Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Intervalo de año de publicación
1.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34502464

RESUMEN

Melanoma is the most aggressive type of skin cancer due to its high capability of developing metastasis and acquiring chemoresistance. Altered redox homeostasis induced by increased reactive oxygen species is associated with melanomagenesis through modulation of redox signaling pathways. Dysfunctional endothelial nitric oxide synthase (eNOS) produces superoxide anion (O2-•) and contributes to the establishment of a pro-oxidant environment in melanoma. Although decreased tetrahydrobiopterin (BH4) bioavailability is associated with eNOS uncoupling in endothelial and human melanoma cells, in the present work we show that eNOS uncoupling in metastatic melanoma cells expressing the genes from de novo biopterin synthesis pathway Gch1, Pts, and Spr, and high BH4 concentration and BH4:BH2 ratio. Western blot analysis showed increased expression of Nos3, altering the stoichiometry balance between eNOS and BH4, contributing to NOS uncoupling. Both treatment with L-sepiapterin and eNOS downregulation induced increased nitric oxide (NO) and decreased O2• levels, triggering NOS coupling and reducing cell growth and resistance to anoikis and dacarbazine chemotherapy. Moreover, restoration of eNOS activity impaired tumor growth in vivo. Finally, NOS3 expression was found to be increased in human metastatic melanoma samples compared with the primary site. eNOS dysfunction may be an important mechanism supporting metastatic melanoma growth and hence a potential target for therapy.


Asunto(s)
Biopterinas/biosíntesis , Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Melanoma/enzimología , Proteínas de Neoplasias/biosíntesis , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Animales , Biopterinas/genética , Femenino , Humanos , Melanoma/genética , Melanoma/patología , Ratones , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Óxido Nítrico Sintasa de Tipo III/genética
2.
BMC Genomics ; 21(1): 766, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33148170

RESUMEN

BACKGROUND: Protein Disulfide Isomerases are thiol oxidoreductase chaperones from thioredoxin superfamily with crucial roles in endoplasmic reticulum proteostasis, implicated in many diseases. The family prototype PDIA1 is also involved in vascular redox cell signaling. PDIA1 is coded by the P4HB gene. While forced changes in P4HB gene expression promote physiological effects, little is known about endogenous P4HB gene regulation and, in particular, gene modulation by alternative splicing. This study addressed the P4HB splice variant landscape. RESULTS: Ten protein coding sequences (Ensembl) of the P4HB gene originating from alternative splicing were characterized. Structural features suggest that except for P4HB-021, other splice variants are unlikely to exert thiol isomerase activity at the endoplasmic reticulum. Extensive analyses using FANTOM5, ENCODE Consortium and GTEx project databases as RNA-seq data sources were performed. These indicated widespread expression but significant variability in the degree of isoform expression among distinct tissues and even among distinct locations of the same cell, e.g., vascular smooth muscle cells from different origins. P4HB-02, P4HB-027 and P4HB-021 were relatively more expressed across each database, the latter particularly in vascular smooth muscle. Expression of such variants was validated by qRT-PCR in some cell types. The most consistently expressed splice variant was P4HB-021 in human mammary artery vascular smooth muscle which, together with canonical P4HB gene, had its expression enhanced by serum starvation. CONCLUSIONS: Our study details the splice variant landscape of the P4HB gene, indicating their potential role to diversify the functional reach of this crucial gene. P4HB-021 splice variant deserves further investigation in vascular smooth muscle cells.


Asunto(s)
Procolágeno-Prolina Dioxigenasa , Proteína Disulfuro Isomerasas , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Humanos , Mutación , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteína Disulfuro Isomerasas/genética , Transducción de Señal
3.
Mol Hum Reprod ; 26(12): 938-952, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33118034

RESUMEN

Offspring born to obese and diabetic mothers are prone to metabolic diseases, a phenotype that has been linked to mitochondrial dysfunction and endoplasmic reticulum (ER) stress in oocytes. In addition, metabolic diseases impact the architecture and function of mitochondria-ER contact sites (MERCs), changes which associate with mitofusin 2 (MFN2) repression in muscle, liver and hypothalamic neurons. MFN2 is a potent modulator of mitochondrial metabolism and insulin signaling, with a key role in mitochondrial dynamics and tethering with the ER. Here, we investigated whether offspring born to mice with MFN2-deficient oocytes are prone to obesity and diabetes. Deletion of Mfn2 in oocytes resulted in a profound transcriptomic change, with evidence of impaired mitochondrial and ER function. Moreover, offspring born to females with oocyte-specific deletion of Mfn2 presented increased weight gain and glucose intolerance. This abnormal phenotype was linked to decreased insulinemia and defective insulin signaling, but not mitochondrial and ER defects in offspring liver and skeletal muscle. In conclusion, this study suggests a link between disrupted mitochondrial/ER function in oocytes and increased risk of metabolic diseases in the progeny. Future studies should determine whether MERC architecture and function are altered in oocytes from obese females, which might contribute toward transgenerational transmission of metabolic diseases.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Oocitos/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Femenino , GTP Fosfohidrolasas/genética , Homeostasis/fisiología , Ratones , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Músculo Esquelético/metabolismo , Transducción de Señal
4.
FASEB J ; 33(12): 13176-13188, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31480917

RESUMEN

Changes in mitochondrial size and shape have been implicated in several physiologic processes, but their role in mitochondrial Ca2+ uptake regulation and overall cellular Ca2+ homeostasis is largely unknown. Here we show that modulating mitochondrial dynamics toward increased fusion through expression of a dominant negative (DN) form of the fission protein [dynamin-related protein 1 (DRP1)] markedly increased both mitochondrial Ca2+ retention capacity and Ca2+ uptake rates in permeabilized C2C12 cells. Similar results were seen using the pharmacological fusion-promoting M1 molecule. Conversely, promoting a fission phenotype through the knockdown of the fusion protein mitofusin (MFN)-2 strongly reduced the mitochondrial Ca2+ uptake speed and capacity in these cells. These changes were not dependent on modifications in mitochondrial calcium uniporter expression, inner membrane potentials, or the mitochondrial permeability transition. Implications of mitochondrial morphology modulation on cellular calcium homeostasis were measured in intact cells; mitochondrial fission promoted lower basal cellular calcium levels and lower endoplasmic reticulum (ER) calcium stores, as indicated by depletion with thapsigargin. Indeed, mitochondrial fission was associated with ER stress. Additionally, the calcium-replenishing process of store-operated calcium entry was impaired in MFN2 knockdown cells, whereas DRP1-DN-promoted fusion resulted in faster cytosolic Ca2+ increase rates. Overall, our results show a novel role for mitochondrial morphology in the regulation of mitochondrial Ca2+ uptake, which impacts cellular Ca2+ homeostasis.-Kowaltowski, A. J., Menezes-Filho, S. L., Assali, E. A., Gonçalves, I. G., Cabral-Costa, J. V., Abreu, P., Miller, N., Nolasco, P., Laurindo, F. R. M., Bruni-Cardoso, A., Shirihai, O. Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Línea Celular , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Homeostasis , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Mitocondrias/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Tapsigargina/farmacología
5.
J Biol Chem ; 293(4): 1450-1465, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29191937

RESUMEN

Protein-disulfide isomerase (PDI) is a ubiquitous dithiol-disulfide oxidoreductase that performs an array of cellular functions, such as cellular signaling and responses to cell-damaging events. PDI can become dysfunctional by post-translational modifications, including those promoted by biological oxidants, and its dysfunction has been associated with several diseases in which oxidative stress plays a role. Because the kinetics and products of the reaction of these oxidants with PDI remain incompletely characterized, we investigated the reaction of PDI with the biological oxidant peroxynitrite. First, by determining the rate constant of the oxidation of PDI's redox-active Cys residues (Cys53 and Cys397) by hydrogen peroxide (k = 17.3 ± 1.3 m-1 s-1 at pH 7.4 and 25 °C), we established that the measured decay of the intrinsic PDI fluorescence is appropriate for kinetic studies. The reaction of these PDI residues with peroxynitrite was considerably faster (k = (6.9 ± 0.2) × 104 m-1 s-1), and both Cys residues were kinetically indistinguishable. Limited proteolysis, kinetic simulations, and MS analyses confirmed that peroxynitrite preferentially oxidizes the redox-active Cys residues of PDI to the corresponding sulfenic acids, which reacted with the resolving thiols at the active sites to produce disulfides (i.e. Cys53-Cys56 and Cys397-Cys400). A fraction of peroxynitrite, however, decayed to radicals that hydroxylated and nitrated other active-site residues (Trp52, Trp396, and Tyr393). Excess peroxynitrite promoted further PDI oxidation, nitration, inactivation, and covalent oligomerization. We conclude that these PDI modifications may contribute to the pathogenic mechanism of several diseases associated with dysfunctional PDI.


Asunto(s)
Ácido Peroxinitroso/química , Procolágeno-Prolina Dioxigenasa/química , Proteína Disulfuro Isomerasas/química , Tolueno/análogos & derivados , Secuencias de Aminoácidos , Humanos , Oxidación-Reducción , Tolueno/química
6.
Am J Physiol Heart Circ Physiol ; 316(3): H566-H579, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30499716

RESUMEN

Although redox processes closely interplay with mechanoresponses to control vascular remodeling, redox pathways coupling mechanostimulation to cellular cytoskeletal organization remain unclear. The peri/epicellular pool of protein disulfide isomerase-A1 (pecPDIA1) supports postinjury vessel remodeling. Using distinct models, we investigated whether pecPDIA1 could work as a redox-dependent organizer of cytoskeletal mechanoresponses. In vascular smooth muscle cells (VSMCs), pecPDIA1 immunoneutralization impaired stress fiber assembly in response to equibiaxial stretch and, under uniaxial stretch, significantly perturbed cell repositioning perpendicularly to stretch orientation. During cyclic stretch, pecPDIA1 supported thiol oxidation of the known mechanosensor ß1-integrin and promoted polarized compartmentalization of sulfenylated proteins. Using traction force microscopy, we showed that pecPDIA1 organizes intracellular force distribution. The net contractile moment ratio of platelet-derived growth factor-exposed to basal VSMCs decreased from 0.90 ± 0.09 (IgG-exposed controls) to 0.70 ± 0.08 after pecPDI neutralization ( P < 0.05), together with an enhanced coefficient of variation for distribution of force modules, suggesting increased noise. Moreover, in a single cell model, pecPDIA1 neutralization impaired migration persistence without affecting total distance or velocity, whereas siRNA-mediated total PDIA1 silencing disabled all such variables of VSMC migration. Neither expression nor total activity of the master mechanotransmitter/regulator RhoA was affected by pecPDIA1 neutralization. However, cyclic stretch-induced focal distribution of membrane-bound RhoA was disrupted by pecPDI inhibition, which promoted a nonpolarized pattern of RhoA/caveolin-3 cluster colocalization. Accordingly, FRET biosensors showed that pecPDIA1 supports localized RhoA activity at cell protrusions versus perinuclear regions. Thus, pecPDI acts as a thiol redox-dependent organizer and noise reducer mechanism of cytoskeletal repositioning, oxidant generation, and localized RhoA activation during a variety of VSMC mechanoresponses. NEW & NOTEWORTHY Effects of a peri/epicellular pool of protein disulfide isomerase-A1 (pecPDIA1) during mechanoregulation in vascular smooth muscle cells (VSMCs) were highlighted using approaches such as equibiaxial and uniaxial stretch, random single cell migration, and traction force microscopy. pecPDIA1 regulates organization of the cytoskeleton and minimizes the noise of cell alignment, migration directionality, and persistence. pecPDIA1 mechanisms involve redox control of ß1-integrin and localized RhoA activation. pecPDIA1 acts as a novel organizer of mechanoadaptation responses in VSMCs.


Asunto(s)
Adaptación Fisiológica/fisiología , Citoesqueleto/fisiología , Miocitos del Músculo Liso/fisiología , Proteína Disulfuro Isomerasas/fisiología , Citoesqueleto de Actina/fisiología , Animales , Fenómenos Biomecánicos , Movimiento Celular , Células Cultivadas , Silenciador del Gen , Integrina beta1/metabolismo , Músculo Liso Vascular/metabolismo , Oxidantes/metabolismo , Presorreceptores , Proteína Disulfuro Isomerasas/genética , Conejos , Proteína de Unión al GTP rhoA/metabolismo
7.
Molecules ; 24(18)2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31489892

RESUMEN

Vascular smooth muscle cells (VSMCs) loaded with lipid droplets (LDs) are markers of atherosclerosis. In this disease, inflammatory Group IIA-secreted phospholipase A2s (GIIA sPLA2s) are highly expressed in VSMCs, but their actions in these cells are unknown. Here, we investigated the ability of myotoxin III (MT-III), an ophidian GIIA sPLA2 sharing structural and functional features with mammalian GIIA sPLA2s, to induce LD formation and lipid metabolism factors involved in this effect. Modulation of VSMC phenotypes by this sPLA2 was also evaluated. Incubation of VSMCs with MT-III significantly increased the number of LDs. MT-III upregulated scavenger receptor type 1 (SR-A1) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) protein expression and enhanced acetylated-low density lipoprotein (acLDL) uptake by VSMCs, revealing the ability of a GIIA PLA2 to modulate scavenger receptor activities. MT-III induced translocation and protein expression of PPAR-γ and -ß/δ. Inhibition of peroxisome proliferator-activated receptors (PPARs) and diacylglycerol O-acyltransferase (DGAT) and acyl-CoA:cholesterolacyltransferase (ACAT) enzymes abrogated MT-III-induced LD formation. Moreover, in response to MT-III, VSMCs acquired phagocytic activity and expressed macrophage markers CD68 and MAC-2. In conclusion, MT-III is able to stimulate VSMCs and recruit factors involved in lipid uptake and metabolism, leading to the formation of VSMC-derived foam cells with acquisition of macrophage-like markers and functions.


Asunto(s)
Transdiferenciación Celular/efectos de los fármacos , Células Espumosas/citología , Fosfolipasas A2 Grupo II/farmacología , Músculo Liso Vascular/citología , Animales , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Lipoproteínas LDL/metabolismo , Masculino , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Fenotipo , Ratas , Receptores Depuradores de Clase A/metabolismo , Receptores Depuradores de Clase E/metabolismo
8.
Clin Sci (Lond) ; 132(10): 1069-1073, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29802211

RESUMEN

Cardiac hypertrophy (CH) is a major independent risk factor for heart failure and mortality. However, therapeutic interventions that target hypertrophy signaling in a load-independent way are unavailable. In a recent issue of Clinical Science (vol. 132, issue 6, 685-699), Ma et al. describe that the anti-inflammatory drug leflunomide markedly antagonized CH, dysfunction, and fibrosis induced by aortic banding or angiotensin-II in mice or by agonists in cultured cells. Unexpectedly, this occurred not via anti-inflammatory mechanisms but rather via inhibtion of Akt (protein kinase B, PKB) signaling. We further discuss the mechanisms underlying Akt activation and its effects on CH and review possible mechanisms of leflunomide effects. Despite some caveats, the availability of such a newly repurposed compound to treat CH can be a relevant advance.


Asunto(s)
Leflunamida , Proteínas Proto-Oncogénicas c-akt , Angiotensina II , Compuestos de Anilina , Animales , Cardiomegalia , Crotonatos , Fibrosis , Hidroxibutiratos , Ratones , Nitrilos , Toluidinas
9.
Clin Sci (Lond) ; 132(12): 1257-1280, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29967247

RESUMEN

Thiol groups are crucially involved in signaling/homeostasis through oxidation, reduction, and disulphide exchange. The overall thiol pool is the resultant of several individual pools of small compounds (e.g. cysteine), peptides (e.g. glutathione), and thiol proteins (e.g. thioredoxin (Trx)), which are not in equilibrium and present specific oxidized/reduced ratios. This review addresses mechanisms and implications of circulating plasma thiol/disulphide redox pools, which are involved in several physiologic processes and explored as disease biomarkers. Thiol pools are regulated by mechanisms linked to their intrinsic reactivity against oxidants, concentration of antioxidants, thiol-disulphide exchange rates, and their dynamic release/removal from plasma. Major thiol couples determining plasma redox potential (Eh) are reduced cysteine (CyS)/cystine (the disulphide form of cysteine) (CySS), followed by GSH/disulphide-oxidized glutathione (GSSG). Hydrogen peroxide and hypohalous acids are the main plasma oxidants, while water-soluble and lipid-soluble small molecules are the main antioxidants. The thiol proteome and thiol-oxidoreductases are emerging investigative areas given their specific disease-related responses (e.g. protein disulphide isomerases (PDIs) in thrombosis). Plasma cysteine and glutathione redox couples exhibit pro-oxidant changes directly correlated with ageing/age-related diseases. We further discuss changes in thiol-disulphide redox state in specific groups of diseases: cardiovascular, cancer, and neurodegenerative. These results indicate association with the disease states, although not yet clear-cut to yield specific biomarkers. We also highlight mechanisms whereby thiol pools affect atherosclerosis pathophysiology. Overall, it is unlikely that a single measurement provides global assessment of plasma oxidative stress. Rather, assessment of individual thiol pools and thiol-proteins specific to any given condition has more solid and logical perspective to yield novel relevant information on disease risk and prognosis.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Neoplasias/sangre , Compuestos de Sulfhidrilo/sangre , Antioxidantes/metabolismo , Biomarcadores/sangre , Enfermedades Cardiovasculares/diagnóstico , Humanos , Neoplasias/diagnóstico , Oxidantes/sangre , Oxidación-Reducción , Estrés Oxidativo/fisiología , S-Nitrosotioles/sangre
10.
Biochim Biophys Acta ; 1852(7): 1334-46, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25766108

RESUMEN

Quiescin sulfhydryl oxidase 1 (QSOX1) is a flavoenzyme largely present in the extracellular milieu whose physiological functions and substrates are not known. QSOX1 has been implicated in the regulation of tumor cell survival, proliferation and migration, in addition to extracellular matrix (ECM) remodeling. However, data regarding other pathophysiological conditions are still lacking. Arterial injury by balloon catheter is an established model of post-angioplasty restenosis. This technique induces neointima formation due to migration and proliferation of vascular smooth muscle cells (VSMC), followed by ECM synthesis and remodeling. Here, we show that QSOX1 knockdown inhibited VSMC migration and proliferation in vitro. In contrast, QSOX1 overexpression stimulated these processes. While migration could be induced by the incubation of cells with the active recombinant QSOX1, proliferation was induced by addition of the active and also of an inactive mutant QSOX1 protein. The proliferation induced by both recombinants was independent of intracellular hydrogen peroxide and dependent of the MEK/ERK pathway. To recapitulate in vivo VSMC pathophysiology, balloon-induced arterial injury was performed. The expression of QSOX1 in the neointimal layer of balloon-injured rat carotids was high and peaked at 14 days post-injury. In vivo QSOX1 knockdown led to a significant decrease in PCNA expression at day 14 post-injury and a decreased intima/media area ratio at day 21 post-injury, compared with scrambled siRNA transfection. In summary, our findings demonstrate that QSOX1 induces VSMC migration and proliferation in vitro and contributes to neointima thickening in balloon-injured rat carotids.


Asunto(s)
Movimiento Celular , Proliferación Celular , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Tiorredoxinas/metabolismo , Animales , Arterias Carótidas/patología , Arterias Carótidas/cirugía , Células Cultivadas , Peróxido de Hidrógeno/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Músculo Liso Vascular/citología , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/fisiología , Ratas , Ratas Wistar , Tiorredoxinas/genética
11.
Cell Physiol Biochem ; 35(1): 148-59, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25591758

RESUMEN

BACKGROUND: Chronic heart failure is characterized by decreased exercise capacity with early exacerbation of fatigue and dyspnea. Intrinsic skeletal muscle abnormalities can play a role in exercise intolerance. Causal or contributing factors responsible for muscle alterations have not been completely defined. This study evaluated skeletal muscle oxidative stress and NADPH oxidase activity in rats with myocardial infarction (MI) induced heart failure. METHODS AND RESULTS: Four months after MI, rats were assigned to Sham, MI-C (without treatment), and MI-NAC (treated with N-acetylcysteine) groups. Two months later, echocardiogram showed left ventricular dysfunction in MI-C; NAC attenuated diastolic dysfunction. In soleus muscle, glutathione peroxidase and superoxide dismutase activity was decreased in MI-C and unchanged by NAC. 3-nitrotyrosine was similar in MI-C and Sham, and lower in MI-NAC than MI-C. Total reactive oxygen species (ROS) production was assessed by HPLC analysis of dihydroethidium (DHE) oxidation fluorescent products. The 2-hydroxyethidium (EOH)/DHE ratio did not differ between Sham and MI-C and was higher in MI-NAC. The ethidium/DHE ratio was higher in MI-C than Sham and unchanged by NAC. NADPH oxidase activity was similar in Sham and MI-C and lower in MI-NAC. Gene expression of p47(phox) was lower in MI-C than Sham. NAC decreased NOX4 and p22(phox) expression. CONCLUSIONS: We corroborate the case that oxidative stress is increased in skeletal muscle of heart failure rats and show for the first time that oxidative stress is not related to increased NADPH oxidase activity.


Asunto(s)
Acetilcisteína/farmacología , Depuradores de Radicales Libres/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Etidio/análogos & derivados , Etidio/análisis , Glutatión Peroxidasa/metabolismo , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/fisiopatología , Masculino , Malondialdehído/sangre , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , NADPH Oxidasa 4 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Tirosina/análogos & derivados , Tirosina/análisis
12.
Clin Sci (Lond) ; 129(1): 39-48, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25700020

RESUMEN

The mechanisms whereby testosterone increases cardiovascular risk are not clarified. However, oxidative stress and inflammation seem to be determinants. Herein, we sought to determine whether exogenous testosterone, at physiological levels, induces leucocyte migration, a central feature in immune and inflammatory responses and the mediating mechanisms. We hypothesized that testosterone induces leucocyte migration via NADPH oxidase (NADPHox)-driven reactive oxygen species (ROS) and cyclooxygenase (COX)-dependent mechanisms. Sixteen-week-old Wistar rats received an intraperitoneal injection (5 ml) of either testosterone (10(-7) mol/l) or saline. Rats were pre-treated with 5 ml of sodium salicylate (SS, non-selective COX inhibitor, 1.25 × 10(-3) mol/l, 1 h prior to testosterone or saline), flutamide (androgen receptor antagonist, 10(-5) mol/l), apocynin (NADPHox inhibitor, 3 × 10(-4) mol/l), N-[2-Cyclohexyloxy-4-nitrophenyl]methanesulfonamide (NS398, COX2 inhibitor, 10(-4) mol/l) or saline, 4 h before testosterone or saline administration. Leucocyte migration was assessed 24 h after testosterone administration by intravital microscopy of the mesenteric bed. Serum levels of testosterone were measured by radioimmunoassay. NADPHox activity was assessed in membrane fractions of the mesenteric bed by dihydroethidium (DHE) fluorescence and in isolated vascular smooth muscle cells (VSMC) by HPLC. NADPHox subunits and VCAM (vascular cell adhesion molecule) expression were determined by immunoblotting. Testosterone administration did not change serum levels of endogenous testosterone, but increased venular leucocyte migration to the adventia, NADPHox activity and expression (P < 0.05). These effects were blocked by flutamide. SS inhibited testosterone-induced leucocyte migration (P<0.05). Apocynin and NS398 abolished testosterone-induced leucocyte migration and NADPHox activity (P<0.05). Testosterone induces leucocyte migration via NADPHox- and COX2-dependent mechanisms and may contribute to inflammatory processes and oxidative stress in the vasculature potentially increasing cardiovascular risk.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Leucocitos/efectos de los fármacos , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Testosterona/farmacología , Acetofenonas/farmacología , Andrógenos/farmacología , Animales , Western Blotting , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Inyecciones Intraperitoneales , Leucocitos/citología , Leucocitos/metabolismo , Masculino , Venas Mesentéricas/citología , Venas Mesentéricas/efectos de los fármacos , Venas Mesentéricas/metabolismo , Microscopía por Video/métodos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasas/antagonistas & inhibidores , Nitrobencenos/farmacología , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Superóxidos/metabolismo , Testosterona/administración & dosificación
13.
Arch Biochem Biophys ; 557: 72-81, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24956592

RESUMEN

Protein disulfide isomerase (PDI) is a dithiol-disulfide oxidoreductase that has essential roles in redox protein folding. PDI has been associated with protective roles against protein aggregation, a hallmark of neurodegenerative diseases. Intriguingly, PDI has been detected in the protein inclusions found in the central nervous system of patients of neurodegenerative diseases. Oxidized proteins are also consistently detected in such patients, but the agents that promote these oxidations remain undefined. A potential trigger of protein oxidation is the bicarbonate-dependent peroxidase activity of the human enzyme superoxide dismutase 1 (hSOD1). Therefore, we examined the effects of this activity on PDI structure and activity. The results showed that PDI was oxidized to radicals that lead to PDI inactivation and aggregation. The aggregates are huge and apparently produced by covalent cross-links. Spin trapping experiments coupled with MS analysis indicated that at least 3 residues of PDI are oxidized to tyrosyl radicals (Y(63), Y(116) and Y(327)). Parallel experiments showed that PDI is also oxidized to radicals, inactivated and aggregated by the action of photolytically generated carbonate radical and by UV light. PDI is prone to inactivation and aggregation by one-electron oxidants and UV light probably because of its high content of aromatic amino acids.


Asunto(s)
Bicarbonatos/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Superóxido Dismutasa/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Electroforesis en Gel de Poliacrilamida , Humanos , Espectrometría de Masas/métodos , Oxidación-Reducción , Rayos Ultravioleta
14.
Front Physiol ; 15: 1327794, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638277

RESUMEN

Redox processes can modulate vascular pathophysiology. The endoplasmic reticulum redox chaperone protein disulfide isomerase A1 (PDIA1) is overexpressed during vascular proliferative diseases, regulating thrombus formation, endoplasmic reticulum stress adaptation, and structural remodeling. However, both protective and deleterious vascular effects have been reported for PDIA1, depending on the cell type and underlying vascular condition. Further understanding of this question is hampered by the poorly studied mechanisms underlying PDIA1 expression regulation. Here, we showed that PDIA1 mRNA and protein levels were upregulated (average 5-fold) in the intima and media/adventitia following partial carotid ligation (PCL). Our search identified that miR-204-5p and miR-211-5p (miR-204/211), two broadly conserved miRNAs, share PDIA1 as a potential target. MiR-204/211 was downregulated in vascular layers following PCL. In isolated endothelial cells, gain-of-function experiments of miR-204 with miR mimic decreased PDIA1 mRNA while having negligible effects on markers of endothelial activation/stress response. Similar effects were observed in vascular smooth muscle cells (VSMCs). Furthermore, PDIA1 downregulation by miR-204 decreased levels of the VSMC contractile differentiation markers. In addition, PDIA1 overexpression prevented VSMC dedifferentiation by miR-204. Collectively, we report a new mechanism for PDIA1 regulation through miR-204 and identify its relevance in a model of vascular disease playing a role in VSMC differentiation. This mechanism may be regulated in distinct stages of atherosclerosis and provide a potential therapeutic target.

15.
J Biol Chem ; 287(35): 29290-300, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22773830

RESUMEN

Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration.


Asunto(s)
Movimiento Celular/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasas/biosíntesis , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Células Cultivadas , Activación Enzimática/fisiología , Silenciador del Gen , Humanos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , NADPH Oxidasa 1 , NADPH Oxidasa 4 , NADPH Oxidasas/genética , Factor de Crecimiento Derivado de Plaquetas/genética , Proteína Disulfuro Isomerasas/genética , Conejos , Proteína de Unión al GTP rac1/genética , Inhibidores de la Disociación del Nucleótido Guanina rho-Específico/genética , Inhibidores de la Disociación del Nucleótido Guanina rho-Específico/metabolismo , Proteína de Unión al GTP rhoA/genética
16.
J Biol Chem ; 287(51): 43071-82, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23105116

RESUMEN

ADAM17, which is also known as TNFα-converting enzyme, is the major sheddase for the EGF receptor ligands and is considered to be one of the main proteases responsible for the ectodomain shedding of surface proteins. How a membrane-anchored proteinase with an extracellular catalytic domain can be activated by inside-out regulation is not completely understood. We characterized thioredoxin-1 (Trx-1) as a partner of the ADAM17 cytoplasmic domain that could be involved in the regulation of ADAM17 activity. We induced the overexpression of the ADAM17 cytoplasmic domain in HEK293 cells, and ligands able to bind this domain were identified by MS after protein immunoprecipitation. Trx-1 was also validated as a ligand of the ADAM17 cytoplasmic domain and full-length ADAM17 recombinant proteins by immunoblotting, immunolocalization, and solid phase binding assay. In addition, using nuclear magnetic resonance, it was shown in vitro that the titration of the ADAM17 cytoplasmic domain promotes changes in the conformation of Trx-1. The MS analysis of the cross-linked complexes showed cross-linking between the two proteins by lysine residues. To further evaluate the functional role of Trx-1, we used a heparin-binding EGF shedding cell model and observed that the overexpression of Trx-1 in HEK293 cells could decrease the activity of ADAM17, activated by either phorbol 12-myristate 13-acetate or EGF. This study identifies Trx-1 as a novel interaction partner of the ADAM17 cytoplasmic domain and suggests that Trx-1 is a potential candidate that could be involved in ADAM17 activity regulation.


Asunto(s)
Proteínas ADAM/metabolismo , Tiorredoxinas/metabolismo , Proteínas ADAM/química , Proteína ADAM17 , Secuencia de Aminoácidos , Animales , Cromatografía Liquida , Reactivos de Enlaces Cruzados/farmacología , Activación Enzimática/efectos de los fármacos , Células HEK293 , Células HeLa , Factor de Crecimiento Similar a EGF de Unión a Heparina , Humanos , Immunoblotting , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ligandos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , Acetato de Tetradecanoilforbol/farmacología , Tiorredoxinas/química
17.
PLoS Pathog ; 7(3): e1001320, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21445237

RESUMEN

The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme.


Asunto(s)
Aedes/microbiología , Hemo/metabolismo , Hemoglobinas/metabolismo , Proteínas de Insectos/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Animales , Hemo/farmacología , Hemoglobinas/farmacología , Humanos , Conejos
18.
Am J Clin Nutr ; 116(6): 1515-1529, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36205549

RESUMEN

BACKGROUND: Gut microbiota profiles are closely related to cardiovascular diseases through mechanisms that include the reported deleterious effects of metabolites, such as trimethylamine N-oxide (TMAO), which have been studied as diagnostic and therapeutic targets. Moderate red wine (RW) consumption is reportedly cardioprotective, possibly by affecting the gut microbiota. OBJECTIVES: To investigate the effects of RW consumption on the gut microbiota, plasma TMAO, and the plasma metabolome in men with documented coronary artery disease (CAD) using a multiomics assessment in a crossover trial. METHODS: We conducted a randomized, crossover, controlled trial involving 42 men (average age, 60 y) with documented CAD comparing 3-wk RW consumption (250 mL/d, 5 d/wk) with an equal period of alcohol abstention, both preceded by a 2-wk washout period. The gut microbiota was analyzed via 16S rRNA high-throughput sequencing. Plasma TMAO was evaluated by LC-MS/MS. The plasma metabolome of 20 randomly selected participants was evaluated by ultra-high-performance LC-MS/MS. The effect of RW consumption was assessed by individual comparisons using paired tests during the abstention and RW periods. RESULTS: Plasma TMAO did not differ between RW intervention and alcohol abstention, and TMAO concentrations showed low intraindividual concordance over time, with an intraclass correlation coefficient of 0.049 during the control period. After RW consumption, there was significant remodeling of the gut microbiota, with a difference in ß diversity and predominance of Parasutterella, Ruminococcaceae, several Bacteroides species, and Prevotella. Plasma metabolomic analysis revealed significant changes in metabolites after RW consumption, consistent with improved redox homeostasis. CONCLUSIONS: Modulation of the gut microbiota may contribute to the putative cardiovascular benefits of moderate RW consumption. The low intraindividual concordance of TMAO presents challenges regarding its role as a cardiovascular risk biomarker at the individual level. This study was registered at clinical trials.gov as NCT03232099.


Asunto(s)
Microbioma Gastrointestinal , Vino , Masculino , Humanos , Persona de Mediana Edad , Cromatografía Liquida , ARN Ribosómico 16S , Espectrometría de Masas en Tándem , Metilaminas , Metaboloma
19.
Cell Physiol Biochem ; 27(3-4): 305-12, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21471720

RESUMEN

BACKGROUND: Recent studies have assessed the direct effects of smoking on cardiac remodeling and function. However, the mechanisms of these alterations remain unknown. The aim of this study was to investigate de role of cardiac NADPH oxidase and antioxidant enzyme system on ventricular remodeling induced by tobacco smoke. METHODS: Male Wistar rats that weighed 200-230 g were divided into a control group (C) and an experimental group that was exposed to tobacco smoke for a period of two months (ETS). After the two-month exposure period, morphological, biochemical and functional analyses were performed. RESULTS: The myocyte cross-sectional area and left ventricle end-diastolic dimension was increased 16.2% and 33.7%, respectively, in the ETS group. The interstitial collagen volume fraction was also higher in ETS group compared to the controls. In addition to these morphological changes, the ejection fraction and fractional shortening were decreased in the ETS group. Importantly, these alterations were related to augmented heart oxidative stress, which was characterized by an increase in NADPH oxidase activity, increased levels of lipid hydroperoxide and depletion of antioxidant enzymes (e.g., catalase, superoxide dismutase and glutathione peroxidase). In addition, cardiac levels of IFN-γ, TNF-α and IL-10 were not different between the groups. CONCLUSION: Cardiac alterations that are induced by smoking are associated with increased NADPH oxidase activity, suggesting that this pathway plays a role in the ventricular remodeling induced by exposure to tobacco smoke.


Asunto(s)
NADPH Oxidasas/metabolismo , Nicotiana , Humo/efectos adversos , Remodelación Ventricular/fisiología , Animales , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Ventrículos Cardíacos/fisiopatología , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Peróxidos Lipídicos/metabolismo , Masculino , Miocitos Cardíacos/fisiología , Estrés Oxidativo , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
20.
Proc Natl Acad Sci U S A ; 105(25): 8569-74, 2008 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-18562300

RESUMEN

The physiological effects of nitroglycerin as a potent vasodilator have long been documented. However, the molecular mechanisms by which nitroglycerin exerts its biological functions are still a matter of intense debate. Enzymatic pathways converting nitroglycerin to vasoactive compounds have been identified, but none of them seems to fully account for the reported clinical observations. Here, we demonstrate that nitroglycerin triggers constitutive nitric oxide synthase (NOS) activation, which is a major source of NO responsible for low-dose (1-10 nM) nitroglycerin-induced vasorelaxation. Our studies in cell cultures, isolated vessels, and whole animals identified endothelial NOS activation as a fundamental requirement for nitroglycerin action at pharmacologically relevant concentrations in WT animals.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitroglicerina/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Células Cultivadas , Endotelio Vascular/enzimología , Inhibidores Enzimáticos/farmacología , Humanos , Masculino , Ratones , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Fosforilación , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA