Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37047216

RESUMEN

Cardiac organoids are in vitro self-organizing and three-dimensional structures composed of multiple cardiac cells (i.e., cardiomyocytes, endothelial cells, cardiac fibroblasts, etc.) with or without biological scaffolds. Since cardiac organoids recapitulate structural and functional characteristics of the native heart to a higher degree compared to the conventional two-dimensional culture systems, their applications, in combination with pluripotent stem cell technologies, are being widely expanded for the investigation of cardiogenesis, cardiac disease modeling, drug screening and development, and regenerative medicine. In this mini-review, recent advances in cardiac organoid technologies are summarized in chronological order, with a focus on the methodological points for each organoid formation. Further, the current limitations and the future perspectives in these promising systems are also discussed.


Asunto(s)
Células Endoteliales , Células Madre Pluripotentes , Organoides , Medicina Regenerativa/métodos , Fibroblastos
2.
Semin Cell Dev Biol ; 100: 29-51, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31862220

RESUMEN

The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.


Asunto(s)
Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Comunicación Paracrina , Células Madre Pluripotentes/metabolismo , Regeneración , Animales , Humanos , Miocardio/citología , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Ingeniería de Tejidos
3.
Circulation ; 144(17): 1409-1428, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34694888

RESUMEN

BACKGROUND: Complex molecular programs in specific cell lineages govern human heart development. Hypoplastic left heart syndrome (HLHS) is the most common and severe manifestation within the spectrum of left ventricular outflow tract obstruction defects occurring in association with ventricular hypoplasia. The pathogenesis of HLHS is unknown, but hemodynamic disturbances are assumed to play a prominent role. METHODS: To identify perturbations in gene programs controlling ventricular muscle lineage development in HLHS, we performed whole-exome sequencing of 87 HLHS parent-offspring trios, nuclear transcriptomics of cardiomyocytes from ventricles of 4 patients with HLHS and 15 controls at different stages of heart development, single cell RNA sequencing, and 3D modeling in induced pluripotent stem cells from 3 patients with HLHS and 3 controls. RESULTS: Gene set enrichment and protein network analyses of damaging de novo mutations and dysregulated genes from ventricles of patients with HLHS suggested alterations in specific gene programs and cellular processes critical during fetal ventricular cardiogenesis, including cell cycle and cardiomyocyte maturation. Single-cell and 3D modeling with induced pluripotent stem cells demonstrated intrinsic defects in the cell cycle/unfolded protein response/autophagy hub resulting in disrupted differentiation of early cardiac progenitor lineages leading to defective cardiomyocyte subtype differentiation/maturation in HLHS. Premature cell cycle exit of ventricular cardiomyocytes from patients with HLHS prevented normal tissue responses to developmental signals for growth, leading to multinucleation/polyploidy, accumulation of DNA damage, and exacerbated apoptosis, all potential drivers of left ventricular hypoplasia in absence of hemodynamic cues. CONCLUSIONS: Our results highlight that despite genetic heterogeneity in HLHS, many mutations converge on sequential cellular processes primarily driving cardiac myogenesis, suggesting novel therapeutic approaches.


Asunto(s)
Síndrome del Corazón Izquierdo Hipoplásico/genética , Organogénesis/genética , Heterogeneidad Genética , Humanos
4.
Basic Res Cardiol ; 117(1): 11, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35258704

RESUMEN

Cardiosphere-derived cells (CDCs) generated from human cardiac biopsies have been shown to have disease-modifying bioactivity in clinical trials. Paradoxically, CDCs' cellular origin in the heart remains elusive. We studied the molecular identity of CDCs using single-cell RNA sequencing (sc-RNAseq) in comparison to cardiac non-myocyte and non-hematopoietic cells (cardiac fibroblasts/CFs, smooth muscle cells/SMCs and endothelial cells/ECs). We identified CDCs as a distinct and mitochondria-rich cell type that shared biological similarities with non-myocyte cells but not with cardiac progenitor cells derived from human-induced pluripotent stem cells. CXCL6 emerged as a new specific marker for CDCs. By analysis of sc-RNAseq data from human right atrial biopsies in comparison with CDCs we uncovered transcriptomic similarities between CDCs and CFs. By direct comparison of infant and adult CDC sc-RNAseq data, infant CDCs revealed GO-terms associated with cardiac development. To analyze the beneficial effects of CDCs (pro-angiogenic, anti-fibrotic, anti-apoptotic), we performed functional in vitro assays with CDC-derived extracellular vesicles (EVs). CDC EVs augmented in vitro angiogenesis and did not stimulate scarring. They also reduced the expression of pro-apoptotic Bax in NRCMs. In conclusion, CDCs were disclosed as mitochondria-rich cells with unique properties but also with similarities to right atrial CFs. CDCs displayed highly proliferative, secretory and immunomodulatory properties, characteristics that can also be found in activated or inflammatory cell types. By special culture conditions, CDCs earn some bioactivities, including angiogenic potential, which might modify disease in certain disorders.


Asunto(s)
Células Endoteliales , Adulto , Humanos , Miocitos Cardíacos , Análisis de Secuencia de ARN , Células Madre
5.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408844

RESUMEN

The human heart has the least regenerative capabilities among tissues and organs, and heart disease continues to be a leading cause of mortality in the industrialized world with insufficient therapeutic options and poor prognosis. Therefore, developing new therapeutic strategies for heart regeneration is a major goal in modern cardiac biology and medicine. Recent advances in stem cell biology and biotechnologies such as human pluripotent stem cells (hPSCs) and cardiac tissue engineering hold great promise for opening novel paths to heart regeneration and repair for heart disease, although these areas are still in their infancy. In this review, we summarize and discuss the recent progress in cardiac tissue engineering strategies, highlighting stem cell engineering and cardiomyocyte maturation, development of novel functional biomaterials and biofabrication tools, and their therapeutic applications involving drug discovery, disease modeling, and regenerative medicine for heart disease.


Asunto(s)
Cardiopatías , Células Madre Pluripotentes , Bioingeniería , Cardiopatías/terapia , Humanos , Miocitos Cardíacos , Medicina Regenerativa , Ingeniería de Tejidos
6.
Mol Med ; 27(1): 102, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34496741

RESUMEN

BACKGROUND: The human L39X phospholamban (PLN) cardiomyopathic mutant has previously been reported as a null mutation but the detailed molecular pathways that lead to the complete lack of detectable protein remain to be clarified. Previous studies have shown the implication between an impaired cellular degradation homeostasis and cardiomyopathy development. Therefore, uncovering the underlying mechanism responsible for the lack of PLN protein has important implications in understanding the patient pathology, chronic human calcium dysregulation and aid the development of potential therapeutics. METHODS: A panel of mutant and wild-type reporter tagged PLN modified mRNA (modRNA) constructs were transfected in human embryonic stem cell-derived cardiomyocytes. Lysosomal and proteasomal chemical inhibitors were used together with cell imaging and protein analysis tools in order to dissect degradation pathways associated with expressed PLN constructs. Transcriptional profiling of the cardiomyocytes transfected by wild-type or L39X mutant PLN modRNA was analysed with bulk RNA sequencing. RESULTS: Our modRNA assay system revealed that transfected L39X mRNA was stable and actively translated in vitro but with only trace amount of protein detectable. Proteasomal inhibition of cardiomyocytes transfected with L39X mutant PLN modRNA showed a fourfold increase in protein expression levels. Additionally, RNA sequencing analysis of protein degradational pathways showed a significant distinct transcriptomic signature between wild-type and L39X mutant PLN modRNA transfected cardiomyocytes. CONCLUSION: Our results demonstrate that the cardiomyopathic PLN null mutant L39X is rapidly, actively and specifically degraded by proteasomal pathways. Herein, and to the best of our knowledge, we report for the first time the usage of modified mRNAs to screen for and illuminate alternative molecular pathways found in genes associated with inherited cardiomyopathies.


Asunto(s)
Proteínas de Unión al Calcio/genética , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Homocigoto , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Mensajero/genética , Alelos , Sustitución de Aminoácidos , Biomarcadores , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatías/diagnóstico , Línea Celular , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Humanos , Biosíntesis de Proteínas , Estabilidad del ARN
7.
Stem Cells ; 38(6): 741-755, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32129551

RESUMEN

Cardiac progenitor formation is one of the earliest committed steps of human cardiogenesis and requires the cooperation of multiple gene sets governed by developmental signaling cascades. To determine the key regulators for cardiac progenitor formation, we have developed a two-stage genome-wide CRISPR-knockout screen. We mimicked the progenitor formation process by differentiating human pluripotent stem cells (hPSCs) into cardiomyocytes, monitored by two distinct stage markers of early cardiac mesodermal formation and commitment to a multipotent heart progenitor cell fate: MESP1 and ISL1, respectively. From the screen output, we compiled a list of 15 candidate genes. After validating seven of them, we identified ZIC2 as an essential gene for cardiac progenitor formation. ZIC2 is known as a master regulator of neurogenesis. hPSCs with ZIC2 mutated still express pluripotency markers. However, their ability to differentiate into cardiomyocytes was greatly attenuated. RNA-Seq profiling of the ZIC2-mutant cells revealed that the mutants switched their cell fate alternatively to the noncardiac cell lineage. Further, single cell RNA-seq analysis showed the ZIC2 mutants affected the apelin receptor-related signaling pathway during mesoderm formation. Our results provide a new link between ZIC2 and human cardiogenesis and document the potential power of a genome-wide unbiased CRISPR-knockout screen to identify the key steps in human mesoderm precursor cell- and heart progenitor cell-fate determination during in vitro hPSC cardiogenesis.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Estudio de Asociación del Genoma Completo/métodos , Corazón/fisiopatología , Mesodermo/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Humanos , Ratones
8.
EMBO J ; 34(6): 710-38, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25712211

RESUMEN

The latest discoveries and advanced knowledge in the fields of stem cell biology and developmental cardiology hold great promise for cardiac regenerative medicine, enabling researchers to design novel therapeutic tools and approaches to regenerate cardiac muscle for diseased hearts. However, progress in this arena has been hampered by a lack of reproducible and convincing evidence, which at best has yielded modest outcomes and is still far from clinical practice. To address current controversies and move cardiac regenerative therapeutics forward, it is crucial to gain a deeper understanding of the key cellular and molecular programs involved in human cardiogenesis and cardiac regeneration. In this review, we consider the fundamental principles that govern the "programming" and "reprogramming" of a human heart cell and discuss updated therapeutic strategies to regenerate a damaged heart.


Asunto(s)
Linaje de la Célula/fisiología , Reprogramación Celular/fisiología , Corazón/embriología , Miocitos Cardíacos/fisiología , Regeneración/fisiología , Medicina Regenerativa/métodos , Células Madre/fisiología , Animales , Proliferación Celular/fisiología , Humanos , Medicina Regenerativa/tendencias , Transducción de Señal/fisiología , Especificidad de la Especie
10.
J Mol Cell Cardiol ; 86: 121-35, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26231083

RESUMEN

AIMS: It is still controversial whether bone marrow (BM)-derived endothelial progenitor cells (EPCs) can contribute to vascular repair and prevent the progression of vascular diseases. We aimed to characterize BM-derived EPC subpopulations and to evaluate their therapeutic efficacies to repair injured vascular endothelium of systemic and pulmonary arteries. METHODS AND RESULTS: BM mononuclear cells of Fisher-344 rats were cultured under endothelial cell-conditions. Early EPCs appeared on days 3-6. Late-outgrowth and very late-outgrowth EPCs (LOCs and VLOCs) were defined as cells forming cobblestone colonies on days 9-14 and 17-21, respectively. Among EPC subpopulations, LOCs showed the highest angiogenic capability with enhanced proliferation potential and secretion of proangiogenic proteins. To investigate the therapeutic effects of these EPCs, Fisher-344 rats underwent wire-mediated endovascular injury in femoral artery (FA) and were concurrently injected intraperitoneally with 60mg/kg monocrotaline (MCT). Injured rats were then treated with six injections of one of three EPCs (1×10(6) per time). After 4weeks, transplanted LOCs, but not early EPCs or VLOCs, significantly attenuated neointimal lesion formation in injured FAs. Some of CD31(+) LOCs directly replaced the injured FA endothelium (replacement ratio: 11.7±7.0%). In contrast, any EPC treatment could neither replace MCT-injured endothelium of pulmonary arterioles nor prevent the progression of pulmonary arterial hypertension (PAH). LOCs modified protectively the expression profile of angiogenic and inflammatory genes in injured FAs, but not in MCT-injured lungs. CONCLUSION: BM-derived LOCs can contribute to vascular repair of injured systemic artery; however, even they cannot rescue injured pulmonary vasculature under MCT-induced PAH.


Asunto(s)
Células Progenitoras Endoteliales/trasplante , Endotelio Vascular/crecimiento & desarrollo , Hipertensión Pulmonar/patología , Neointima/patología , Enfermedades Vasculares/patología , Animales , Arteriolas/crecimiento & desarrollo , Arteriolas/trasplante , Células de la Médula Ósea/patología , Trasplante de Médula Ósea , Diferenciación Celular/genética , Proliferación Celular , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Endotelio Vascular/patología , Arteria Femoral/efectos de los fármacos , Arteria Femoral/lesiones , Arteria Femoral/patología , Humanos , Hipertensión Pulmonar/terapia , Monocrotalina/administración & dosificación , Neointima/terapia , Ratas , Enfermedades Vasculares/terapia
11.
Arterioscler Thromb Vasc Biol ; 32(3): 654-61, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22116099

RESUMEN

OBJECTIVE: ATP-binding cassette transporter subfamily G member 2 (ABCG2), expressed in microvascular endothelial cells in the heart, has been suggested to regulate several tissue defense mechanisms. This study was performed to elucidate its role in pressure overload-induced cardiac hypertrophy. METHODS AND RESULTS: Pressure overload was induced in 8- to 12-week-old wild-type and Abcg2-/- mice by transverse aortic constriction (TAC). Abcg2-/- mice showed exaggerated cardiac hypertrophy and ventricular remodeling after TAC compared with wild-type mice. In the early phase after TAC, functional impairment in angiogenesis and antioxidant response in myocardium was found in Abcg2-/- mice. In vitro experiments demonstrated that ABCG2 regulates transport of glutathione, an important endogenous antioxidant, from microvascular endothelial cells. Besides, glutathione transported from microvascular endothelial cells in ABCG2-dependent manner ameliorated oxidative stress-induced cardiomyocyte hypertrophy. In vivo, glutathione levels in plasma and the heart were increased in wild-type mice but not in Abcg2-/- mice after TAC. Treatment with the superoxide dismutase mimetic ameliorated cardiac hypertrophy in Abcg2-/- mice after TAC to the same extent as that in wild-type mice, although cardiac dysfunction with impaired angiogenesis was observed in Abcg2-/- mice. CONCLUSION: ABCG2 protects against pressure overload-induced cardiac hypertrophy and heart failure by promoting angiogenesis and antioxidant response.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Antioxidantes/metabolismo , Células Endoteliales/metabolismo , Glutatión/metabolismo , Insuficiencia Cardíaca/prevención & control , Hipertrofia Ventricular Izquierda/prevención & control , Miocitos Cardíacos/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularización Fisiológica , Estrés Oxidativo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Animales , Animales Recién Nacidos , Antioxidantes/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Genotipo , Glutatión/sangre , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Miembro Posterior , Humanos , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatología , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/irrigación sanguínea , Miocitos Cardíacos/efectos de los fármacos , Proteínas de Neoplasias/genética , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Interferencia de ARN , Ratas , Ratas Wistar , Factores de Tiempo , Transfección , Función Ventricular , Remodelación Ventricular
12.
Cardiovasc Res ; 119(5): 1202-1217, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36635482

RESUMEN

AIMS: Retinoic acid (RA) signalling is essential for heart development, and dysregulation of the RA signalling can cause several types of cardiac outflow tract (OFT) defects, the most frequent congenital heart disease (CHD) in humans. Matthew-Wood syndrome is caused by inactivating mutations of a transmembrane protein gene STRA6 that transports vitamin A (retinol) from extracellular into intracellular spaces. This syndrome shows a broad spectrum of malformations including CHD, although murine Stra6-null neonates did not exhibit overt heart defects. Thus, the detailed mechanisms by which STRA6 mutations could lead to cardiac malformations in humans remain unclear. Here, we investigated the role of STRA6 in the context of human cardiogenesis and CHD. METHODS AND RESULTS: To gain molecular signatures in species-specific cardiac development, we first compared single-cell RNA sequencing (RNA-seq) datasets, uniquely obtained from human and murine embryonic hearts. We found that while STRA6 mRNA was much less frequently expressed in murine embryonic heart cells derived from the Mesp1+ lineage tracing mice (Mesp1Cre/+; Rosa26tdTomato), it was expressed predominantly in the OFT region-specific heart progenitors in human developing hearts. Next, we revealed that STRA6-knockout human embryonic stem cells (hESCs) could differentiate into cardiomyocytes similarly to wild-type hESCs, but could not differentiate properly into mesodermal nor neural crest cell-derived smooth muscle cells (SMCs) in vitro. This is supported by the population RNA-seq data showing down-regulation of the SMC-related genes in the STRA6-knockout hESC-derived cells. Further, through machinery assays, we identified the previously unrecognized interaction between RA nuclear receptors RARα/RXRα and TBX1, an OFT-specific cardiogenic transcription factor, which would likely act downstream to STRA6-mediated RA signalling in human cardiogenesis. CONCLUSION: Our study highlights the critical role of human-specific STRA6 progenitors for proper induction of vascular SMCs that is essential for normal OFT formation. Thus, these results shed light on novel and human-specific CHD mechanisms, driven by STRA6 mutations.


Asunto(s)
Cardiopatías Congénitas , Músculo Liso Vascular , Humanos , Animales , Ratones , Músculo Liso Vascular/metabolismo , Corazón , Cardiopatías Congénitas/genética , Regulación de la Expresión Génica , Tretinoina/farmacología , Tretinoina/metabolismo , Vitamina A , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
13.
Nat Commun ; 14(1): 5435, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669989

RESUMEN

Cardiogenic growth factors play important roles in heart development. Placental growth factor (PLGF) has previously been reported to have angiogenic effects; however, its potential role in cardiogenesis has not yet been determined. We analyze single-cell RNA-sequencing data derived from human and primate embryonic hearts and find PLGF shows a biphasic expression pattern, as it is expressed specifically on ISL1+ second heart field progenitors at an earlier stage and on vascular smooth muscle cells (SMCs) and endothelial cells (ECs) at later stages. Using chemically modified mRNAs (modRNAs), we generate a panel of cardiogenic growth factors and test their effects on enhancing cardiomyocyte (CM) and EC induction during different stages of human embryonic stem cell (hESC) differentiations. We discover that only the application of PLGF modRNA at early time points of hESC-CM differentiation can increase both CM and EC production. Conversely, genetic deletion of PLGF reduces generation of CMs, SMCs and ECs in vitro. We also confirm in vivo beneficial effects of PLGF modRNA for development of human heart progenitor-derived cardiac muscle grafts on murine kidney capsules. Further, we identify the previously unrecognized PLGF-related transcriptional networks driven by EOMES and SOX17. These results shed light on the dual cardiomyogenic and vasculogenic effects of PLGF during heart development.


Asunto(s)
Células Endoteliales , Miocardio , Femenino , Humanos , Animales , Ratones , Factor de Crecimiento Placentario , Miocitos Cardíacos , Diferenciación Celular
14.
Nat Biotechnol ; 41(12): 1787-1800, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37012447

RESUMEN

The epicardium, the mesothelial envelope of the vertebrate heart, is the source of multiple cardiac cell lineages during embryonic development and provides signals that are essential to myocardial growth and repair. Here we generate self-organizing human pluripotent stem cell-derived epicardioids that display retinoic acid-dependent morphological, molecular and functional patterning of the epicardium and myocardium typical of the left ventricular wall. By combining lineage tracing, single-cell transcriptomics and chromatin accessibility profiling, we describe the specification and differentiation process of different cell lineages in epicardioids and draw comparisons to human fetal development at the transcriptional and morphological levels. We then use epicardioids to investigate the functional cross-talk between cardiac cell types, gaining new insights into the role of IGF2/IGF1R and NRP2 signaling in human cardiogenesis. Finally, we show that epicardioids mimic the multicellular pathogenesis of congenital or stress-induced hypertrophy and fibrotic remodeling. As such, epicardioids offer a unique testing ground of epicardial activity in heart development, disease and regeneration.


Asunto(s)
Corazón , Pericardio , Humanos , Pericardio/metabolismo , Miocardio , Diferenciación Celular/genética , Linaje de la Célula/genética , Biología
16.
JCI Insight ; 7(2)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34905512

RESUMEN

Tetralogy of Fallot (TOF) is the most common cyanotic heart defect, yet the underlying genetic mechanisms remain poorly understood. Here, we performed whole-genome sequencing analysis on 146 nonsyndromic TOF parent-offspring trios of Chinese ethnicity. Comparison of de novo variants and recessive genotypes of this data set with data from a European cohort identified both overlapping and potentially novel gene loci and revealed differential functional enrichment between cohorts. To assess the impact of these mutations on early cardiac development, we integrated single-cell and spatial transcriptomics of early human heart development with our genetic findings. We discovered that the candidate gene expression was enriched in the myogenic progenitors of the cardiac outflow tract. Moreover, subsets of the candidate genes were found in specific gene coexpression modules along the cardiomyocyte differentiation trajectory. These integrative functional analyses help dissect the pathogenesis of TOF, revealing cellular hotspots in early heart development resulting in cardiac malformations.


Asunto(s)
Inducción Embrionaria/genética , Corazón/embriología , Tetralogía de Fallot , Pueblo Asiatico/genética , China/epidemiología , Análisis por Conglomerados , Redes Reguladoras de Genes/genética , Estudios de Asociación Genética/métodos , Variación Genética , Humanos , Miocitos Cardíacos/fisiología , Polimorfismo de Nucleótido Simple , Tetralogía de Fallot/etnología , Tetralogía de Fallot/genética , Secuenciación Completa del Genoma/métodos
17.
Arterioscler Thromb Vasc Biol ; 30(7): 1315-24, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20413734

RESUMEN

OBJECTIVE: We examined whether phosphodiesterase-5 (PDE5) inhibition can promote ischemia-induced angiogenesis. METHODS AND RESULTS: Unilateral hindlimb ischemia was generated by resecting right femoral artery in wild-type C3H/He mice, treated with either vehicle or a PDE5 inhibitor vardenafil (10 mg/kg per day). Four weeks after surgery, vardenafil significantly enhanced blood flow recovery and augmented capillary collateral formation in ischemic muscle (blood flow ratios of ischemic/nonischemic leg: 0.52+/-0.17 [vehicle] versus 0.92+/-0.09 [vardenafil], P<0.01). Vardenafil upregulated protein expression of vascular endothelial growth factor and hypoxia-inducible factor (HIF)-1 alpha in ischemic muscle and enhanced mobilization of Sca-1/Flk-1-positive endothelial progenitor cells (EPCs) in peripheral blood and bone marrow, contributing to neovascularization. Vardenafil also promoted capillary-like tube formation of human umbilical vein endothelial cells and increased the number of human blood mononuclear cell-derived EPCs in vitro. Furthermore, reporter assays showed that vardenafil and cGMP activated the transactivation activity of HIF-1 under hypoxia. These effects of vardenafil were markedly inhibited by genetic ablation of endothelial nitric oxide synthase, a soluble guanylate cyclase inhibitor, and a protein kinase G inhibitor, respectively. CONCLUSIONS: Our results suggest that PDE5 inhibition enhances ischemia-induced angiogenesis with mobilization of EPCs through a protein kinase G-dependent HIF-1/vascular endothelial growth factor pathway. PDE5 inhibition may have a therapeutic potential to treat ischemic cardiovascular diseases.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Imidazoles/farmacología , Isquemia/tratamiento farmacológico , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5 , Inhibidores de Fosfodiesterasa/farmacología , Piperazinas/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Capilares/efectos de los fármacos , Capilares/enzimología , Capilares/fisiopatología , Hipoxia de la Célula , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Circulación Colateral/efectos de los fármacos , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Miembro Posterior , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Isquemia/enzimología , Isquemia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo III/deficiencia , Óxido Nítrico Sintasa de Tipo III/genética , Interferencia de ARN , Recuperación de la Función , Flujo Sanguíneo Regional/efectos de los fármacos , Transducción de Señal , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Sulfonas/farmacología , Factores de Tiempo , Transfección , Triazinas/farmacología , Diclorhidrato de Vardenafil , Factor A de Crecimiento Endotelial Vascular/genética
18.
Arterioscler Thromb Vasc Biol ; 30(11): 2128-35, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20829509

RESUMEN

OBJECTIVE: To clarify the impact of breast cancer resistance protein 1 (BCRP1)/ATP-binding cassette transporter subfamily G member 2 (ABCG2) expression on cardiac repair after myocardial infarction (MI). METHODS AND RESULTS: The ATP-binding cassette transporter BCRP1/ABCG2 is expressed in various organs, including the heart, and may regulate several tissue defense mechanisms. BCRP1/ABCG2 was mainly expressed in endothelial cells of microvessels in the heart. MI was induced in 8- to 12-week-old wild-type (WT) and Bcrp1/Abcg2 knockout (KO) mice by ligating the left anterior descending artery. At 28 days after MI, the survival rate was significantly lower in KO mice than in WT mice because of cardiac rupture. Echocardiographic, hemodynamic, and histological assessments showed that ventricular remodeling was more deteriorated in KO than in WT mice. Capillary, myofibroblast, and macrophage densities in the peri-infarction area at 5 days after MI were significantly reduced in KO compared with WT mice. In vitro experiments demonstrated that inhibition of BCRP1/ABCG2 resulted in accumulation of intracellular protoporphyrin IX and impaired survival of microvascular endothelial cells under oxidative stress. Moreover, BCRP1/ABCG2 inhibition impaired migration and tube formation of endothelial cells. CONCLUSIONS: BCRP1/ABCG2 plays a pivotal role in cardiac repair after MI via modulation of microvascular endothelial cell survival and function.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Células Endoteliales/fisiología , Microvasos/fisiopatología , Infarto del Miocardio/fisiopatología , Proteínas de Neoplasias/fisiología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Animales , Supervivencia Celular , Femenino , Ratones , Ratones Noqueados , Recuperación de la Función , Cicatrización de Heridas
19.
STAR Protoc ; 2(1): 100339, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33644774

RESUMEN

The combination of population and single-cell RNA sequencing analysis using human embryonic stem cell (hESC) differentiation and developmental tissues is a powerful approach to elucidate an organ-specific cellular and molecular atlas in human embryogenesis. This protocol describes (1) cardiac-directed differentiation and isolation of hESC-derived cardiac derivatives with fluorescence-activated cell sorting, (2) isolation of human embryonic heart-derived single cardiac cells, and (3) construction of cDNA libraries with Smart-seq2. These allow for the preparation of human developmental samples for comprehensive transcriptional analysis. For complete details on the use and execution of this protocol, please refer to Sahara et al. (2019).


Asunto(s)
Diferenciación Celular , Citometría de Flujo , Células Madre Embrionarias Humanas , Miocardio , RNA-Seq , Análisis de la Célula Individual , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Miocardio/citología , Miocardio/metabolismo
20.
Cardiology ; 114(3): 208-11, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19602882

RESUMEN

The Bartonella species have been recently recognized as important causative agents of culture-negative bacterial endocarditis. Antineutrophil cytoplasmic antibodies (ANCAs) have been associated with the spectrum of idiopathic small vessel vasculitis. However, a variety of infections can result in a false-positive ANCA test, and especially subacute bacterial endocarditis (SBE) with the presence of ANCAs occasionally mimics the clinical manifestations of an ANCA-associated vasculitis such as skin purpura and glomerulonephritis. In contrast, noninfectious endocardial involvement is known to be part of the spectrum of the manifestations of the ANCA-associated vasculitis. Therefore, it is crucial to distinguish an ANCA-positive SBE from an ANCA-associated vasculitis with endocardial compromise, because the misdiagnosis of an SBE as an ANCA-associated vasculitis can lead to an inappropriate immunosuppressive therapy with catastrophic consequences. The differential diagnosis is sometimes difficult, especially in the case of culture-negative infective endocarditis with a positive ANCA test. We describe here a case of a culture-negative SBE caused by Bartonellaquintana, accompanied with a positive cytoplasmic ANCA test and clinical findings masquerading as ANCA-associated vasculitis. Both a serological test for Bartonella and polymerase chain reaction restriction fragment length polymorphism analysis were helpful for a correct diagnosis and appropriate treatment.


Asunto(s)
Anticuerpos Anticitoplasma de Neutrófilos/sangre , Infecciones por Bartonella/diagnóstico , Bartonella quintana/aislamiento & purificación , Endocarditis/microbiología , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/diagnóstico , Infecciones por Bartonella/sangre , Diagnóstico Diferencial , Endocarditis/sangre , Endocarditis/diagnóstico , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA