RESUMEN
Microbial and danger signals result in inflammasome activation and release of inflammatory cytokines through mechanisms that remain elusive. Cai et al. and Lu et al. show that triggering of inflammasome sensors induces prion-like polymerization of the adaptor ASC into filaments. These structures function as platforms for inflammatory cytokine production and represent a unified mechanism for inflammasome assembly.
Asunto(s)
Evolución Biológica , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Inmunidad Innata , Inflamasomas/química , Inflamasomas/inmunología , Priones/metabolismo , Transducción de Señal , Levaduras/inmunología , Animales , Proteínas Adaptadoras de Señalización CARD , HumanosRESUMEN
Even though SYK and ZAP70 kinases share high sequence homology and serve analogous functions, their expression in B and T cells is strictly segregated throughout evolution. Here, we identified aberrant ZAP70 expression as a common feature in a broad range of B cell malignancies. We validated SYK as the kinase that sets the thresholds for negative selection of autoreactive and premalignant clones. When aberrantly expressed in B cells, ZAP70 competes with SYK at the BCR signalosome and redirects SYK from negative selection to tonic PI3K signaling, thereby promoting B cell survival. In genetic mouse models for B-ALL and B-CLL, conditional expression of Zap70 accelerated disease onset, while genetic deletion impaired malignant transformation. Inducible activation of Zap70 during B cell development compromised negative selection of autoreactive B cells, resulting in pervasive autoantibody production. Strict segregation of the two kinases is critical for normal B cell selection and represents a central safeguard against the development of autoimmune disease and B cell malignancies.
Asunto(s)
Autoinmunidad , Neoplasias/enzimología , Neoplasias/prevención & control , Quinasa Syk/metabolismo , Proteína Tirosina Quinasa ZAP-70/metabolismo , Animales , Antígenos CD19/metabolismo , Linfocitos B , Calcio/metabolismo , Diferenciación Celular , Transformación Celular Neoplásica , Activación Enzimática , Humanos , Tolerancia Inmunológica , Linfoma de Células B/enzimología , Linfoma de Células B/patología , Ratones , Modelos Genéticos , Factores de Transcripción NFATC/metabolismo , Proteínas de Neoplasias , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de SeñalRESUMEN
Mucosal surfaces are exposed to environmental substances and represent a major portal of entry for microorganisms. The innate immune system is responsible for early defense against infections and it is believed that the interferons (IFNs) constitute the first line of defense against viruses. Here we identify an innate antiviral pathway that works at epithelial surfaces before the IFNs. The pathway is activated independently of known innate sensors of viral infections through a mechanism dependent on viral O-linked glycans, which induce CXCR3 chemokines and stimulate antiviral activity in a manner dependent on neutrophils. This study therefore identifies a previously unknown layer of antiviral defense that exerts its action on epithelial surfaces before the classical IFN response is operative.
Asunto(s)
Inmunidad Innata , Interferones/metabolismo , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo , Virosis/inmunología , Virosis/metabolismo , Animales , Línea Celular , Quimiocina CXCL10/biosíntesis , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Glicosilación , Herpes Simple/genética , Herpes Simple/inmunología , Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 2/inmunología , Humanos , Interferones/genética , Ligandos , Ratones , Ratones Noqueados , Membrana Mucosa/virología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Polisacáridos/inmunología , Receptores CXCR3/deficiencia , Receptores CXCR3/metabolismo , Vagina/inmunología , Vagina/metabolismo , Vagina/virología , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo , Carga Viral , Virosis/virologíaRESUMEN
Double-stranded DNA (dsDNA) in the cytoplasm triggers the production of interleukin 1ß (IL-1ß) as an antiviral host response, and deregulation of the pathways involved can promote inflammatory disease. Here we report a direct cytosolic interaction between the DNA-damage sensor Rad50 and the innate immune system adaptor CARD9. Transfection of dendritic cells with dsDNA or infection of dendritic cells with a DNA virus induced the formation of dsDNA-Rad50-CARD9 signaling complexes for activation of the transcription factor NF-κB and the generation of pro-IL-1ß. Primary cells conditionally deficient in Rad50 or lacking CARD9 consequently exhibited defective DNA-induced production of IL-1ß, and Card9(-/-) mice had impaired inflammatory responses after infection with a DNA virus in vivo. Our results define a cytosolic DNA-recognition pathway for inflammation and a physical and functional connection between a conserved DNA-damage sensor and the innate immune response to pathogens.
Asunto(s)
Proteínas Adaptadoras de Señalización CARD/inmunología , Enzimas Reparadoras del ADN/inmunología , ADN Viral/inmunología , Proteínas de Unión al ADN/inmunología , Interleucina-1beta/biosíntesis , Virus Vaccinia/inmunología , Ácido Anhídrido Hidrolasas , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Proteína 10 de la LLC-Linfoma de Células B , Proteínas Adaptadoras de Señalización CARD/genética , Línea Celular , Citosol/inmunología , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Células Dendríticas/inmunología , Activación Enzimática , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Ratones Noqueados , FN-kappa B/inmunología , Transducción de Señal , Receptor Toll-Like 4/biosíntesis , Receptor Toll-Like 9/biosíntesis , Virus Vaccinia/genéticaRESUMEN
Humoral autoimmunity paralleled by the accumulation of follicular helper T cells (T(FH) cells) is linked to mutation of the gene encoding the RNA-binding protein roquin-1. Here we found that T cells lacking roquin caused pathology in the lung and accumulated as cells of the T(H)17 subset of helper T cells in the lungs. Roquin inhibited T(H)17 cell differentiation and acted together with the endoribonuclease regnase-1 to repress target mRNA encoding the T(H)17 cell-promoting factors IL-6, ICOS, c-Rel, IRF4, IκBNS and IκBζ. This cooperation required binding of RNA by roquin and the nuclease activity of regnase-1. Upon recognition of antigen by the T cell antigen receptor (TCR), roquin and regnase-1 proteins were cleaved by the paracaspase MALT1. Thus, this pathway acts as a 'rheostat' by translating TCR signal strength via graded inactivation of post-transcriptional repressors and differential derepression of targets to enhance T(H)17 differentiation.
Asunto(s)
Caspasas/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Ribonucleasas/metabolismo , Células Th17/citología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión/inmunología , Diferenciación Celular/inmunología , Línea Celular , Genes rel/genética , Células HEK293 , Humanos , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Factores Reguladores del Interferón/genética , Interleucina-6/genética , Péptidos y Proteínas de Señalización Intracelular , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , Proteínas Nucleares/genética , Proteínas/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia , Células Th17/inmunología , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Constitutive activation of the MALT1 paracaspase in conventional T cells of Malt1TBM/TBM (TRAF6 Binding Mutant = TBM) mice causes fatal inflammation and autoimmunity, but the involved targets and underlying molecular mechanisms are unknown. We genetically rendered a single MALT1 substrate, the RNA-binding protein (RBP) Roquin-1, insensitive to MALT1 cleavage. These Rc3h1Mins/Mins mice showed normal immune homeostasis. Combining Rc3h1Mins/Mins alleles with those encoding for constitutively active MALT1 (TBM) prevented spontaneous T cell activation and restored viability of Malt1TBM/TBM mice. Mechanistically, we show how antigen/MHC recognition is translated by MALT1 into Roquin cleavage and derepression of Roquin targets. Increasing T cell receptor (TCR) signals inactivated Roquin more effectively, and only high TCR strength enabled derepression of high-affinity targets to promote Th17 differentiation. Induction of experimental autoimmune encephalomyelitis (EAE) revealed increased cleavage of Roquin-1 in disease-associated Th17 compared to Th1 cells in the CNS. T cells from Rc3h1Mins/Mins mice did not efficiently induce the high-affinity Roquin-1 target IκBNS in response to TCR stimulation, showed reduced Th17 differentiation, and Rc3h1Mins/Mins mice were protected from EAE. These data demonstrate how TCR signaling and MALT1 activation utilize graded cleavage of Roquin to differentially regulate target mRNAs that control T cell activation and differentiation as well as the development of autoimmunity.
Asunto(s)
Autoinmunidad , Encefalomielitis Autoinmune Experimental , Ratones , Animales , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Inflamación/metabolismo , Diferenciación Celular , Encefalomielitis Autoinmune Experimental/genética , Receptores de Antígenos de Linfocitos T/genética , Ubiquitina-Proteína LigasasRESUMEN
Medicinal chemistry has discovered thousands of potent protein and lipid kinase inhibitors. These may be developed into therapeutic drugs or chemical probes to study kinase biology. Because of polypharmacology, a large part of the human kinome currently lacks selective chemical probes. To discover such probes, we profiled 1,183 compounds from drug discovery projects in lysates of cancer cell lines using Kinobeads. The resulting 500,000 compound-target interactions are available in ProteomicsDB and we exemplify how this molecular resource may be used. For instance, the data revealed several hundred reasonably selective compounds for 72 kinases. Cellular assays validated GSK986310C as a candidate SYK (spleen tyrosine kinase) probe and X-ray crystallography uncovered the structural basis for the observed selectivity of the CK2 inhibitor GW869516X. Compounds targeting PKN3 were discovered and phosphoproteomics identified substrates that indicate target engagement in cells. We anticipate that this molecular resource will aid research in drug discovery and chemical biology.
RESUMEN
Imiquimod is a small-molecule ligand of Toll-like receptor-7 (TLR7) that is licensed for the treatment of viral infections and cancers of the skin. Imiquimod has TLR7-independent activities that are mechanistically unexplained, including NLRP3 inflammasome activation in myeloid cells and apoptosis induction in cancer cells. We investigated the mechanism of inflammasome activation by imiquimod and the related molecule CL097 and determined that K+ efflux was dispensable for NLRP3 activation by these compounds. Imiquimod and CL097 inhibited the quinone oxidoreductases NQO2 and mitochondrial Complex I. This induced a burst of reactive oxygen species (ROS) and thiol oxidation, and led to NLRP3 activation via NEK7, a recently identified component of this inflammasome. Metabolic consequences of Complex I inhibition and endolysosomal effects of imiquimod might also contribute to NLRP3 activation. Our results reveal a K+ efflux-independent mechanism for NLRP3 activation and identify targets of imiquimod that might be clinically relevant.
Asunto(s)
Inflamasomas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Potasio/metabolismo , ARN Nuclear Pequeño/farmacología , Animales , Complejo I de Transporte de Electrón/metabolismo , Ratones , Quinasas Relacionadas con NIMA/metabolismo , Quinona Reductasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 7/metabolismoRESUMEN
The impact of epigenetics on the differentiation of memory T (Tmem) cells is poorly defined. We generated deep epigenomes comprising genome-wide profiles of DNA methylation, histone modifications, DNA accessibility, and coding and non-coding RNA expression in naive, central-, effector-, and terminally differentiated CD45RA+ CD4+ Tmem cells from blood and CD69+ Tmem cells from bone marrow (BM-Tmem). We observed a progressive and proliferation-associated global loss of DNA methylation in heterochromatic parts of the genome during Tmem cell differentiation. Furthermore, distinct gradually changing signatures in the epigenome and the transcriptome supported a linear model of memory development in circulating T cells, while tissue-resident BM-Tmem branched off with a unique epigenetic profile. Integrative analyses identified candidate master regulators of Tmem cell differentiation, including the transcription factor FOXP1. This study highlights the importance of epigenomic changes for Tmem cell biology and demonstrates the value of epigenetic data for the identification of lineage regulators.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular/inmunología , Epigénesis Genética/inmunología , Epigenómica/métodos , Memoria Inmunológica/inmunología , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica/métodos , Humanos , Aprendizaje Automático , Reacción en Cadena de la Polimerasa , TranscriptomaRESUMEN
VAV1-MYO1F is a recently identified gain-of-function fusion protein of the proto-oncogene Vav guanine nucleotide exchange factor 1 (VAV1) that is recurrently detected in T-cell non-Hodgkin's lymphoma (T-NHL) patients. However, the pathophysiological functions of VAV1-MYO1F in lymphomagenesis are insufficiently defined. Therefore, we generated transgenic mouse models to conditionally express VAV1-MYO1F in T-cells in vivo. We demonstrate that VAV1-MYO1F triggers cell autonomous activation of T-cell signaling with an activation of the ERK, JNK, and AKT pathways. VAV1-MYO1F expression induces a T-cell activation phenotype with high surface expression of CD25, ICOS, CD44, PD-1, and decreased CD62L as well as aberrant T-cell differentiation, proliferation, and neoplastic transformation. Consequently, the VAV1-MYO1F expressing T-cells induce a malignant T lymphoproliferative disease with 100% penetrance in vivo that mimics key aspects of human peripheral T-cell lymphoma. These results demonstrate that the human T-cell oncogene VAV1-MYO1F is sufficient to trigger oncogenic T-cell signaling and neoplastic transformation, and moreover, it provides a new clinically relevant mouse model to explore the pathogenesis of and treatment concepts for human T-cell lymphoma.
Asunto(s)
Linfoma de Células T Periférico , Proteínas Proto-Oncogénicas c-vav , Ratones , Humanos , Animales , Proteínas Proto-Oncogénicas c-vav/genética , Proteínas Proto-Oncogénicas c-vav/metabolismo , Linfoma de Células T Periférico/genética , Transducción de Señal , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Ratones Transgénicos , Oncogenes , Miosina Tipo I/genética , Miosina Tipo I/metabolismoRESUMEN
Cancer cells are in most instances characterized by rapid proliferation and uncontrolled cell division. Hence, they must adapt to proliferation-induced metabolic stress through intrinsic or acquired antimetabolic stress responses to maintain homeostasis and survival. One mechanism to achieve this is reprogramming gene expression in a metabolism-dependent manner. MondoA (also known as Myc-associated factor X-like protein X-interacting protein [MLXIP]), a member of the MYC interactome, has been described as an example of such a metabolic sensor. However, the role of MondoA in malignancy is not fully understood and the underlying mechanism in metabolic responses remains elusive. By assessing patient data sets, we found that MondoA overexpression is associated with worse survival in pediatric common acute lymphoblastic leukemia (ALL; B-precursor ALL [B-ALL]). Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) and RNA-interference approaches, we observed that MondoA depletion reduces the transformational capacity of B-ALL cells in vitro and dramatically inhibits malignant potential in an in vivo mouse model. Interestingly, reduced expression of MondoA in patient data sets correlated with enrichment in metabolic pathways. The loss of MondoA correlated with increased tricarboxylic acid cycle activity. Mechanistically, MondoA senses metabolic stress in B-ALL cells by restricting oxidative phosphorylation through reduced pyruvate dehydrogenase activity. Glutamine starvation conditions greatly enhance this effect and highlight the inability to mitigate metabolic stress upon loss of MondoA in B-ALL. Our findings give novel insight into the function of MondoA in pediatric B-ALL and support the notion that MondoA inhibition in this entity offers a therapeutic opportunity and should be further explored.
Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Estrés Fisiológico , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genéticaRESUMEN
The cellular mechanisms required to ensure homeostasis of the hematopoietic niche and the ability of this niche to support hematopoiesis upon stress remain elusive. We here identify Wnt5a in Osterix+ mesenchymal progenitor and stem cells (MSPCs) as a critical factor for niche-dependent hematopoiesis. Mice lacking Wnt5a in MSPCs suffer from stress-related bone marrow (BM) failure and increased mortality. Niche cells devoid of Wnt5a show defective actin stress fiber orientation due to an elevated activity of the small GTPase CDC42. This results in incorrect positioning of autophagosomes and lysosomes, thus reducing autophagy and increasing oxidative stress. In MSPCs from patients from BM failure states which share features of peripheral cytopenia and hypocellular BM, we find similar defects in actin stress fiber orientation, reduced and incorrect colocalization of autophagosomes and lysosomes, and CDC42 activation. Strikingly, a short pharmacological intervention to attenuate elevated CDC42 activation in vivo in mice prevents defective actin-anchored autophagy in MSPCs, salvages hematopoiesis and protects against lethal cytopenia upon stress. In summary, our study identifies Wnt5a as a restriction factor for niche homeostasis by affecting CDC42-regulated actin stress-fiber orientation and autophagy upon stress. Our data further imply a critical role for autophagy in MSPCs for adequate support of hematopoiesis by the niche upon stress and in human diseases characterized by peripheral cytopenias and hypocellular BM.
Asunto(s)
Autofagia , Trastornos de Fallo de la Médula Ósea/metabolismo , Hematopoyesis , Células Madre Mesenquimatosas/citología , Animales , Células Cultivadas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Estrés Oxidativo , Proteína Wnt-5a/metabolismoRESUMEN
BACKGROUND AND AIMS: Histomorphology is a powerful and cost-efficient tool for evaluating inflammatory and neoplastic conditions. Inflammatory bowel disease (IBD) is a widespread condition with globally rising incidences, and a lot of research is done to better understand the pathogenesis of IBD and to identify potential therapeutic approaches. However, standardized and reproducible scores for the histomorphological evaluation of murine IBD models are lacking. Therefore, we aimed to develop an easy-to-use and reproducible score for standardized assessment of colitis and associated cancer models. METHODS: In this study, samples from three different colitis models with and without associated cancer formation were analyzed to develop a universal, robust, and reproducible score for the grading of murine colitis models using the following three parameters: 1. Extent of leucocyte infiltration, 2. Tissue damage, 3. Architectural disruption of the mucosa. RESULTS: A scoring system was established for different kinds of colitis models (genetically induced enterocolitis, genetically induced metabolic injury, and chemically induced colitis-associated cancer) and all stages of the disease, from mild inflammatory changes to severe inflammation with neoplastic changes as the extreme extent of IBD. The scoring scheme is easy to use, can easily be learned, and proves to have a high interrater reliability. CONCLUSIONS: We propose a robust histological scoring system for the assessment of murine colitis and colitis-associated cancer models, giving more researchers access to conclusive and reliable histological assessment.
RESUMEN
This corrects the article DOI: 10.1038/nature24649.
RESUMEN
Thromboembolic events are common in patients with essential thrombocythemia (ET). However, the pathophysiological mechanisms underlying the increased thrombotic risk remain to be determined. Here, we perform the first phenotypical characterization of platelet expression using single-cell mass cytometry in six ET patients and six age- and sex-matched healthy individuals. A large panel of 18 transmembrane regulators of platelet function and activation were analyzed, at baseline and after ex-vivo stimulation with thrombin receptor-activating peptide (TRAP). We detected a significant overexpression of the activation marker CD62P (p-Selectin) (p = .049) and the collagen receptor GPVI (p = .044) in non-stimulated ET platelets. In contrast, ET platelets had a lower expression of the integrin subunits of the fibrinogen receptor GPIIb/IIIa CD41 (p = .036) and CD61 (p = .044) and of the von Willebrand factor receptor CD42b (p = .044). Using the FlowSOM algorithm, we identified 2 subclusters of ET platelets with a prothrombotic expression profile, one of them (cluster 3) significantly overrepresented in ET (22.13% of the total platelets in ET, 2.94% in controls, p = .035). Platelet counts were significantly increased in ET compared to controls (p = .0123). In ET, MPV inversely correlated with platelet count (r=-0.96). These data highlight the prothrombotic phenotype of ET and postulate GPVI as a potential target to prevent thrombosis in these patients.
Essential thrombocythemia (ET) is a rare disease characterized by an increased number of platelets in the blood. As a complication, many of these patients develop a blood clot, which can be life-threatening. So far, the reason behind the higher risk of blood clots is unclear. In this study, we analyzed platelet surface markers that play a critical role in platelet function and platelet activation using a modern technology called mass cytometry. For this purpose, blood samples from 6 patients with ET and 6 healthy control individuals were analyzed. We found significant differences between ET platelets and healthy platelets. ET platelets had higher expression levels of p-Selectin (CD62P), a key marker of platelet activation, and of the collagen receptor GPVI, which is important for clot formation. These results may be driven by a specific platelet subcluster overrepresented in ET. Other surface markers, such as the fibrinogen receptor GPIIb/IIIa CD41, CD61, and the von Willebrand factor receptor CD42b, were lower expressed in ET platelets. When ET platelets were treated with the clotting factor thrombin (thrombin receptor-activating peptide, TRAP), we found a differential response in platelet activation compared to healthy platelets. In conclusion, our results show an increased activation and clotting potential of ET platelets. The platelet surface protein GPVI may be a potential drug target to prevent abnormal blood clotting in ET patients.
Asunto(s)
Plaquetas , Trombocitemia Esencial , Trombosis , Humanos , Trombocitemia Esencial/metabolismo , Trombocitemia Esencial/complicaciones , Plaquetas/metabolismo , Masculino , Femenino , Trombosis/metabolismo , Trombosis/etiología , Persona de Mediana Edad , Anciano , Citometría de Flujo/métodos , Activación Plaquetaria , Estudios de Casos y Controles , AdultoRESUMEN
Regulatory T cells (Tregs) are essential for the inhibition of immunity and the maintenance of tissue homeostasis. Signals from the T-cell antigen receptor (TCR) are critical for early Treg development, their expansion, and inhibitory activity. Although TCR-engaged activation of the paracaspase MALT1 is important for these Treg activities, the MALT1 effector pathways in Tregs remain ill-defined. Here, we demonstrate that MALT1 protease activity controls the TCR-induced upregulation of the transcription factor MYC and the subsequent expression of MYC target genes in Tregs. These mechanisms are important for Treg-intrinsic mitochondrial function, optimal respiratory capacity, and homeostatic Treg proliferation. Consistently, conditional deletion of Myc in Tregs results similar to MALT1 inactivation in a lethal autoimmune inflammatory syndrome. Together, these results identify a MALT1 protease-mediated link between TCR signaling in Tregs and MYC control that coordinates metabolism and Treg expansion for the maintenance of immune homeostasis.
Asunto(s)
Proliferación Celular , Activación de Linfocitos , Mitocondrias/inmunología , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/inmunología , Proteínas Proto-Oncogénicas c-myc/inmunología , Linfocitos T Reguladores/inmunología , Animales , Ratones , Ratones Transgénicos , Mitocondrias/genética , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Proteínas Proto-Oncogénicas c-myc/genéticaRESUMEN
Activation of NF-κB transcription factors by receptors of the innate or adaptive immune system is essential for host defense. However, after danger is eliminated, NF-κB signaling needs to be tightly downregulated for the maintenance of tissue homeostasis. This review highlights key negative regulatory principles that affect the amount, localization or conformational properties of NF-κB-activating proteins to attenuate the NF-κB response. These mechanisms are needed to prevent inflammation, autoimmune disease and oncogenesis.
Asunto(s)
FN-kappa B/inmunología , Animales , Regulación hacia Abajo/inmunología , Retroalimentación , Homeostasis/inmunología , Humanos , FN-kappa B/antagonistas & inhibidores , Transducción de Señal/inmunología , Transcripción Genética/inmunología , Activación Transcripcional/inmunologíaRESUMEN
Cutaneous T-cell lymphomas (CTCLs) are a clinically heterogeneous collection of lymphomas of the skin-homing T cell. To identify molecular drivers of disease phenotypes, we assembled representative samples of CTCLs from patients with diverse disease subtypes and stages. Via DNA/RNA-sequencing, immunophenotyping, and ex vivo functional assays, we identified the landscape of putative driver genes, elucidated genetic relationships between CTCLs across disease stages, and inferred molecular subtypes in patients with stage-matched leukemic disease. Collectively, our analysis identified 86 putative driver genes, including 19 genes not previously implicated in this disease. Two mutations have never been described in any cancer. Functionally, multiple mutations augment T-cell receptor-dependent proliferation, highlighting the importance of this pathway in lymphomagenesis. To identify putative genetic causes of disease heterogeneity, we examined the distribution of driver genes across clinical cohorts. There are broad similarities across disease stages. Many driver genes are shared by mycosis fungoides (MF) and Sezary syndrome (SS). However, there are significantly more structural variants in leukemic disease, leading to highly recurrent deletions of putative tumor suppressors that are uncommon in early-stage skin-centered MF. For example, TP53 is deleted in 7% and 87% of MF and SS, respectively. In both human and mouse samples, PD1 mutations drive aggressive behavior. PD1 wild-type lymphomas show features of T-cell exhaustion. PD1 deletions are sufficient to reverse the exhaustion phenotype, promote a FOXM1-driven transcriptional signature, and predict significantly worse survival. Collectively, our findings clarify CTCL genetics and provide novel insights into pathways that drive diverse disease phenotypes.
Asunto(s)
Linfoma Cutáneo de Células T/genética , Transcriptoma , Animales , Células Cultivadas , Proteína Forkhead Box M1/genética , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Ratones , Mutación , Oncogenes , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Recognition of cell death by the innate immune system triggers inflammatory responses. However, how these reactions are regulated is not well understood. Here, we identify the inhibitory C-type lectin receptor Clec12a as a specific receptor for dead cells. Both human and mouse Clec12a could physically sense uric acid crystals (monosodium urate, MSU), which are key danger signals for cell-death-induced immunity. Clec12a inhibited inflammatory responses to MSU in vitro, and Clec12a-deficient mice exhibited hyperinflammatory responses after being challenged with MSU or necrotic cells and after radiation-induced thymocyte killing in vivo. Thus, we identified a negative regulatory MSU receptor that controls noninfectious inflammation in response to cell death that has implications for autoimmunity and inflammatory disease.
Asunto(s)
Muerte Celular , Inflamación/metabolismo , Lectinas Tipo C/metabolismo , Receptores Mitogénicos/metabolismo , Ácido Úrico/metabolismo , Animales , Muerte Celular/genética , Muerte Celular/inmunología , Línea Celular , Inflamación/genética , Inflamación/inmunología , Lectinas Tipo C/genética , Ratones , Ratones Noqueados , Modelos Biológicos , Activación Neutrófila/genética , Activación Neutrófila/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Receptores Mitogénicos/genética , Ácido Úrico/inmunologíaRESUMEN
T cell non-Hodgkin lymphomas are a heterogeneous group of highly aggressive malignancies with poor clinical outcomes. T cell lymphomas originate from peripheral T cells and are frequently characterized by genetic gain-of-function variants in T cell receptor (TCR) signalling molecules. Although these oncogenic alterations are thought to drive TCR pathways to induce chronic proliferation and cell survival programmes, it remains unclear whether T cells contain tumour suppressors that can counteract these events. Here we show that the acute enforcement of oncogenic TCR signalling in lymphocytes in a mouse model of human T cell lymphoma drives the strong expansion of these cells in vivo. However, this response is short-lived and robustly counteracted by cell-intrinsic mechanisms. A subsequent genome-wide in vivo screen using T cell-specific transposon mutagenesis identified PDCD1, which encodes the inhibitory receptor programmed death-1 (PD-1), as a master gene that suppresses oncogenic T cell signalling. Mono- and bi-allelic deletions of PDCD1 are also recurrently observed in human T cell lymphomas with frequencies that can exceed 30%, indicating high clinical relevance. Mechanistically, the activity of PD-1 enhances levels of the tumour suppressor PTEN and attenuates signalling by the kinases AKT and PKC in pre-malignant cells. By contrast, a homo- or heterozygous deletion of PD-1 allows unrestricted T cell growth after an oncogenic insult and leads to the rapid development of highly aggressive lymphomas in vivo that are readily transplantable to recipients. Thus, the inhibitory PD-1 receptor is a potent haploinsufficient tumour suppressor in T cell lymphomas that is frequently altered in human disease. These findings extend the known physiological functions of PD-1 beyond the prevention of immunopathology after antigen-induced T cell activation, and have implications for T cell lymphoma therapies and for current strategies that target PD-1 in the broader context of immuno-oncology.