Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Magn Reson Med ; 92(2): 715-729, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38623934

RESUMEN

PURPOSE: We propose a quantitative framework for motion-corrected T2 fetal brain measurements in vivo and validate the single-shot fast spin echo (SS-FSE) sequence to perform these measurements. METHODS: Stacks of two-dimensional SS-FSE slices are acquired with different echo times (TE) and motion-corrected with slice-to-volume reconstruction (SVR). The quantitative T2 maps are obtained by a fit to a dictionary of simulated signals. The sequence is selected using simulated experiments on a numerical phantom and validated on a physical phantom scanned on a 1.5T system. In vivo quantitative T2 maps are obtained for five fetuses with gestational ages (GA) 21-35 weeks on the same 1.5T system. RESULTS: The simulated experiments suggested that a TE of 400 ms combined with the clinically utilized TEs of 80 and 180 ms were most suitable for T2 measurements in the fetal brain. The validation on the physical phantom confirmed that the SS-FSE T2 measurements match the gold standard multi-echo spin echo measurements. We measured average T2s of around 200 and 280 ms in the fetal brain grey and white matter, respectively. This was slightly higher than fetal T2* and the neonatal T2 obtained from previous studies. CONCLUSION: The motion-corrected SS-FSE acquisitions with varying TEs offer a promising practical framework for quantitative T2 measurements of the moving fetus.


Asunto(s)
Encéfalo , Feto , Imagen por Resonancia Magnética , Fantasmas de Imagen , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Femenino , Embarazo , Feto/diagnóstico por imagen , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Edad Gestacional , Reproducibilidad de los Resultados , Simulación por Computador , Interpretación de Imagen Asistida por Computador/métodos , Movimiento (Física)
2.
Nat Commun ; 15(1): 16, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331941

RESUMEN

Brain dynamic functional connectivity characterises transient connections between brain regions. Features of brain dynamics have been linked to emotion and cognition in adult individuals, and atypical patterns have been associated with neurodevelopmental conditions such as autism. Although reliable functional brain networks have been consistently identified in neonates, little is known about the early development of dynamic functional connectivity. In this study we characterise dynamic functional connectivity with functional magnetic resonance imaging (fMRI) in the first few weeks of postnatal life in term-born (n = 324) and preterm-born (n = 66) individuals. We show that a dynamic landscape of brain connectivity is already established by the time of birth in the human brain, characterised by six transient states of neonatal functional connectivity with changing dynamics through the neonatal period. The pattern of dynamic connectivity is atypical in preterm-born infants, and associated with atypical social, sensory, and repetitive behaviours measured by the Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores at 18 months of age.


Asunto(s)
Trastorno Autístico , Recien Nacido Prematuro , Preescolar , Lactante , Adulto , Humanos , Recién Nacido , Encéfalo/patología , Mapeo Encefálico , Imagen por Resonancia Magnética
3.
Front Radiol ; 3: 1327075, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38304343

RESUMEN

Introduction: Ultra-high field MR imaging offers marked gains in signal-to-noise ratio, spatial resolution, and contrast which translate to improved pathological and anatomical sensitivity. These benefits are particularly relevant for the neonatal brain which is rapidly developing and sensitive to injury. However, experience of imaging neonates at 7T has been limited due to regulatory, safety, and practical considerations. We aimed to establish a program for safely acquiring high resolution and contrast brain images from neonates on a 7T system. Methods: Images were acquired from 35 neonates on 44 occasions (median age 39 + 6 postmenstrual weeks, range 33 + 4 to 52 + 6; median body weight 2.93 kg, range 1.57 to 5.3 kg) over a median time of 49 mins 30 s. Peripheral body temperature and physiological measures were recorded throughout scanning. Acquired sequences included T2 weighted (TSE), Actual Flip angle Imaging (AFI), functional MRI (BOLD EPI), susceptibility weighted imaging (SWI), and MR spectroscopy (STEAM). Results: There was no significant difference between temperature before and after scanning (p = 0.76) and image quality assessment compared favorably to state-of-the-art 3T acquisitions. Anatomical imaging demonstrated excellent sensitivity to structures which are typically hard to visualize at lower field strengths including the hippocampus, cerebellum, and vasculature. Images were also acquired with contrast mechanisms which are enhanced at ultra-high field including susceptibility weighted imaging, functional MRI, and MR spectroscopy. Discussion: We demonstrate safety and feasibility of imaging vulnerable neonates at ultra-high field and highlight the untapped potential for providing important new insights into brain development and pathological processes during this critical phase of early life.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA