence of multiple risk alleles precludes a priori the use of corrective gene therapy. Mechanistically, the experiments of photoreceptor precursor transplantation reveal the importance of cytoplasmic material exchange between the grafted cells and the host cells for functional rescue, an unsuspected mechanism and novel concept. For transplantation of retinal pigmented epithelial cells, the mechanisms behind the therapeutic benefit are only partially understood, and clinical trials are ongoing. The fascinating studies that describe the development of methodologies to produce cells to be grafted and demonstrate the functional benefit for vision are reviewed.


Asunto(s)
Degeneración Retiniana/terapia , Trasplante de Células Madre , Visión Ocular , Animales , Humanos , Células Fotorreceptoras/trasplante , Degeneración Retiniana/genética , Epitelio Pigmentado de la Retina/trasplante
13.
Int J Mol Sci ; 20(3)2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30754662

RESUMEN

The retinal pigment epithelium (RPE) forms the outer blood⁻retina barrier and facilitates the transepithelial transport of glucose into the outer retina via GLUT1. Glucose is metabolized in photoreceptors via the tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OXPHOS) but also by aerobic glycolysis to generate glycerol for the synthesis of phospholipids for the renewal of their outer segments. Aerobic glycolysis in the photoreceptors also leads to a high rate of production of lactate which is transported out of the subretinal space to the choroidal circulation by the RPE. Lactate taken up by the RPE is converted to pyruvate and metabolized via OXPHOS. Excess lactate in the RPE is transported across the basolateral membrane to the choroid. The uptake of glucose by cone photoreceptor cells is enhanced by rod-derived cone viability factor (RdCVF) secreted by rods and by insulin signaling. Together, the three cells act as symbiotes: the RPE supplies the glucose from the choroidal circulation to the photoreceptors, the rods help the cones, and both produce lactate to feed the RPE. In age-related macular degeneration this delicate ménage à trois is disturbed by the chronic infiltration of inflammatory macrophages. These immune cells also rely on aerobic glycolysis and compete for glucose and produce lactate. We here review the glucose metabolism in the homeostasis of the outer retina and in macrophages and hypothesize what happens when the metabolism of photoreceptors and the RPE is disturbed by chronic inflammation.


Asunto(s)
Degeneración Macular/etiología , Degeneración Macular/metabolismo , Retina/metabolismo , Animales , Supervivencia Celular , Susceptibilidad a Enfermedades , Metabolismo Energético , Predisposición Genética a la Enfermedad , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Degeneración Macular/patología , Oxidación-Reducción , Retina/patología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis/complicaciones , Retinitis/patología
14.
Cell Mol Life Sci ; 74(20): 3649-3665, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-27543457

RESUMEN

Visual perception by photoreceptors relies on the interaction of incident photons from light with a derivative of vitamin A that is covalently linked to an opsin molecule located in a special subcellular structure, the photoreceptor outer segment. The photochemical reaction produced by the photon is optimal when the opsin molecule, a seven-transmembrane protein, is embedded in a lipid bilayer of optimal fluidity. This is achieved in vertebrate photoreceptors by a high proportion of lipids made with polyunsaturated fatty acids, which have the detrimental property of being oxidized and damaged by light. Photoreceptors cannot divide, but regenerate their outer segments. This is an enormous energetic challenge that explains why photoreceptors metabolize glucose through aerobic glycolysis, as cancer cells do. Uptaken glucose produces metabolites to renew that outer segment as well as reducing power through the pentose phosphate pathway to protect photoreceptors against oxidative damage.


Asunto(s)
Glucosa/metabolismo , Vía de Pentosa Fosfato , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Enfermedades de la Retina/metabolismo , Transducción de Señal , Animales , Ácidos Grasos/metabolismo , Humanos , Oxidación-Reducción , Estrés Oxidativo , Células Fotorreceptoras/citología , Rodopsina/metabolismo
15.
Adv Exp Med Biol ; 1074: 499-509, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721982

RESUMEN

Retinal degenerative diseases are a major cause of untreatable blindness due to a loss of photoreceptors. Recent advances in genetics and gene therapy for inherited retinal dystrophies (IRDs) showed that therapeutic gene transfer holds a great promise for vision restoration in people with currently incurable blinding diseases. Due to the huge genetic heterogeneity of IRDs that represents a major obstacle for gene therapy development, alternative therapeutic approaches are needed. This review focuses on the rescue of cone function as a therapeutic option for maintaining central vision in rod-cone dystrophies. It highlights recent developments in better understanding the mechanisms of action of the trophic factor RdCVF and its potential as a sight-saving therapeutic strategy.


Asunto(s)
Distrofias de Conos y Bastones/terapia , Terapia Genética , Vectores Genéticos/uso terapéutico , Células Fotorreceptoras Retinianas Conos/fisiología , Tiorredoxinas/fisiología , Empalme Alternativo , Secuencia de Aminoácidos , Comunicación Celular , Dependovirus/genética , Proteínas del Ojo/fisiología , Heterogeneidad Genética , Glucólisis , Humanos , Modelos Moleculares , Medicina de Precisión , Conformación Proteica , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Células Fotorreceptoras Retinianas Bastones/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/uso terapéutico , Investigación Biomédica Traslacional , Resultado del Tratamiento
16.
Am J Hum Genet ; 94(4): 625-33, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24680887

RESUMEN

Rod-cone dystrophy (RCD), also known as retinitis pigmentosa, is a progressive inherited retinal disorder characterized by photoreceptor cell death and genetic heterogeneity. Mutations in many genes have been implicated in the pathophysiology of RCD, but several others remain to be identified. Herein, we applied whole-exome sequencing to a consanguineous family with one subject affected with RCD and identified a homozygous nonsense mutation, c.226C>T (p.Arg76(∗)), in KIZ, which encodes centrosomal protein kizuna. Subsequent Sanger sequencing of 340 unrelated individuals with sporadic and autosomal-recessive RCD identified two other subjects carrying pathogenic variants in KIZ: one with the same homozygous nonsense mutation (c.226C>T [p.Arg76(∗)]) and another with compound-heterozygous mutations c.119_122delAACT (p.Lys40Ilefs(∗)14) and c.52G>T (p.Glu18(∗)). Transcriptomic analysis in mice detected mRNA levels of the mouse ortholog (Plk1s1) in rod photoreceptors, as well as its decreased expression when photoreceptors degenerated in rd1 mice. The presence of the human KIZ transcript was confirmed by quantitative RT-PCR in the retina, the retinal pigment epithelium, fibroblasts, and whole-blood cells (highest expression was in the retina). RNA in situ hybridization demonstrated the presence of Plk1s1 mRNA in the outer nuclear layer of the mouse retina. Immunohistology revealed KIZ localization at the basal body of the cilia in human fibroblasts, thus shedding light on another ciliary protein implicated in autosomal-recessive RCD.


Asunto(s)
Proteínas de Ciclo Celular/genética , Exoma , Genes Recesivos , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/genética , Animales , Codón sin Sentido , Femenino , Humanos , Masculino , Ratones , Linaje , Transcriptoma
17.
Hum Mol Genet ; 23(2): 491-501, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24026677

RESUMEN

Inherited retinal diseases are a group of clinically and genetically heterogeneous disorders for which a significant number of cases remain genetically unresolved. Increasing knowledge on underlying pathogenic mechanisms with precise phenotype-genotype correlation is, however, critical for establishing novel therapeutic interventions for these yet incurable neurodegenerative conditions. We report phenotypic and genetic characterization of a large family presenting an unusual autosomal dominant retinal dystrophy. Phenotypic characterization revealed a retinopathy dominated by inner retinal dysfunction and ganglion cell abnormalities. Whole-exome sequencing identified a missense variant (c.782A>C, p.Glu261Ala) in ITM2B coding for Integral Membrane Protein 2B, which co-segregates with the disease in this large family and lies within the 24.6 Mb interval identified by microsatellite haplotyping. The physiological role of ITM2B remains unclear and has never been investigated in the retina. RNA in situ hybridization reveals Itm2b mRNA in inner nuclear and ganglion cell layers within the retina, with immunostaining demonstrating the presence of the corresponding protein in the same layers. Furthermore, ITM2B in the retina co-localizes with its known interacting partner in cerebral tissue, the amyloid ß precursor protein, critical in Alzheimer disease physiopathology. Interestingly, two distinct ITM2B mutations, both resulting in a longer protein product, had already been reported in two large autosomal dominant families with Alzheimer-like dementia but never in subjects with isolated retinal diseases. These findings should better define pathogenic mechanism(s) associated with ITM2B mutations underlying dementia or retinal disease and add a new candidate to the list of genes involved in inherited retinal dystrophies.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Glicoproteínas de Membrana/genética , Mutación Missense , Retina/metabolismo , Distrofias Retinianas/genética , Distrofias Retinianas/patología , Proteínas Adaptadoras Transductoras de Señales , Anciano , Demencia/genética , Exoma , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , Fenotipo , Retina/patología , Distrofias Retinianas/metabolismo , Análisis de Secuencia de ADN
18.
Bull Math Biol ; 78(7): 1394-409, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27444436

RESUMEN

Understanding the essential components and processes for coexistence of rods and cones is at the forefront of retinal research. The recent discovery on RdCVF's mechanism and mode of action for enhancing cone survival brings us a step closer to unraveling key questions of coexistence and codependence of these neurons. In this work, we build from ecological and enzyme kinetic work on functional response kinetics and present a mathematical model that allows us to investigate the role of RdCVF and its contribution to glucose intake. Our model results and analysis predict a dual role of RdCVF for enhancing and repressing the healthy coexistence of the rods and cones. Our results show that maintaining RdCVF above a threshold value allows for coexistence. However, a significant increase above this value threatens the existence of rods as the cones become extremely efficient at uptaking glucose and begin to take most of it for themselves. We investigate the role of natural glucose intake and that due to RdCVF in both high and low nutrient levels. Our analysis reveals that under low nutrient levels coexistence is not possible regardless of the amount of RdCVF present. With high nutrient levels coexistence can be achieved with a relative small increase in glucose uptake. By understanding the contributions of rods to cones survival via RdCVF in a non-diseased retina, we hope to shed light on degenerative diseases such as retinitis pigmentosa.


Asunto(s)
Proteínas del Ojo/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Animales , Glucosa/metabolismo , Humanos , Conceptos Matemáticos , Modelos Biológicos , Retinitis Pigmentosa/etiología , Tiorredoxinas/fisiología
19.
Am J Hum Genet ; 90(2): 321-30, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22325361

RESUMEN

Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs(∗)57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.


Asunto(s)
Exoma , Mutación , Miopía/genética , Ceguera Nocturna/genética , Receptores Acoplados a Proteínas G/genética , Alelos , Animales , Electrorretinografía/métodos , Enfermedades Hereditarias del Ojo , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X , Heterogeneidad Genética , Técnicas de Genotipaje/métodos , Heterocigoto , Homocigoto , Humanos , Masculino , Ratones , Fenotipo , Polimorfismo de Nucleótido Simple , Estructura Terciaria de Proteína , Proteoglicanos/genética , Receptores de Glutamato Metabotrópico/genética , Retina/anomalías , Canales Catiónicos TRPM/genética
20.
Hum Mol Genet ; 21(10): 2298-311, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22343139

RESUMEN

The rod-derived cone viability factors, RdCVF and RdCVF2, have potential therapeutical interests for the treatment of inherited photoreceptor degenerations. In the mouse lacking Nxnl2, the gene encoding RdCVF2, the progressive decline of the visual performance of the cones in parallel with their degeneration, arises due to the loss of trophic support from RdCVF2. In contrary, the progressive loss of rod visual function of the Nxnl2-/- mouse results from a decrease in outer segment length, mediated by a cell autonomous mechanism involving the putative thioredoxin protein RdCVF2L, the second spliced product of the Nxnl2 gene. This novel signaling mechanism extends to olfaction as shown by the progressive impairment of olfaction in aged Nxnl2-/- mice and the protection of olfactory neurons by RdCVF2. This study shows that Nxnl2 is a bi-functional gene involved in the maintenance of both the function and the viability of sensory neurons.


Asunto(s)
Supervivencia Celular/genética , Proteínas del Ojo/genética , Empalme del ARN , Células Receptoras Sensoriales/citología , Tiorredoxinas/genética , Animales , Células Cultivadas , Proteínas del Ojo/metabolismo , Ratones , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Receptoras Sensoriales/metabolismo , Tiorredoxinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA