Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Genes Dev ; 24(8): 766-82, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20395364

RESUMEN

To understand whether the spatial organization of the genome reflects the cell's differentiated state, we examined whether genes assume specific subnuclear positions during Caenorhabditis elegans development. Monitoring the radial position of developmentally controlled promoters in embryos and larval tissues, we found that small integrated arrays bearing three different tissue-specific promoters have no preferential position in nuclei of undifferentiated embryos. However, in differentiated cells, they shifted stably toward the nuclear lumen when activated, or to the nuclear envelope when silent. In contrast, large integrated arrays bearing the same promoters became heterochromatic and nuclear envelope-bound in embryos. Tissue-specific activation of promoters in these large arrays in larvae overrode the perinuclear anchorage. For transgenes that carry both active and inactive promoters, the inward shift of the active promoter was dominant. Finally, induction of master regulator HLH-1 prematurely induced internalization of a muscle-specific promoter array in embryos. Fluorescence in situ hybridization confirmed analogous results for the endogenous endoderm-determining gene pha-4. We propose that, in differentiated cells, subnuclear organization arises from the selective positioning of active and inactive developmentally regulated promoters. We characterize two forces that lead to tissue-specific subnuclear organization of the worm genome: large repeat-induced heterochromatin, which associates with the nuclear envelope like repressed genes in differentiated cells, and tissue-specific promoters that shift inward in a dominant fashion over silent promoters, when they are activated.


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular , Colágeno/genética , Regulación del Desarrollo de la Expresión Génica , Heterocromatina/genética , Modelos Genéticos , Células Musculares/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Transactivadores/genética , Transgenes/genética
2.
EMBO J ; 31(18): 3768-83, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22820947

RESUMEN

DNA replication fork stalling poses a major threat to genome stability. This is counteracted in part by the intra-S phase checkpoint, which stabilizes arrested replication machinery, prevents cell-cycle progression and promotes DNA repair. The checkpoint kinase Mec1/ATR and RecQ helicase Sgs1/BLM contribute synergistically to fork maintenance on hydroxyurea (HU). Both enzymes interact with replication protein A (RPA). We identified and deleted the major interaction sites on Sgs1 for Rpa70, generating a mutant called sgs1-r1. In contrast to a helicase-dead mutant of Sgs1, sgs1-r1 did not significantly reduce recovery of DNA polymerase α at HU-arrested replication forks. However, the Sgs1 R1 domain is a target of Mec1 kinase, deletion of which compromises Rad53 activation on HU. Full activation of Rad53 is achieved through phosphorylation of the Sgs1 R1 domain by Mec1, which promotes Sgs1 binding to the FHA1 domain of Rad53 with high affinity. We propose that the recruitment of Rad53 by phosphorylated Sgs1 promotes the replication checkpoint response on HU. Loss of the R1 domain increases lethality selectively in cells lacking Mus81, Slx4, Slx5 or Slx8.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , RecQ Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Alelos , Sitios de Unión , Quinasa de Punto de Control 2 , ADN Polimerasa I/metabolismo , Reparación del ADN , Replicación del ADN , ADN de Cadena Simple/metabolismo , Humanos , Modelos Genéticos , Mutación , Fosforilación , Estructura Terciaria de Proteína
3.
Yeast ; 27(1): 41-52, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19894211

RESUMEN

Recent evidence indicates considerable cross-talk between genome maintenance and cell integrity control pathways. The RNA recognition motif (RRM)- and SQ/TQ cluster domain (SCD)-containing protein Mdt1 is required for repair of 3'-blocked DNA double-strand breaks (DSBs) and efficient recombinational maintenance of telomeres in budding yeast. Here we show that deletion of MDT1 (PIN4/YBL051C) leads to severe synthetic sickness in the absence of the genes for the central cell integrity MAP kinases Bck1 and Slt2/Mpk1. Consistent with a cell integrity function, mdt1Delta cells are hypersensitive to the cell wall toxin calcofluor white and the Bck1-Slt2 pathway activator caffeine. An RRM-deficient mdt1-RRM0 allele shares the severe bleomycin hypersensitivity, inefficient recombinational telomere maintenance and slt2 synthetic sickness phenotypes, but not the cell wall toxin hypersensitivity with mdt1Delta. However, the mdt1-RRM(3A) allele, where only the RNA-binding site is mutated, behaves similarly to the wild-type, suggesting that the Mdt1 RRM functions as a protein-protein interaction rather than a nucleic acid-binding module. Surprisingly, in a strain background where double mutants are sick but still viable, bck1Deltamdt1Delta and slt2Deltamdt1Delta mutants differ in some of their phenotypes, consistent with the emerging concept of flexible signal entry and exit points in the Bck1-Mkk1/2-Slt2 pathway. Overall, the results indicate that Mdt1 has partially separable functions in both cell wall and genome integrity pathways.


Asunto(s)
Regulación Fúngica de la Expresión Génica/fisiología , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Bencenosulfonatos , Sitios de Unión , Bleomicina , Cafeína , Eliminación de Gen , Genoma Fúngico , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Unión Proteica , ARN de Hongos/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sorbitol
4.
Mol Cell Biol ; 27(18): 6532-45, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17636027

RESUMEN

DNA recombination plays critical roles in DNA repair and alternative telomere maintenance. Here we show that absence of the SQ/TQ cluster domain-containing protein Mdt1 (Ybl051c) renders Saccharomyces cerevisiae particularly hypersensitive to bleomycin, a drug that causes 3'-phospho-glycolate-blocked DNA double-strand breaks (DSBs). mdt1Delta also hypersensitizes partially recombination-defective cells to camptothecin-induced 3'-phospho-tyrosyl protein-blocked DSBs. Remarkably, whereas mdt1Delta cells are unable to restore broken chromosomes after bleomycin treatment, they efficiently repair "clean" endonuclease-generated DSBs. Epistasis analyses indicate that MDT1 acts in the repair of bleomycin-induced DSBs by regulating the efficiency of the homologous recombination pathway as well as telomere-related functions of the KU complex. Moreover, mdt1Delta leads to severe synthetic growth defects with a deletion of the recombination facilitator and telomere-positioning factor gene CTF18 already in the absence of exogenous DNA damage. Importantly, mdt1Delta causes a dramatic shift from the usually prevalent type II to the less-efficient type I pathway of recombinational telomere maintenance in the absence of telomerase in liquid senescence assays. As telomeres resemble protein-blocked DSBs, the results indicate that Mdt1 acts in a novel blocked-end-specific recombination pathway that is required for the efficiency of both drug-induced DSB repair and telomerase-independent telomere maintenance.


Asunto(s)
Daño del ADN , Reparación del ADN/fisiología , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/fisiología , Telómero/metabolismo , Antibióticos Antineoplásicos/toxicidad , Antígenos Nucleares/genética , Antígenos Nucleares/fisiología , Antineoplásicos Fitogénicos/toxicidad , Bleomicina/toxicidad , Camptotecina/toxicidad , Reparación del ADN/genética , ADN de Hongos/efectos de los fármacos , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Epistasis Genética , Autoantígeno Ku , Proteína Recombinante y Reparadora de ADN Rad52/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/genética
5.
Mol Cell Biol ; 24(7): 2779-88, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15024067

RESUMEN

The Rad53 kinase plays a central role in yeast DNA damage checkpoints. Rad53 contains two FHA phosphothreonine-binding domains that are required for Rad53 activation and possibly downstream signaling. Here we show that the N-terminal Rad53 FHA1 domain interacts with the RNA recognition motif, coiled-coil, and SQ/TQ cluster domain-containing protein Mdt1 (YBl051C). The interaction of Rad53 and Mdt1 depends on the structural integrity of the FHA1 phosphothreonine-binding site as well as threonine-305 of Mdt1. Mdt1 is constitutively threonine phosphorylated and hyperphosphorylated in response to DNA damage in vivo. DNA damage-dependent Mdt1 hyperphosphorylation depends on the Mec1 and Tel1 checkpoint kinases, and Mec1 can directly phosphorylate a recombinant Mdt1 SQ/TQ domain fragment. MDT1 overexpression is synthetically lethal with a rad53 deletion, whereas mdt1 deletion partially suppresses the DNA damage hypersensitivity of checkpoint-compromised strains and generally improves DNA damage tolerance. In the absence of DNA damage, mdt1 deletion leads to delayed anaphase completion, with an elongated cell morphology reminiscent of that of G(2)/M cell cycle mutants. mdt1-dependent and DNA damage-dependent cell cycle delays are not additive, suggesting that they act in the same pathway. The data indicate that Mdt1 is involved in normal G(2)/M cell cycle progression and is a novel target of checkpoint-dependent cell cycle arrest pathways.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Daño del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Fosforilación , Conformación Proteica , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
6.
Curr Biol ; 21(19): 1603-14, 2011 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-21962710

RESUMEN

BACKGROUND: In worms, as in other organisms, many tissue-specific promoters are sequestered at the nuclear periphery when repressed and shift inward when activated. It has remained unresolved, however, whether the association of facultative heterochromatin with the nuclear periphery, or its release, has functional relevance for cell or tissue integrity. RESULTS: Using ablation of the unique lamin gene in C. elegans, we show that lamin is necessary for the perinuclear positioning of heterochromatin. We then express at low levels in otherwise wild-type worms a lamin carrying a point mutation, Y59C, which in humans is linked to an autosomal-dominant form of Emery-Dreifuss muscular dystrophy. Using embryos and differentiated tissues, we track the subnuclear position of integrated heterochromatic arrays and their expression. In LMN-1 Y59C-expressing worms, we see abnormal retention at the nuclear envelope of a gene array bearing a muscle-specific promoter. This correlates with impaired activation of the array-borne myo-3 promoter and altered expression of a number of muscle-specific genes. However, an equivalent array carrying the intestine-specific pha-4 promoter is expressed normally and shifts inward when activated in gut cells of LMN-1 Y59C worms. Remarkably, adult LMN-1 Y59C animals have selectively perturbed body muscle ultrastructure and reduced muscle function. CONCLUSION: Lamin helps sequester heterochromatin at the nuclear envelope, and wild-type lamin permits promoter release following tissue-specific activation. A disease-linked point mutation in lamin impairs muscle-specific reorganization of a heterochromatic array during tissue-specific promoter activation in a dominant manner. This dominance and the correlated muscle dysfunction in LMN-1 Y59C worms phenocopies Emery-Dreifuss muscular dystrophy.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Laminina/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Mutación Puntual , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Heterocromatina/metabolismo , Humanos , Laminina/genética , Locomoción , Microscopía , Desarrollo de Músculos , Músculos/embriología , Distrofia Muscular de Emery-Dreifuss/fisiopatología , Membrana Nuclear/metabolismo , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Transactivadores/genética , Transactivadores/metabolismo
7.
Epigenetics Chromatin ; 4(1): 2, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21291527

RESUMEN

BACKGROUND: Methylation of histone H3 lysine 79 (H3K79) by Dot1 is highly conserved among species and has been associated with both gene repression and activation. To eliminate indirect effects and examine the direct consequences of Dot1 binding and H3K79 methylation, we investigated the effects of targeting Dot1 to different positions in the yeast genome. RESULTS: Targeting Dot1 did not activate transcription at a euchromatic locus. However, chromatin-bound Dot1 derepressed heterochromatin-mediated gene silencing over a considerable distance. Unexpectedly, Dot1-mediated derepression was established by both a H3K79 methylation-dependent and a methylation-independent mechanism; the latter required the histone acetyltransferase Gcn5. By monitoring the localization of a fluorescently tagged telomere in living cells, we found that the targeting of Dot1, but not its methylation activity, led to the release of a telomere from the repressive environment at the nuclear periphery. This probably contributes to the activity-independent derepression effect of Dot1. CONCLUSIONS: Targeting of Dot1 promoted gene expression by antagonizing gene repression through both histone methylation and chromatin relocalization. Our findings show that binding of Dot1 to chromatin can positively affect local gene expression by chromatin rearrangements over a considerable distance.

8.
Cell Cycle ; 9(2): 350-63, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20046099

RESUMEN

In budding yeast the evolutionarily conserved checkpoint response varies in its sensitivity to DNA damaging agents through the cell cycle. Specifically, higher amounts of damage are needed to activate the downstream checkpoint kinase Rad53 in S-phase cells. We examined here whether phosphorylation of Rad53 itself by cell cycle-dedicated kinases regulates Rad53 activation. We found that during unperturbed growth Rad53 exhibits a small phosphorylation-dependent electrophoretic mobility shift in G(2), M and G(1) phases of the cell cycle that is lost in S phase. We show that Rad53 is phosphorylated in vitro by Cdc5, a mitotic Polo-like kinase, and by the yeast cyclin-dependent kinase, Cdc28. Consistently, the cell cycle-dependent Rad53 mobility shift requires both Cdc5 and Cdc28 activities. We mapped the in vitro targeted phosphorylation sites by mass spectrometry and confirmed with mass spectroscopy that serines 774, 789 and 791 within Rad53 are phosphorylated in vivo in M-phase arrested cells. By creating nonphosphorylatable mutations in the endogenous RAD53 gene, we confirmed that the CDK and Polo kinase target sites are responsible for the observed cell cycle-dependent shift in protein mobility. The loss of phospho-acceptor sites does not interfere with Rad53 activation but accelerates checkpoint adaptation after induction of a single irreparable double-strand break. We thus demonstrate that cell cycle-dependent phosphorylation can fine-tune the response of Rad53 to DNA damage.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , División Celular , Quinasa de Punto de Control 2 , Daño del ADN , Fase G1 , Mitosis , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Fase S , Proteínas de Saccharomyces cerevisiae/genética
9.
Curr Opin Cell Biol ; 21(2): 237-44, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19230642

RESUMEN

During S phase, eukaryotic cells unwind and duplicate a tremendous amount of DNA, generating structures that are very sensitive to both endogenous and exogenous insults. The collision of DNA polymerases with damaged DNA or other obstructions to fork progression generates replication stress, which can evolve into fork collapse if the replisome components are not stabilized. To ensure genome integrity, stalled replication forks are recognized by a checkpoint, whose central player is the human kinase ATR or Mec1 in S. cerevisiae. This review will discuss recent findings revealing roles of the ATR/Mec1 kinase: both in stabilizing the replisome directly and in activating the checkpoint response to regulate origin firing, DNA repair, fork restart, and cell cycle progression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Reparación del ADN , Replicación del ADN , Inestabilidad Genómica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Daño del ADN , Activación Enzimática , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Biochemistry ; 47(12): 3912-6, 2008 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-18302321

RESUMEN

Signaling proteins often contain multiple modular protein-protein interaction domains of the same type. The Saccharomyces cerevisiae checkpoint kinase Rad53 contains two phosphothreonine-binding forkhead-associated (FHA) domains. To investigate if the precise position of these domains relative to each other is important, we created three rad53 alleles in which FHA1 and FHA2 domains were individually or simultaneously transposed to the opposite location. All three mutants were approximately 100-fold hypersensitive to DNA lesions whose survival requires intact Rad53 FHA domain functions, but they were not hypersensitive to DNA damage that is addressed in an FHA domain-independent manner. FHA domain-transposed Rad53 could still be recruited for activation by upstream kinases but then failed to autophosphorylate and activate FHA domain-dependent downstream functions. The results indicate that precise FHA domain positions are important for their roles in Rad53, possibly via regulation of the topology of oligomeric Rad53 signaling complexes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Metilmetanosulfonato/farmacología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/fisiología , Transformación Genética
11.
Biochem Biophys Res Commun ; 357(3): 800-3, 2007 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-17442269

RESUMEN

Bleomycins are small glycopeptide cancer chemotherapeutics that give rise to 3'-modified DNA double-strand breaks (DSBs). In Saccharomyces cerevisiae, DSBs are predominantly repaired by RAD52-dependent homologous recombination (HR) with some support by Yku70/Yku80 (KU)-dependent pathways. The main DSB repair function of KU is believed to be as part of the non-homologous end-joining (NHEJ) pathway, but KU also functions in a "chromosome healing" pathway that seals DSBs by de novo telomere addition. We report here that rad52Deltayku70Delta double mutants are considerably more bleomycin hypersensitive than rad52Deltalig4Delta cells that lack the NHEJ-specific DNA ligase 4. Moreover, the telomere-specific KU mutation yku80-135i also dramatically increases rad52Delta bleomycin hypersensitivity, almost to the level of rad52Deltayku80Delta. The results indicate that telomere-specific functions of KU play a more prominent role in the repair of bleomycin-induced damage than its NHEJ functions, which could have important clinical implications for bleomycin-based combination chemotherapies.


Asunto(s)
Antígenos Nucleares/fisiología , Bleomicina/toxicidad , Daño del ADN , Reparación del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Telómero/metabolismo , Antibióticos Antineoplásicos/toxicidad , Antígenos Nucleares/genética , ADN Ligasa (ATP) , ADN Ligasas/genética , ADN Ligasas/fisiología , Reparación del ADN/genética , ADN de Hongos/efectos de los fármacos , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Autoantígeno Ku , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/genética , Mutación , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/fisiología , Recombinación Genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Telómero/genética
12.
13.
J Biol Chem ; 279(38): 39636-44, 2004 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-15271990

RESUMEN

Saccharomyces cerevisiae Rad53 has crucial functions in many aspects of the cellular response to DNA damage and replication blocks. To coordinate these diverse roles, Rad53 has two forkhead-associated (FHA) phosphothreonine-binding domains in addition to a kinase domain. Here, we show that the conserved N-terminal FHA1 domain is essential for the function of Rad53 to prevent the firing of late replication origins in response to replication blocks. However, the FHA1 domain is not required for Rad53 activation during S phase, and as a consequence of defective downstream signaling, Rad53 containing an inactive FHA1 domain is hyperphosphorylated in response to replication blocks. The FHA1 mutation dramatically hypersensitizes strains with defects in the cell cycle-wide checkpoint pathways (rad9Delta and rad17Delta) to DNA damage, but it is largely epistatic with defects in the replication checkpoint (mrc1Delta). Altogether, our data indicate that the FHA1 domain links activated Rad53 to downstream effectors in the replication checkpoint. The results reveal an important mechanistic difference to the homologous Schizosaccharomyces pombe FHA domain that is required for Mrc1-dependent activation of the corresponding Cds1 kinase. Surprisingly, despite the severely impaired replication checkpoint and also G(2)/M checkpoint functions, the FHA1 mutation by itself leads to only moderate viability defects in response to DNA damage, highlighting the importance of functionally redundant pathways.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sitios de Unión , Proteínas de Ciclo Celular/química , Quinasa de Punto de Control 2 , Proteínas de Unión al ADN , Factores de Transcripción Forkhead , Genes cdc/fisiología , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Fosfotreonina/metabolismo , Proteína Fosfatasa 2C , Proteínas Serina-Treonina Quinasas/química , Estructura Terciaria de Proteína , Origen de Réplica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/química , Factores de Transcripción/genética
14.
J Biol Chem ; 277(25): 22469-74, 2002 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-11953437

RESUMEN

The yeast Dun1 kinase has complex checkpoint functions including DNA damage-dependent cell cycle arrest in G(2)/M, transcriptional induction of repair genes, and regulation of postreplicative DNA repair pathways. Here we report that the Dun1 forkhead-associated domain interacts with the Pan3 subunit of the poly(A)-nuclease complex and that dun1pan2 and dun1pan3 double mutants are dramatically hypersensitive to replicational stress. This phenotype was independent of the function of Dun1 in regulating deoxyribonucleotide levels as it was also observed in strains lacking the ribonucleotide reductase inhibitor Sml1. dun1pan2 mutants initially arrested normally in response to replication blocks but died in the presence of persistent replication blocks with considerably delayed kinetics compared with mutants lacking the Rad53 kinase, indicating that the double mutation does not compromise the intra-S phase checkpoint. Interestingly, the RAD5 gene involved in error-free postreplication repair pathways was specifically up-regulated in dun1pan2 double mutants. Moreover, inducible overexpression of RAD5 mimicked the double mutant phenotype by hypersensitizing dun1 mutants to replication blocks. The data indicate that Dun1 and Pan2-Pan3 cooperate to regulate the stoichiometry and thereby the activity of postreplication repair complexes, suggesting that posttranscriptional mechanisms complement the transcriptional response in the regulation of gene expression by checkpoint signaling pathways in Saccharomyces cerevisiae.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Ciclo Celular , Exorribonucleasas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Quinasas/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Saccharomyces cerevisiae , Northern Blotting , Núcleo Celular/metabolismo , Supervivencia Celular , Quinasa de Punto de Control 2 , Citoplasma/metabolismo , ADN Helicasas , Relación Dosis-Respuesta a Droga , Proteínas Fúngicas/genética , Hidroxiurea/farmacología , Cinética , Metilmetanosulfonato/farmacología , Modelos Genéticos , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Técnicas del Sistema de Dos Híbridos , Regulación hacia Arriba
15.
J Biol Chem ; 278(33): 30421-4, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12805372

RESUMEN

Forkhead-associated (FHA) domains are phosphothreonine-binding modules prevalent in proteins with important cell cycle and DNA damage response functions. The yeast checkpoint kinase Rad53 is unique in containing two FHA domains. We have generated novel recessive rad53 alleles with abolished FHA domain functions resulting from Ala substitution of the critical phosphothreonine-binding residues Arg70 and Arg605. In asynchronous cells, inactivation of the N-terminal FHA1 domain did not impair Rad53 activation and downstream functions, whereas inactivation of the C-terminal FHA2 domain led to reduced Rad53 activation and significantly increased DNA damage sensitivity. Simultaneous inactivation of both FHA domains abolished Rad53 activation and all downstream functions and dramatically increased the sensitivity to DNA damage and replication blocks similar to kinase-defective and rad53 null alleles, but did not compromise the essential viability function of Rad53. Interestingly, in G2/M synchronized cells, mutation of either FHA domain prevented Rad53 activation and impaired the cell cycle arrest checkpoint. Our data demonstrate that both FHA domains are required for normal Rad53 functions and indicate that the two FHA domains have differential but partially overlapping roles in Rad53 activation and downstream signaling.


Asunto(s)
Proteínas de Ciclo Celular , Daño del ADN/fisiología , Proteínas Nucleares/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/química , Levaduras/enzimología , Alelos , Sustitución de Aminoácidos , Quinasa de Punto de Control 2 , Activación Enzimática/fisiología , Factores de Transcripción Forkhead , Fase G2/fisiología , Genes Recesivos , Mitosis/fisiología , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Transducción de Señal/fisiología , Factores de Transcripción/genética , Levaduras/química , Levaduras/genética
16.
IUBMB Life ; 55(1): 23-7, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12716058

RESUMEN

Forkhead-associated (FHA) domains are present in >200 diverse proteins in all phyla from bacteria to mammals and seem to be particularly prevalent in proteins with cell cycle control functions. Recent work from several laboratories has considerably improved our understanding of the structure and function of these domains that were virtually unknown a few years ago, and the first disease associations of FHA domains have now emerged. FHA domains form 11-stranded beta-sandwiches that contain some 100-180 amino acid residues with a high degree of sequence diversity. FHA domains act as phosphorylation-dependent protein-protein interaction modules that preferentially bind to phospho-threonine residues in their targets. Interestingly, point mutations in the human CHK2 gene that lead to single-residue amino acid substitutions in the FHA domain of this cell cycle checkpoint kinase have been found to cause a subset of cases of the Li-Fraumeni multi-cancer syndrome.


Asunto(s)
Fosfotreonina/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Ciclo Celular/fisiología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA