Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 32(3): 741-751, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36373270

RESUMEN

The rhizosphere microbiome influences many aspects of plant fitness, including production of secondary compounds and defence against insect herbivores. Plants also modulate the composition of the microbial community in the rhizosphere via secretion of root exudates. We tested both the effect of the rhizosphere microbiome on plant traits, and host plant effects on rhizosphere microbes using recombinant inbred lines (RILs) of Brassica rapa that differ in production of glucosinolates (GLS), secondary metabolites that contribute to defence against insect herbivores. First, we investigated the effect of genetic variation in GLS production on the composition of the rhizosphere microbiome. Using a Bayesian Dirichlet-multinomial regression model (DMBVS), we identified both negative and positive associations between bacteria from six genera and the concentration of five GLS compounds produced in plant roots. Additionally, we tested the effects of microbial inoculation (an intact vs. disrupted soil microbiome) on GLS production and insect damage in these RILs. We found a significant microbial treatment × genotype interaction, in which total GLS was higher in the intact relative to the disrupted microbiome treatment in some RILs. However, despite differences in GLS production between microbial treatments, we observed no difference in insect damage between treatments. Together, these results provide evidence for a full feedback cycle of plant-microbe interactions mediated by GLS; that is, GLS compounds produced by the host plant "feed-down" to influence rhizosphere microbial community and rhizosphere microbes "feed-up" to influence GLS production.


Asunto(s)
Brassica rapa , Microbiota , Microbiología del Suelo , Glucosinolatos , Rizosfera , Retroalimentación , Teorema de Bayes , Raíces de Plantas/microbiología , Plantas/microbiología , Microbiota/genética
2.
Pediatr Res ; 93(3): 725-731, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35717483

RESUMEN

BACKGROUND: The establishment of the gut microbiome plays a key symbiotic role in the developing immune system; however, its influence on vaccine response is yet uncertain. We prospectively investigated the composition and diversity of the early-life gut microbiome in relation to infant antibody response to two routinely administered vaccines. METHODS: Eighty-three infants enrolled in the New Hampshire Birth Cohort Study were included in the analysis. We collected blood samples at 12 months of age and assayed the isolated serum to quantify total IgG and measured antibody to pneumococcal capsular polysaccharide and tetanus toxoid. Stool samples were collected from infants at 6 weeks of age and sequenced using 16S rRNA, and a subset of 61 samples were sequenced using shotgun metagenomics sequencing. RESULTS: We observed differences in beta diversity for 16S 6-week stool microbiota and pneumococcal and tetanus IgG antibody responses. Metagenomics analyses identified species and metabolic pathways in 6-week stool associated with tetanus antibody response, in particular, negative associations with the relative abundance of Aeriscardovia aeriphila species and positive associations with the relative abundance of species associated with CDP-diacylglycerol biosynthesis pathways. CONCLUSIONS: The early gut microbiome composition may influence an infant's vaccine response. IMPACT: Early intestinal microbiome acquisition plays a critical role in immune maturation and in both adaptive and innate immune response in infancy. We identified associations between early life microbiome composition and response to two routinely administered vaccines-pneumococcal capsular polysaccharide and tetanus toxoid-measured at approximately 1 year of age. Our findings highlight the potential impact of the gut microbiome on infant immune response that may open up opportunities for future interventions.


Asunto(s)
Microbioma Gastrointestinal , Tétanos , Humanos , Lactante , Microbioma Gastrointestinal/genética , Estudios Prospectivos , Estudios de Cohortes , ARN Ribosómico 16S/genética , Toxoide Tetánico , Heces , Inmunoglobulina G , Polisacáridos
3.
Pediatr Res ; 92(6): 1757-1766, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35568730

RESUMEN

BACKGROUND: Young children are frequently exposed to antibiotics, with the potential for collateral consequences to the gut microbiome. The impact of antibiotic exposures to off-target microbes (i.e., bacteria not targeted by treatment) and antibiotic resistance genes (ARGs) is poorly understood. METHODS: We used metagenomic sequencing data from paired stool samples collected prior to antibiotic exposure and at 1 year from over 200 infants and a difference-in-differences approach to assess the relationship between subsequent exposures and the abundance or compositional diversity of microbes and ARGs while adjusting for covariates. RESULTS: By 1 year, the abundance of multiple species and ARGs differed by antibiotic exposure. Compared to infants never exposed to antibiotics, Bacteroides vulgatus relative abundance increased by 1.72% (95% CI: 0.19, 3.24) while Bacteroides fragilis decreased by 1.56% (95% CI: -4.32, 1.21). Bifidobacterium species also exhibited opposing trends. ARGs associated with exposure included class A beta-lactamase gene CfxA6. Among infants attending day care, Escherichia coli and ARG abundance were both positively associated with antibiotic use. CONCLUSION: Novel findings, including the importance of day care attendance, were identified through considering microbiome data at baseline and post-intervention. Thus, our study design and approach have important implications for future studies evaluating the unintended impacts of antibiotics. IMPACT: The impact of antibiotic exposure to off-target microbes and antibiotic resistance genes in the gut is poorly defined. We quantified these impacts in two cohort studies using a difference-in-differences approach. Novel to microbiome studies, we used pre/post-antibiotic data to emulate a randomized controlled trial. Compared to infants unexposed to antibiotics between baseline and 1 year, the relative abundance of multiple off-target species and antibiotic resistance genes was altered. Infants who attended day care and were exposed to antibiotics within the first year had a higher abundance of Escherichia coli and antibiotic resistance genes; a novel finding warranting further investigation.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Niño , Humanos , Lactante , Preescolar , Antibacterianos/efectos adversos , Microbioma Gastrointestinal/genética , Estudios de Cohortes , Escherichia coli
4.
BMC Microbiol ; 21(1): 201, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215179

RESUMEN

BACKGROUND: The human gut microbiome harbors a collection of bacterial antimicrobial resistance genes (ARGs) known as the resistome. The factors associated with establishment of the resistome in early life are not well understood. We investigated the early-life exposures and taxonomic signatures associated with resistome development over the first year of life in a large, prospective cohort in the United States. Shotgun metagenomic sequencing was used to profile both microbial composition and ARGs in stool samples collected at 6 weeks and 1 year of age from infants enrolled in the New Hampshire Birth Cohort Study. Negative binomial regression and statistical modeling were used to examine infant factors such as sex, delivery mode, feeding method, gestational age, antibiotic exposure, and infant gut microbiome composition in relation to the diversity and relative abundance of ARGs. RESULTS: Metagenomic sequencing was performed on paired samples from 195 full term (at least 37 weeks' gestation) and 15 late preterm (33-36 weeks' gestation) infants. 6-week samples compared to 1-year samples had 4.37 times (95% CI: 3.54-5.39) the rate of harboring ARGs. The majority of ARGs that were at a greater relative abundance at 6 weeks (chi-squared p < 0.01) worked through the mechanism of antibiotic efflux. The overall relative abundance of the resistome was strongly correlated with Proteobacteria (Spearman correlation = 78.9%) and specifically Escherichia coli (62.2%) relative abundance in the gut microbiome. Among infant characteristics, delivery mode was most strongly associated with the diversity and relative abundance of ARGs. Infants born via cesarean delivery had a trend towards a higher risk of harboring unique ARGs [relative risk = 1.12 (95% CI: 0.97-1.29)] as well as having an increased risk for overall ARG relative abundance [relative risk = 1.43 (95% CI: 1.12-1.84)] at 1 year compared to infants born vaginally. CONCLUSIONS: Our findings suggest that the developing infant gut resistome may be alterable by early-life exposures. Establishing the extent to which infant characteristics and early-life exposures impact the resistome can ultimately lead to interventions that decrease the transmission of ARGs and thus the risk of antibiotic resistant infections.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Farmacorresistencia Microbiana/genética , Escherichia coli/fisiología , Microbioma Gastrointestinal/genética , Parto Obstétrico/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Heces/microbiología , Métodos de Alimentación/estadística & datos numéricos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Metagenómica
5.
BMC Microbiol ; 21(1): 238, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454437

RESUMEN

BACKGROUND: The infant intestinal microbiome plays an important role in metabolism and immune development with impacts on lifelong health. The linkage between the taxonomic composition of the microbiome and its metabolic phenotype is undefined and complicated by redundancies in the taxon-function relationship within microbial communities. To inform a more mechanistic understanding of the relationship between the microbiome and health, we performed an integrative statistical and machine learning-based analysis of microbe taxonomic structure and metabolic function in order to characterize the taxa-function relationship in early life. RESULTS: Stool samples collected from infants enrolled in the New Hampshire Birth Cohort Study (NHBCS) at approximately 6-weeks (n = 158) and 12-months (n = 282) of age were profiled using targeted and untargeted nuclear magnetic resonance (NMR) spectroscopy as well as DNA sequencing of the V4-V5 hypervariable region from the bacterial 16S rRNA gene. There was significant inter-omic concordance based on Procrustes analysis (6 weeks: p = 0.056; 12 months: p = 0.001), however this association was no longer significant when accounting for phylogenetic relationships using generalized UniFrac distance metric (6 weeks: p = 0.376; 12 months: p = 0.069). Sparse canonical correlation analysis showed significant correlation, as well as identifying sets of microbe/metabolites driving microbiome-metabolome relatedness. Performance of machine learning models varied across different metabolites, with support vector machines (radial basis function kernel) being the consistently top ranked model. However, predictive R2 values demonstrated poor predictive performance across all models assessed (avg: - 5.06% -- 6 weeks; - 3.7% -- 12 months). Conversely, the Spearman correlation metric was higher (avg: 0.344-6 weeks; 0.265-12 months). This demonstrated that taxonomic relative abundance was not predictive of metabolite concentrations. CONCLUSIONS: Our results suggest a degree of overall association between taxonomic profiles and metabolite concentrations. However, lack of predictive capacity for stool metabolic signatures reflects, in part, the possible role of functional redundancy in defining the taxa-function relationship in early life as well as the bidirectional nature of the microbiome-metabolome association. Our results provide evidence in favor of a multi-omic approach for microbiome studies, especially those focused on health outcomes.


Asunto(s)
Bacterias/genética , Heces/microbiología , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Metaboloma , Bacterias/clasificación , Bacterias/aislamiento & purificación , Cohorte de Nacimiento , Femenino , Humanos , Lactante , Aprendizaje Automático , Masculino , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
6.
J Phycol ; 57(6): 1681-1698, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34176151

RESUMEN

Latitudinal diversity gradients have provided many insights into species differentiation and community processes. In the well-studied intertidal zone, however, little is known about latitudinal diversity in microbiomes associated with habitat-forming hosts. We investigated microbiomes of Fucus vesiculosus because of deep understanding of this model system and its latitudinally large, cross-Atlantic range. Given multiple effects of photoperiod, we predicted that cross-Atlantic microbiomes of the Fucus microbiome would be similar at similar latitudes and correlate with environmental factors. We found that community structure and individual amplicon sequencing variants (ASVs) showed distinctive latitudinal distributions, but alpha diversity did not. Latitudinal differentiation was mostly driven by ASVs that were more abundant in cold temperate to subarctic (e.g., Granulosicoccus_t3260, Burkholderia/Caballeronia/Paraburkholderia_t8371) or warm temperate (Pleurocapsa_t10392) latitudes. Their latitudinal distributions correlated with different humidity, tidal heights, and air/sea temperatures, but rarely with irradiance or photoperiod. Many ASVs in potentially symbiotic genera displayed novel phylogenetic biodiversity with differential distributions among tissues and regions, including closely related ASVs with differing north-south distributions that correlated with Fucus phylogeography. An apparent southern range contraction of F. vesiculosus in the NW Atlantic on the North Carolina coast mimics that recently observed in the NE Atlantic. We suggest cross-Atlantic microbial structure of F. vesiculosus is related to a combination of past (glacial-cycle) and contemporary environmental drivers.


Asunto(s)
Fucus , Microbiota , North Carolina , Filogenia , Filogeografía
7.
J Bacteriol ; 201(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31209076

RESUMEN

Previous work from our group indicated an association between the gastrointestinal microbiota of infants with cystic fibrosis (CF) and airway disease in this population. Here we report that stool microbiota of infants with CF demonstrates an altered but largely unchanging within-individual bacterial diversity (alpha diversity) over the first year of life, in contrast to the infants without CF (control cohort), which showed the expected increase in alpha diversity over the first year. The beta diversity, or between-sample diversity, of these two cohorts was significantly different over the first year of life and was statistically significantly associated with airway exacerbations, confirming our earlier findings. Compared with control infants, infants with CF had reduced levels of Bacteroides, a bacterial genus associated with immune modulation, as early as 6 weeks of life, and this significant reduction of Bacteroides spp. in the cohort with CF persisted over the entire first year of life. Only two other genera were significantly different across the first year of life: Roseburia was significantly reduced and Veillonella was significantly increased. Other genera showed differences between the two cohorts but only at selected time points. In vitro studies demonstrated that exposure of the apical face of polarized intestinal cell lines to Bacteroides species supernatants significantly reduced production of interleukin 8 (IL-8), suggesting a mechanism whereby changes in the intestinal microbiota could impact inflammation in CF. This work further establishes an association between gastrointestinal microbiota, inflammation, and airway disease in infants with CF and presents a potential opportunity for therapeutic interventions beginning in early life.IMPORTANCE There is growing evidence for a link between gastrointestinal bacterial communities and airway disease progression in CF. We demonstrate that infants with CF ≤1 year of age show a distinct stool microbiota versus that of control infants of a comparable age. We detected associations between the gut microbiome and airway exacerbation events in the cohort of infants with CF, and in vitro studies provided one possible mechanism for this observation. These data clarify that current therapeutics do not establish in infants with CF a gastrointestinal microbiota like that in healthy infants, and we suggest that interventions that direct the gastrointestinal microbiota closer to a healthy state may provide systemic benefits to these patients during a critical window of immune programming that might have implications for lifelong health.


Asunto(s)
Bacterias/aislamiento & purificación , Fibrosis Quística/microbiología , Heces/microbiología , Microbioma Gastrointestinal , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Bacteroides/aislamiento & purificación , Estudios de Cohortes , Fibrosis Quística/inmunología , Femenino , Humanos , Lactante , Masculino , Sistema Respiratorio/inmunología
8.
Pediatr Res ; 84(1): 71-79, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29795209

RESUMEN

BACKGROUND: The impact of degree of prematurity at birth on premature infant gut microbiota has not been extensively studied in comparison to term infants in large cohorts. METHODS: To determine the effect of gestational age at birth and postnatal exposures on gut bacterial colonization in infants, we analyzed 65 stool samples from 17 premature infants in the neonatal intensive care unit, as well as 13 samples from 13 mostly moderate-to-late premature infants and 189 samples from 176 term infants in the New Hampshire Birth Cohort Study. Gut colonization patterns were determined with 16S rDNA microbiome profiling. RESULTS: Gut bacterial alpha-diversity differed between premature and term infants at 6 weeks of age, after adjusting for exposures (p = 0.027). Alpha-diversity varied between extremely premature (<28 weeks gestation) and very premature infants (≥28 but <32 weeks, p = 0.011), as well as between extremely and moderate-to-late premature infants (≥32 and <37 weeks, p = 0.004). Newborn antibiotic use among premature infants was associated with lower Bifidobacterium and Bacteroides abundance (p = 0.015 and p = 0.041). CONCLUSION: Gestational age at birth and early antibiotic exposure have significant effects on the premature infant gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Edad Gestacional , Recien Nacido Prematuro , Bacterias/clasificación , Análisis por Conglomerados , ADN Ribosómico/metabolismo , Heces/microbiología , Femenino , Humanos , Lactante , Recién Nacido , Cuidado Intensivo Neonatal , Estudios Longitudinales , Filogenia , Embarazo , ARN Ribosómico 16S/genética
9.
J Phycol ; 54(5): 653-664, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29981525

RESUMEN

While macroalgal microbiomes are the focus of many recent studies, there is little information about microbial spatial diversity across the thallus. Reliance on field material makes it difficult to discern whether recovered microbiomes belong to the host or its epiphytes, and technical comparisons of macroalgal samples for microbial studies are needed. Here, we use a common garden approach that avoids the problem of epiphytes, particularly at holdfasts, to examine the microbiome of Porphyra umbilicalis (strain Pum1). We used the V6 hypervariable region of the 16S rDNA with Illumina HiSeq sequencing and developed PNA clamps to block recovery of organelle V6 sequences. The common garden approach allowed us to determine differences in the microbiome at the holdfast versus blade margin. We found a notable increase in the relative abundance of Planctomycetes and Alphaproteobacteria at the holdfast, particularly of the possible symbiont Sulfitobacter sp. Nonadjacent 1.5 cm2 samples of blade margin had microbiomes that were not statistically different. The most abundant phylum in the overall microbiome was Proteobacteria, followed by Bacteroidetes. Because phycologists often work in remote sites, we compared three stabilization and preparation techniques and found silica gel desiccation/bead-beating and flash-freezing/lyophilization/bead-beating to be interchangeable. Core taxa (≥0.1% of sequences) across treatments were similar and accounted for ≥95% of all sequences. Finally, statistical conclusions for all comparisons were the same, regardless of which microbial community analysis tool was used: mothur or minimum entropy decomposition.


Asunto(s)
Bacterias , Microbiota , Porphyra/microbiología , Bacterias/clasificación , Bacterias/genética , ARN de Algas/análisis , ARN Ribosómico 16S/análisis
10.
Brief Bioinform ; 15(5): 783-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23698723

RESUMEN

The extremely high error rates reported by Keegan et al. in 'A platform-independent method for detecting errors in metagenomic sequencing data: DRISEE' (PLoS Comput Biol 2012; 8: :e1002541) for many next-generation sequencing datasets prompted us to re-examine their results. Our analysis reveals that the presence of conserved artificial sequences, e.g. Illumina adapters, and other naturally occurring sequence motifs accounts for most of the reported errors. We conclude that DRISEE reports inflated levels of sequencing error, particularly for Illumina data. Tools offered for evaluating large datasets need scrupulous review before they are implemented.


Asunto(s)
Metagenómica , Análisis de Secuencia de ADN , Secuencia de Bases , ADN/genética , Reacción en Cadena de la Polimerasa
11.
Appl Environ Microbiol ; 81(20): 7023-33, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26231648

RESUMEN

Most DNA-based microbial source tracking (MST) approaches target host-associated organisms within the order Bacteroidales, but the gut microbiota of humans and other animals contain organisms from an array of other taxonomic groups that might provide indicators of fecal pollution sources. To discern between human and nonhuman fecal sources, we compared the V6 regions of the 16S rRNA genes detected in fecal samples from six animal hosts to those found in sewage (as a proxy for humans). We focused on 10 abundant genera and used oligotyping, which can detect subtle differences between rRNA gene sequences from ecologically distinct organisms. Our analysis showed clear patterns of differential oligotype distributions between sewage and animal samples. Over 100 oligotypes of human origin occurred preferentially in sewage samples, and 99 human oligotypes were sewage specific. Sequences represented by the sewage-specific oligotypes can be used individually for development of PCR-based assays or together with the oligotypes preferentially associated with sewage to implement a signature-based approach. Analysis of sewage from Spain and Brazil showed that the sewage-specific oligotypes identified in U.S. sewage have the potential to be used as global alternative indicators of human fecal pollution. Environmental samples with evidence of prior human fecal contamination had consistent ratios of sewage signature oligotypes that corresponded to the trends observed for sewage. Our methodology represents a promising approach to identifying new bacterial taxa for MST applications and further highlights the potential of the family Lachnospiraceae to provide human-specific markers. In addition to source tracking applications, the patterns of the fine-scale population structure within fecal taxa suggest a fundamental relationship between bacteria and their hosts.


Asunto(s)
Heces/microbiología , Microbiota , Aguas del Alcantarillado/microbiología , Animales , Brasil , Análisis por Conglomerados , Dermatoglifia del ADN , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Humanos , Datos de Secuencia Molecular , Tipificación Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , España , Estados Unidos
12.
J Pediatr ; 167(1): 138-47.e1-3, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25818499

RESUMEN

OBJECTIVE: To examine patterns of microbial colonization of the respiratory and intestinal tracts in early life in infants with cystic fibrosis (CF) and their associations with breastfeeding and clinical outcomes. STUDY DESIGN: A comprehensive, prospective longitudinal analysis of the upper respiratory and intestinal microbiota in a cohort of infants and young children with CF followed from birth was performed. Genus-level microbial community composition was characterized using 16S-targeted pyrosequencing, and relationships with exposures and outcomes were assessed using linear mixed-effects models, time-to-event analysis, and principal components analysis. RESULTS: Sequencing of 120 samples from 13 subjects collected from birth to 34 months revealed relationships between breastfeeding, microbial diversity in the respiratory and intestinal tracts, and the timing of onset of respiratory complications, including exacerbations and colonization with Pseudomonas aeruginosa. Fluctuations in the abundance of specific bacterial taxa preceded clinical outcomes, including a significant decrease in bacteria of the genus Parabacteroides within the intestinal tract prior to the onset of chronic P aeruginosa colonization. Specific assemblages of bacteria in intestinal samples, but not respiratory samples, were associated with CF exacerbation in early life, indicating that the intestinal microbiome may play a role in lung health. CONCLUSIONS: Our findings relating breastfeeding to respiratory outcomes, gut diversity to prolonged periods of health, and specific bacterial communities in the gut prior to respiratory complications in CF highlight a connection between the intestinal microbiome and health and point to potential opportunities for antibiotic or probiotic interventions. Further studies in larger cohorts validating these findings are needed.


Asunto(s)
Fibrosis Quística/microbiología , Intestinos/microbiología , Microbiota , Sistema Respiratorio/microbiología , Lactancia Materna , Preescolar , Progresión de la Enfermedad , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Estudios Prospectivos , Infecciones por Pseudomonas/complicaciones , Pseudomonas aeruginosa
13.
Microb Ecol ; 70(2): 311-21, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25721726

RESUMEN

Denitrification is a critically important biogeochemical pathway that removes fixed nitrogen from ecosystems and thus ultimately controls the rate of primary production in nitrogen-limited systems. We examined the community structure of bacteria containing the nirS gene, a signature gene in the denitrification pathway, from estuarine and salt marsh sediments and from the water column of two of the world's largest marine oxygen-deficient zones (ODZs). We generated over 125,000 nirS gene sequences, revealing a large degree of genetic diversity including 1,815 unique taxa, the vast majority of which formed clades that contain no cultured representatives. These results underscore how little we know about the genetic diversity of metabolisms underlying this critical biogeochemical pathway. Marine sediments yielded 1,776 unique taxa when clustered at 95 % sequence identity, and there was no single nirS denitrifier that was a competitive dominant; different samples had different highly abundant taxa. By contrast, there were only 39 unique taxa identified in samples from the two ODZs, and 99 % of the sequences belonged to 5 or fewer taxa. The ODZ samples were often dominated by nirS sequences that shared a 92 % sequence identity to a nirS found in the anaerobic ammonium-oxidizing (anammox) genus Scalindua. This sequence was abundant in both ODZs, accounting for 38 and 59 % of all sequences, but it was virtually absent in marine sediments. Our data indicate that ODZs are remarkably depauperate in nirS genes compared to the remarkable genetic richness found in coastal sediments.


Asunto(s)
Sedimentos Geológicos/microbiología , Oxígeno , Bacterias/metabolismo , Desnitrificación , Ecosistema , Variación Genética , Agua de Mar/microbiología
14.
BMC Bioinformatics ; 15: 41, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24499292

RESUMEN

BACKGROUND: The advent of next-generation DNA sequencing platforms has revolutionized molecular microbial ecology by making the detailed analysis of complex communities over time and space a tractable research pursuit for small research groups. However, the ability to generate 105-108 reads with relative ease brings with it many downstream complications. Beyond the computational resources and skills needed to process and analyze data, it is difficult to compare datasets in an intuitive and interactive manner that leads to hypothesis generation and testing. RESULTS: We developed the free web service VAMPS (Visualization and Analysis of Microbial Population Structures, http://vamps.mbl.edu) to address these challenges and to facilitate research by individuals or collaborating groups working on projects with large-scale sequencing data. Users can upload marker gene sequences and associated metadata; reads are quality filtered and assigned to both taxonomic structures and to taxonomy-independent clusters. A simple point-and-click interface allows users to select for analysis any combination of their own or their collaborators' private data and data from public projects, filter these by their choice of taxonomic and/or abundance criteria, and then explore these data using a wide range of analytic methods and visualizations. Each result is extensively hyperlinked to other analysis and visualization options, promoting data exploration and leading to a greater understanding of data relationships. CONCLUSIONS: VAMPS allows researchers using marker gene sequence data to analyze the diversity of microbial communities and the relationships between communities, to explore these analyses in an intuitive visual context, and to download data, results, and images for publication. VAMPS obviates the need for individual research groups to make the considerable investment in computational infrastructure and bioinformatic support otherwise necessary to process, analyze, and interpret massive amounts of next-generation sequence data. Any web-capable device can be used to upload, process, explore, and extract data and results from VAMPS. VAMPS encourages researchers to share sequence and metadata, and fosters collaboration between researchers of disparate biomes who recognize common patterns in shared data.


Asunto(s)
Bacterias , Biología Computacional/métodos , Programas Informáticos , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Gráficos por Computador , Secuenciación de Nucleótidos de Alto Rendimiento , Internet , Microbiota , Interfaz Usuario-Computador
15.
Lab Invest ; 94(9): 938-49, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25068658

RESUMEN

Whereas a significant role for intestinal microbiota in affecting the pathogenesis and progression of chronic hepatic diseases is well documented, the contribution of the intestinal flora to acute liver injury has not been extensively addressed. Elucidating the influence of the intestinal microbiota on acute liver inflammation would be important for better understanding the transition from acute injury to chronic liver disease. Using the Concanavalin A (ConA)-induced liver injury model in laboratory mice, we show that the severity of acute hepatic damage varies greatly among genetically identical mice raised in different environments and harboring distinct microbiota. Through reconstitution of germ-free (GF) mice, and the co-housing of conventional mice, we provide direct evidence that manipulation of the intestinal flora alters susceptibility to ConA-induced liver injury. Through deep sequencing of the fecal microbiome, we observe that the relative abundance of Ruminococcaceae, a Gram(+) family within the class Clostridia, but distinct from segmented filamentous bacteria, is positively associated with the degree of liver damage. Searching for the underlying mechanism(s) that regulate susceptibility to ConA, we provide evidence that the extent of liver injury following triggering of the death receptor Fas varies greatly as a function of the microbiota. We demonstrate that the extent of Fas-induced liver injury increases in GF mice after microbiota reconstitution, and decreases in conventionally raised mice following reduction in intestinal bacterial load, by antibiotic treatment. We also show that the regulation of sensitivity to Fas-induced liver injury is dependent upon the toll-like receptor signaling molecule MyD88. In conclusion, the status and composition of the intestinal microbiota determine the susceptibility to ConA-induced acute liver injury. The microbiota acts as a rheostat, actively modulating the extent of liver damage in response to Fas triggering.


Asunto(s)
Hepatopatías/inmunología , Microbiota , Receptor fas/inmunología , Enfermedad Aguda , Animales , Susceptibilidad a Enfermedades , Femenino , Citometría de Flujo , Hepatopatías/microbiología , Ratones , Ratones Endogámicos BALB C , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal
16.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38866716

RESUMEN

Soil microbial communities are fundamental to ecosystem processes and plant growth, yet community composition is seasonally and successionally dynamic, which interferes with long-term iterative experimentation of plant-microbe interactions. We explore how soil sample handling (e.g. filtering) and sample storage conditions impact the ability to revive the original, physiologically active, soil microbial community. We obtained soil from agricultural fields in Montana and Oklahoma, USA and samples were sieved to 2 mm or filtered to 45 µm. Sieved and filtered soil samples were archived at -20°C or -80°C for 50 days and revived for 2 or 7 days. We extracted DNA and the more transient RNA pools from control and treatment samples and characterized microbial communities using 16S amplicon sequencing. Filtration and storage treatments significantly altered soil microbial communities, impacting both species richness and community composition. Storing sieved soil at -20°C did not alter species richness and resulted in the least disruption to the microbial community composition in comparison to nonarchived controls as characterized by RNA pools from soils of both sites. Filtration significantly altered composition but not species richness. Archiving sieved soil at -20°C could allow for long-term and repeated experimentation on preserved physiologically active microbial communities.


Asunto(s)
Bacterias , Microbiota , Microbiología del Suelo , Manejo de Especímenes , Oklahoma , Microbiota/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Manejo de Especímenes/métodos , Suelo/química , ARN Ribosómico 16S/genética , Montana , ADN Bacteriano/genética , Biodiversidad
17.
mBio ; 15(2): e0278723, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38259081

RESUMEN

Tetracyclines serve as broad-spectrum antibiotics to treat bacterial infections. The discovery of new tetracycline resistance genes has led to new questions about the underlying mechanisms of resistance, gene transfer, and their relevance to human health. We tracked changes in the abundance of a 55-kbp conjugative transposon (CTn214) carrying tetQ, a tetracycline resistance gene, within a Bacteroides fragilis metagenome-assembled genome derived from shotgun sequencing of microbial DNA extracted from the ileal pouch of a patient with ulcerative colitis. The mapping of metagenomic reads to CTn214 revealed the multi-copy nature of a 17,044-nt region containing tetQ in samples collected during inflammation and uninflamed visits. B. fragilis cultivars isolated from the same patient during periods of inflammation harbored CTn214 integrated into the chromosome or both a circular, multi-copy, extrachromosomal region of the CTn214 containing tetQ and the corresponding integrated form. The tetracycline-dependent mechanism for the transmission of CTn214 is nearly identical to a common conjugative transposon found in the genome of B. fragilis (CTnDOT), but the autonomously amplified nature of a circular 17,044-nt region of CTn214 that codes for tetQ and the integration of the same sequence in the linear chromosome within the same cell is a novel observation. Genome and transcriptome sequencing of B. fragilis cultivars grown under different concentrations of tetracycline and ciprofloxacin indicates that tetQ in strains containing the circular form remains actively expressed regardless of treatment, while the expression of tetQ in strains containing the linear form increases only in the presence of tetracycline.IMPORTANCEThe exchange of antibiotic production and resistance genes between microorganisms can lead to the emergence of new pathogens. In this study, short-read mapping of metagenomic samples taken over time from the illeal pouch of a patient with ulcerative colitis to a Bacteroides fragilis metagenome-assembled genome revealed two distinct genomic arrangements of a novel conjugative transposon, CTn214, that encodes tetracycline resistance. The autonomous amplification of a plasmid-like circular form from CTn214 that includes tetQ potentially provides consistent ribosome protection against tetracycline. This mode of antibiotic resistance offers a novel mechanism for understanding the emergence of pathobionts like B. fragilis and their persistence for extended periods of time in patients with inflammatory bowel disease.


Asunto(s)
Colitis Ulcerosa , Tetraciclina , Humanos , Tetraciclina/farmacología , Bacteroides/genética , Colitis Ulcerosa/genética , Elementos Transponibles de ADN , Conjugación Genética , Plásmidos/genética , Antibacterianos/farmacología , Bacteroides fragilis/genética , Inflamación/genética
18.
Microb Ecol ; 65(4): 1011-23, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23475306

RESUMEN

Urban coasts receive watershed drainage from ecosystems that include highly developed lands with sewer and stormwater infrastructure. In these complex ecosystems, coastal waters are often contaminated with fecal pollution, where multiple delivery mechanisms that often contain multiple fecal sources make it difficult to mitigate the pollution. Here, we exploit bacterial community sequencing of the V6 and V6V4 hypervariable regions of the bacterial 16S rRNA gene to identify bacterial distributions that signal the presence of sewer, fecal, and human fecal pollution. The sequences classified to three sewer infrastructure-associated bacterial genera, Acinetobacter, Arcobacter, and Trichococcus, and five fecal-associated bacterial families, Bacteroidaceae, Porphyromonadaceae, Clostridiaceae, Lachnospiraceae, and Ruminococcaceae, served as signatures of sewer and fecal contamination, respectively. The human fecal signature was determined with the Bayesian source estimation program SourceTracker, which we applied to a set of 40 sewage influent samples collected in Milwaukee, WI, USA to identify operational taxonomic units (≥ 97 % identity) that were most likely of human fecal origin. During periods of dry weather, the magnitudes of all three signatures were relatively low in Milwaukee's urban rivers and harbor and nearly zero in Lake Michigan. However, the relative contribution of the sewer and fecal signature frequently increased to > 2 % of the measured surface water communities following sewer overflows. Also during combined sewer overflows, the ratio of the human fecal pollution signature to the fecal pollution signature in surface waters was generally close to that of sewage, but this ratio decreased dramatically during dry weather and rain events, suggesting that nonhuman fecal pollution was the dominant source during these weather-driven scenarios. The qPCR detection of two human fecal indicators, human Bacteroides and Lachno2, confirmed the urban fecal footprint in this ecosystem extends to at least 8 km offshore.


Asunto(s)
Bacterias/aislamiento & purificación , Heces/química , Lagos/microbiología , Contaminación del Agua/análisis , Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , Ecosistema , Monitoreo del Ambiente , Humanos , Michigan , ARN Ribosómico 16S/genética , Aguas del Alcantarillado/análisis , Aguas del Alcantarillado/microbiología , Urbanización
19.
Front Microbiol ; 14: 1164553, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138613

RESUMEN

Introduction: Microbial communities inhabiting the human infant gut are important for immune system development and lifelong health. One critical exposure affecting the bacterial colonization of the infant gut is consumption of human milk, which contains diverse microbial communities and prebiotics. We hypothesized that human milk-associated microbial profiles are associated with those of the infant gut. Methods: Maternal-infant dyads enrolled in the New Hampshire Birth Cohort Study (n = 189 dyads) contributed breast milk and infant stool samples collected approximately at 6 weeks, 4 months, 6 months, 9 months, and 12 months postpartum (n = 572 samples). Microbial DNA was extracted from milk and stool and the V4-V5 region of the bacterial 16S rRNA gene was sequenced. Results: Clustering analysis identified three breast milk microbiome types (BMTs), characterized by differences in Streptococcus, Staphylococcus, Pseudomonas, Acinetobacter, and microbial diversity. Four 6-week infant gut microbiome types (6wIGMTs) were identified, differing in abundances of Bifidobacterium, Bacteroides, Clostridium, Streptococcus, and Escherichia/Shigella, while two 12-month IGMTs (12mIGMTs) differed primarily by Bacteroides presence. At 6 weeks, BMT was associated with 6wIGMT (Fisher's exact test value of p = 0.039); this association was strongest among infants delivered by Cesarean section (Fisher's exact test value of p = 0.0028). The strongest correlations between overall breast milk and infant stool microbial community structures were observed when comparing breast milk samples to infant stool samples collected at a subsequent time point, e.g., the 6-week breast milk microbiome associated with the 6-month infant gut microbiome (Mantel test Z-statistic = 0.53, value of p = 0.001). Streptoccous and Veillonella species abundance were correlated in 6-week milk and infant stool, and 4- and 6-month milk Pantoea species were associated with infant stool Lachnospiraceae genera at 9 and 12 months. Discussion: We identified clusters of human milk and infant stool microbial communities that were associated in maternal-infant dyads at 6 weeks of life and found that milk microbial communities were more strongly associated with infant gut microbial communities in infants delivered operatively and after a lag period. These results suggest that milk microbial communities have a long-term effect on the infant gut microbiome both through sharing of microbes and other molecular mechanisms.

20.
Genome Biol ; 24(1): 78, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069665

RESUMEN

BACKGROUND: Changes in microbial community composition as a function of human health and disease states have sparked remarkable interest in the human gut microbiome. However, establishing reproducible insights into the determinants of microbial succession in disease has been a formidable challenge. RESULTS: Here we use fecal microbiota transplantation (FMT) as an in natura experimental model to investigate the association between metabolic independence and resilience in stressed gut environments. Our genome-resolved metagenomics survey suggests that FMT serves as an environmental filter that favors populations with higher metabolic independence, the genomes of which encode complete metabolic modules to synthesize critical metabolites, including amino acids, nucleotides, and vitamins. Interestingly, we observe higher completion of the same biosynthetic pathways in microbes enriched in IBD patients. CONCLUSIONS: These observations suggest a general mechanism that underlies changes in diversity in perturbed gut environments and reveal taxon-independent markers of "dysbiosis" that may explain why widespread yet typically low-abundance members of healthy gut microbiomes can dominate under inflammatory conditions without any causal association with disease.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Trasplante de Microbiota Fecal , Metagenómica , Aminoácidos , Heces
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA