Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(11): e3002349, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37917597

RESUMEN

Academia often fails to recognize the important work that supports its functioning, such as mentoring and teaching performed by postdoctoral researchers. This is a particular problem for early-career researchers, but opportunities exist to improve the status quo.


Asunto(s)
Tutoría , Mentores , Humanos , Investigadores/educación
2.
PLoS Biol ; 21(4): e3002068, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37011096

RESUMEN

Given the requisite cost associated with observing species interactions, ecologists often reuse species interaction networks created by different sets of researchers to test their hypotheses regarding how ecological processes drive network topology. Yet, topological properties identified across these networks may not be sufficiently attributable to ecological processes alone as often assumed. Instead, much of the totality of topological differences between networks-topological heterogeneity-could be due to variations in research designs and approaches that different researchers use to create each species interaction network. To evaluate the degree to which this topological heterogeneity is present in available ecological networks, we first compared the amount of topological heterogeneity across 723 species interaction networks created by different sets of researchers with the amount quantified from non-ecological networks known to be constructed following more consistent approaches. Then, to further test whether the topological heterogeneity was due to differences in study designs, and not only to inherent variation within ecological networks, we compared the amount of topological heterogeneity between species interaction networks created by the same sets of researchers (i.e., networks from the same publication) with the amount quantified between networks that were each from a unique publication source. We found that species interaction networks are highly topologically heterogeneous: while species interaction networks from the same publication are much more topologically similar to each other than interaction networks that are from a unique publication, they still show at least twice as much heterogeneity as any category of non-ecological networks that we tested. Altogether, our findings suggest that extra care is necessary to effectively analyze species interaction networks created by different researchers, perhaps by controlling for the publication source of each network.

4.
PLoS Comput Biol ; 19(9): e1011458, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37669314

RESUMEN

Food webs are complex ecological networks whose structure is both ecologically and statistically constrained, with many network properties being correlated with each other. Despite the recognition of these invariable relationships in food webs, the use of the principle of maximum entropy (MaxEnt) in network ecology is still rare. This is surprising considering that MaxEnt is a statistical tool precisely designed for understanding and predicting many types of constrained systems. This principle asserts that the least-biased probability distribution of a system's property, constrained by prior knowledge about that system, is the one with maximum information entropy. MaxEnt has been proven useful in many ecological modeling problems, but its application in food webs and other ecological networks is limited. Here we show how MaxEnt can be used to derive many food-web properties both analytically and heuristically. First, we show how the joint degree distribution (the joint probability distribution of the numbers of prey and predators for each species in the network) can be derived analytically using the number of species and the number of interactions in food webs. Second, we present a heuristic and flexible approach of finding a network's adjacency matrix (the network's representation in matrix format) based on simulated annealing and SVD entropy. We built two heuristic models using the connectance and the joint degree sequence as statistical constraints, respectively. We compared both models' predictions against corresponding null and neutral models commonly used in network ecology using open access data of terrestrial and aquatic food webs sampled globally (N = 257). We found that the heuristic model constrained by the joint degree sequence was a good predictor of many measures of food-web structure, especially the nestedness and motifs distribution. Specifically, our results suggest that the structure of terrestrial and aquatic food webs is mainly driven by their joint degree distribution.


Asunto(s)
Cadena Alimentaria , Heurística , Entropía , Sesgo , Conocimiento
5.
Parasitology ; 148(7): 835-842, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33678197

RESUMEN

The beta-diversity of interactions between communities does not necessarily correspond to the differences related to their species composition because interactions show greater variability than species co-occurrence. Additionally, the structure of species interaction networks can itself vary over spatial gradients, thereby adding constraints on the dissimilarity of communities in space. We used published data on the parasitism interaction between fleas and small mammals in 51 regions of the Palearctic to investigate how beta-diversity of networks and phylogenetic diversity are related. The networks could be separated in groups based on the metrics that best described the differences between them, and these groups were also geographically structured. We also found that each network beta-diversity index relates in a particular way with phylogenetically community dissimilarity, reinforcing that some of these indexes have a strong phylogenetic component. Our results clarify important aspects of the biogeography of hosts and parasites communities in Eurasia, while suggesting that networks beta-diversity and phylogenetic dissimilarity interact with the environment in different ways.


Asunto(s)
Biodiversidad , Eulipotyphla , Infestaciones por Pulgas/veterinaria , Enfermedades de los Roedores/parasitología , Roedores , Siphonaptera/fisiología , Animales , Asia , Europa (Continente) , Infestaciones por Pulgas/parasitología , Siphonaptera/clasificación
6.
Mol Ecol ; 26(7): 1764-1777, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28092408

RESUMEN

Numerous theoretical and experimental studies have investigated antagonistic co-evolution between parasites and their hosts. Although experimental tests of theory from a range of biological systems are largely concordant regarding the influence of several driving processes, we know little as to how mechanisms acting at the smallest scales (individual molecular and phenotypic changes) may result in the emergence of structures at larger scales, such as co-evolutionary dynamics and local adaptation. We capitalized on methods commonly employed in community ecology to quantify how the structure of community interaction matrices, so-called bipartite networks, reflected observed co-evolutionary dynamics, and how phages from these communities may or may not have adapted locally to their bacterial hosts. We found a consistent nested network structure for two phage types, one previously demonstrated to exhibit arms race co-evolutionary dynamics and the other fluctuating co-evolutionary dynamics. Both phages increased their host ranges through evolutionary time, but we found no evidence for a trade-off with impact on bacteria. Finally, only bacteria from the arms race phage showed local adaptation, and we provide preliminary evidence that these bacteria underwent (sometimes different) molecular changes in the wzy gene associated with the LPS receptor, while bacteria co-evolving with the fluctuating selection phage did not show local adaptation and had partial deletions of the pilF gene associated with type IV pili. We conclude that the structure of phage-bacteria interaction networks is not necessarily specific to co-evolutionary dynamics, and discuss hypotheses for why only one of the two phages was, nevertheless, locally adapted.


Asunto(s)
Adaptación Fisiológica/genética , Bacterias/genética , Bacteriófagos/genética , Evolución Molecular , Bacterias/virología , Proteínas Fimbrias/genética
7.
PLoS Biol ; 12(9): e1001960, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25268798

RESUMEN

Social network analysis methods have made it possible to test whether novel behaviors in animals spread through individual or social learning. To date, however, social network analysis of wild populations has been limited to static models that cannot precisely reflect the dynamics of learning, for instance, the impact of multiple observations across time. Here, we present a novel dynamic version of network analysis that is capable of capturing temporal aspects of acquisition--that is, how successive observations by an individual influence its acquisition of the novel behavior. We apply this model to studying the spread of two novel tool-use variants, "moss-sponging" and "leaf-sponge re-use," in the Sonso chimpanzee community of Budongo Forest, Uganda. Chimpanzees are widely considered the most "cultural" of all animal species, with 39 behaviors suspected as socially acquired, most of them in the domain of tool-use. The cultural hypothesis is supported by experimental data from captive chimpanzees and a range of observational data. However, for wild groups, there is still no direct experimental evidence for social learning, nor has there been any direct observation of social diffusion of behavioral innovations. Here, we tested both a static and a dynamic network model and found strong evidence that diffusion patterns of moss-sponging, but not leaf-sponge re-use, were significantly better explained by social than individual learning. The most conservative estimate of social transmission accounted for 85% of observed events, with an estimated 15-fold increase in learning rate for each time a novice observed an informed individual moss-sponging. We conclude that group-specific behavioral variants in wild chimpanzees can be socially learned, adding to the evidence that this prerequisite for culture originated in a common ancestor of great apes and humans, long before the advent of modern humans.


Asunto(s)
Modelos Psicológicos , Pan troglodytes/psicología , Conducta Social , Comportamiento del Uso de la Herramienta , Animales , Femenino , Aprendizaje/fisiología , Masculino , Pan troglodytes/fisiología , Factores de Tiempo
8.
Virus Evol ; 10(1): vead079, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361817

RESUMEN

Pathogen evolution is one of the least predictable components of disease emergence, particularly in nature. Here, building on principles established by the geographic mosaic theory of coevolution, we develop a quantitative, spatially explicit framework for mapping the evolutionary risk of viral emergence. Driven by interest in diseases like Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus disease 2019 (COVID-19), we examine the global biogeography of bat-origin betacoronaviruses, and find that coevolutionary principles suggest geographies of risk that are distinct from the hotspots and coldspots of host richness. Further, our framework helps explain patterns like a unique pool of merbecoviruses in the Neotropics, a recently discovered lineage of divergent nobecoviruses in Madagascar, and-most importantly-hotspots of diversification in southeast Asia, sub-Saharan Africa, and the Middle East that correspond to the site of previous zoonotic emergence events. Our framework may help identify hotspots of future risk that have also been previously overlooked, like West Africa and the Indian subcontinent, and may more broadly help researchers understand how host ecology shapes the evolution and diversity of pandemic threats.

9.
Sci Total Environ ; 944: 173837, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38866145

RESUMEN

Human activities are having a massive negative impact on biodiversity and ecological processes worldwide. The rate and magnitude of ecological transformations induced by climate change, habitat destruction, overexploitation and pollution are now so substantial that a sixth mass extinction event is currently underway. The biodiversity crisis of the Anthropocene urges scientists to put forward a transformative vision to promote the conservation of biodiversity, and thus indirectly the preservation of ecosystem functions. Here, we identify pressing issues in global change biology research and propose an integrative framework based on multilayer biological networks as a tool to support conservation actions and marine risk assessments in multi-stressor scenarios. Multilayer networks can integrate different levels of environmental and biotic complexity, enabling us to combine information on molecular, physiological and behaviour responses, species interactions and biotic communities. The ultimate aim of this framework is to link human-induced environmental changes to species physiology, fitness, biogeography and ecosystem impacts across vast seascapes and time frames, to help guide solutions to address biodiversity loss and ecological tipping points. Further, we also define our current ability to adopt a widespread use of multilayer networks within ecology, evolution and conservation by providing examples of case-studies. We also assess which approaches are ready to be transferred and which ones require further development before use. We conclude that multilayer biological networks will be crucial to inform (using reliable multi-levels integrative indicators) stakeholders and support their decision-making concerning the sustainable use of resources and marine conservation.


Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Conservación de los Recursos Naturales/métodos , Organismos Acuáticos/fisiología , Monitoreo del Ambiente/métodos
10.
Ecol Lett ; 16(7): 853-61, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23692591

RESUMEN

The biodiversity-ecosystem functioning (BEF) relationship is central in community ecology. Its drivers in competitive systems (sampling effect and functional complementarity) are intuitive and elegant, but we lack an integrative understanding of these drivers in complex ecosystems. Because networks encompass two key components of the BEF relationship (species richness and biomass flow), they provide a key to identify these drivers, assuming that we have a meaningful measure of functional complementarity. In a network, diversity can be defined by species richness, the number of trophic levels, but perhaps more importantly, the diversity of interactions. In this paper, we define the concept of trophic complementarity (TC), which emerges through exploitative and apparent competition processes, and study its contribution to ecosystem functioning. Using a model of trophic community dynamics, we show that TC predicts various measures of ecosystem functioning, and generate a range of testable predictions. We find that, in addition to the number of species, the structure of their interactions needs to be accounted for to predict ecosystem productivity.


Asunto(s)
Biodiversidad , Ecosistema , Cadena Alimentaria , Animales , Extinción Biológica , Modelos Teóricos
11.
Parasitology ; 140(11): 1340-5, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23920022

RESUMEN

Network theory is gaining momentum as a descriptive tool in community ecology. Because organisms with the same lifestyle can still exhibit ecological differences, it is crucial to determine the scale at which networks should be described. Here we show that networks of hosts (mammals) and parasites (ectoparasitic gamasid mites) differ when either facultative or obligatory parasites only are considered. More importantly, the structure of these networks is opposed, with obligatory parasites networks being more modular, and facultative parasites networks being more nested. Our results have consequences for the way we define which species to include in ecological networks, which we discuss in the light of community ecology and epidemiology.


Asunto(s)
Eulipotyphla/parasitología , Interacciones Huésped-Parásitos , Infestaciones por Ácaros/veterinaria , Ácaros/fisiología , Modelos Estadísticos , Enfermedades de los Roedores/parasitología , Animales , Ecología , Ecosistema , Infestaciones por Ácaros/parasitología , Parásitos , Roedores
12.
PeerJ ; 11: e14620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793892

RESUMEN

Background: Range maps are a useful tool to describe the spatial distribution of species. However, they need to be used with caution, as they essentially represent a rough approximation of a species' suitable habitats. When stacked together, the resulting communities in each grid cell may not always be realistic, especially when species interactions are taken into account. Here we show the extent of the mismatch between range maps, provided by the International Union for Conservation of Nature (IUCN), and species interactions data. More precisely, we show that local networks built from those stacked range maps often yield unrealistic communities, where species of higher trophic levels are completely disconnected from primary producers. Methodology: We used the well-described Serengeti food web of mammals and plants as our case study, and identify areas of data mismatch within predators' range maps by taking into account food web structure. We then used occurrence data from the Global Biodiversity Information Facility (GBIF) to investigate where data is most lacking. Results: We found that most predator ranges comprised large areas without any overlapping distribution of their prey. However, many of these areas contained GBIF occurrences of the predator. Conclusions: Our results suggest that the mismatch between both data sources could be due either to the lack of information about ecological interactions or the geographical occurrence of prey. We finally discuss general guidelines to help identify defective data among distributions and interactions data, and we recommend this method as a valuable way to assess whether the occurrence data that are being used, even if incomplete, are ecologically accurate.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Biodiversidad , Plantas , Mamíferos
13.
Patterns (N Y) ; 4(6): 100738, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37409053

RESUMEN

Predicting host-virus interactions is fundamentally a network science problem. We develop a method for bipartite network prediction that combines a recommender system (linear filtering) with an imputation algorithm based on low-rank graph embedding. We test this method by applying it to a global database of mammal-virus interactions and thus show that it makes biologically plausible predictions that are robust to data biases. We find that the mammalian virome is under-characterized anywhere in the world. We suggest that future virus discovery efforts could prioritize the Amazon Basin (for its unique coevolutionary assemblages) and sub-Saharan Africa (for its poorly characterized zoonotic reservoirs). Graph embedding of the imputed network improves predictions of human infection from viral genome features, providing a shortlist of priorities for laboratory studies and surveillance. Overall, our study indicates that the global structure of the mammal-virus network contains a large amount of information that is recoverable, and this provides new insights into fundamental biology and disease emergence.

14.
Ecol Lett ; 15(12): 1353-61, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22994257

RESUMEN

In a context of global changes, and amidst the perpetual modification of community structure undergone by most natural ecosystems, it is more important than ever to understand how species interactions vary through space and time. The integration of biogeography and network theory will yield important results and further our understanding of species interactions. It has, however, been hampered so far by the difficulty to quantify variation among interaction networks. Here, we propose a general framework to study the dissimilarity of species interaction networks over time, space or environments, allowing both the use of quantitative and qualitative data. We decompose network dissimilarity into interactions and species turnover components, so that it is immediately comparable to common measures of ß-diversity. We emphasise that scaling up ß-diversity of community composition to the ß-diversity of interactions requires only a small methodological step, which we foresee will help empiricists adopt this method. We illustrate the framework with a large dataset of hosts and parasites interactions and highlight other possible usages. We discuss a research agenda towards a biogeographical theory of species interactions.


Asunto(s)
Ecosistema , Modelos Biológicos , Animales , Roedores/parasitología , Especificidad de la Especie
15.
Proc Biol Sci ; 279(1727): 299-308, 2012 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-21653583

RESUMEN

Understanding the mechanisms underlying ecological specialization is central to our understanding of community ecology and evolution. Although theoretical work has investigated how variable environments may affect specialization in single species, little is known about how such variation impacts bipartite network structure in antagonistically coevolving systems. Here, we develop and analyse a general model of victim-enemy coevolution that explicitly includes resource and population dynamics. We investigate how temporal environmental heterogeneity affects the evolution of specialization and associated community structure. Environmental productivity influences victim investment in resistance, which will shape patterns of specialization through its regulating effect on enemy investment in infectivity. We also investigate the epidemiological consequences of environmental variability and show that enemy population density is maximized for intermediate lengths of productive seasons, which corresponds to situations where enemies can evolve higher infectivity than victims can evolve defence. We discuss our results in the light of empirical studies, and further highlight ways in which our model applies to a range of natural systems.


Asunto(s)
Evolución Biológica , Ambiente , Cadena Alimentaria , Adaptación Fisiológica , Animales , Genotipo , Densidad de Población , Dinámica Poblacional
17.
mBio ; 13(2): e0298521, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35229639

RESUMEN

Data that catalogue viral diversity on Earth have been fragmented across sources, disciplines, formats, and various degrees of open sharing, posing challenges for research on macroecology, evolution, and public health. Here, we solve this problem by establishing a dynamically maintained database of vertebrate-virus associations, called The Global Virome in One Network (VIRION). The VIRION database has been assembled through both reconciliation of static data sets and integration of dynamically updated databases. These data sources are all harmonized against one taxonomic backbone, including metadata on host and virus taxonomic validity and higher classification; additional metadata on sampling methodology and evidence strength are also available in a harmonized format. In total, the VIRION database is the largest open-source, open-access database of its kind, with roughly half a million unique records that include 9,521 resolved virus "species" (of which 1,661 are ICTV ratified), 3,692 resolved vertebrate host species, and 23,147 unique interactions between taxonomically valid organisms. Together, these data cover roughly a quarter of mammal diversity, a 10th of bird diversity, and ∼6% of the estimated total diversity of vertebrates, and a much larger proportion of their virome than any previous database. We show how these data can be used to test hypotheses about microbiology, ecology, and evolution and make suggestions for best practices that address the unique mix of evidence that coexists in these data. IMPORTANCE Animals and their viruses are connected by a sprawling, tangled network of species interactions. Data on the host-virus network are available from several sources, which use different naming conventions and often report metadata in different levels of detail. VIRION is a new database that combines several of these existing data sources, reconciles taxonomy to a single consistent backbone, and reports metadata in a format designed by and for virologists. Researchers can use VIRION to easily answer questions like "Can any fish viruses infect humans?" or "Which bats host coronaviruses?" or to build more advanced predictive models, making it an unprecedented step toward a full inventory of the global virome.


Asunto(s)
Quirópteros , Virus , Animales , Virus ADN , Virión , Viroma , Virus/genética
18.
Lancet Microbe ; 3(8): e625-e637, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35036970

RESUMEN

Despite the global investment in One Health disease surveillance, it remains difficult and costly to identify and monitor the wildlife reservoirs of novel zoonotic viruses. Statistical models can guide sampling target prioritisation, but the predictions from any given model might be highly uncertain; moreover, systematic model validation is rare, and the drivers of model performance are consequently under-documented. Here, we use the bat hosts of betacoronaviruses as a case study for the data-driven process of comparing and validating predictive models of probable reservoir hosts. In early 2020, we generated an ensemble of eight statistical models that predicted host-virus associations and developed priority sampling recommendations for potential bat reservoirs of betacoronaviruses and bridge hosts for SARS-CoV-2. During a time frame of more than a year, we tracked the discovery of 47 new bat hosts of betacoronaviruses, validated the initial predictions, and dynamically updated our analytical pipeline. We found that ecological trait-based models performed well at predicting these novel hosts, whereas network methods consistently performed approximately as well or worse than expected at random. These findings illustrate the importance of ensemble modelling as a buffer against mixed-model quality and highlight the value of including host ecology in predictive models. Our revised models showed an improved performance compared with the initial ensemble, and predicted more than 400 bat species globally that could be undetected betacoronavirus hosts. We show, through systematic validation, that machine learning models can help to optimise wildlife sampling for undiscovered viruses and illustrates how such approaches are best implemented through a dynamic process of prediction, data collection, validation, and updating.


Asunto(s)
COVID-19 , Quirópteros , Virus , Animales , COVID-19/epidemiología , SARS-CoV-2 , Filogenia
19.
Ecol Lett ; 14(9): 841-51, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21699641

RESUMEN

Ecology Letters (2011) 14: 841-851 ABSTRACT: Ecological specialisation concerns all species and underlies many major ecological and evolutionary patterns. Yet its status as a unifying concept is not always appreciated because of its similarity to concepts of the niche, the many levels of biological phenomena to which it applies, and the complexity of the mechanisms influencing it. The evolution of specialisation requires the coupling of constraints on adaptive evolution with covariation of genotype and environmental performance. This covariation itself depends upon organismal properties such as dispersal behaviour and life history and complexity in the environment stemming from factors such as species interactions and spatio-temporal heterogeneity in resources. Here, we develop a view on specialisation that integrates across the range of biological phenomena with the goal of developing a more predictive conceptual framework that specifically accounts for the importance of biotic complexity and coevolutionary events.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Aptitud Genética , Ecosistema , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA