Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
BMC Biol ; 19(1): 100, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980238

RESUMEN

BACKGROUND: Animals and plants diverged over one billion years ago and evolved unique mechanisms for many cellular processes, including cell death. One of the most well-studied cell death programmes in animals, apoptosis, involves gradual cell dismantling and engulfment of cellular fragments, apoptotic bodies, through phagocytosis. However, rigid cell walls prevent plant cell fragmentation and thus apoptosis is not applicable for executing cell death in plants. Furthermore, plants are devoid of the key components of apoptotic machinery, including phagocytosis as well as caspases and Bcl-2 family proteins. Nevertheless, the concept of plant "apoptosis-like programmed cell death" (AL-PCD) is widespread. This is largely due to superficial morphological resemblances between plant cell death and apoptosis, and in particular between protoplast shrinkage in plant cells killed by various stimuli and animal cell volume decrease preceding fragmentation into apoptotic bodies. RESULTS: Here, we provide a comprehensive spatio-temporal analysis of cytological and biochemical events occurring in plant cells subjected to heat shock at 40-55 °C and 85 °C, the experimental conditions typically used to trigger AL-PCD and necrotic cell death, respectively. We show that cell death under both conditions was not accompanied by membrane blebbing or formation of apoptotic bodies, as would be expected during apoptosis. Instead, we observed instant and irreversible permeabilization of the plasma membrane and ATP depletion. These processes did not depend on mitochondrial functionality or the presence of Ca2+ and could not be prevented by an inhibitor of ferroptosis. We further reveal that the lack of protoplast shrinkage at 85 °C, the only striking morphological difference between cell deaths induced by 40-55 °C or 85 °C heat shock, is a consequence of the fixative effect of the high temperature on intracellular contents. CONCLUSIONS: We conclude that heat shock-induced cell death is an energy-independent process best matching definition of necrosis. Although the initial steps of this necrotic cell death could be genetically regulated, classifying it as apoptosis or AL-PCD is a terminological misnomer. Our work supports the viewpoint that apoptosis is not conserved across animal and plant kingdoms and demonstrates the importance of focusing on plant-specific aspects of cell death pathways.


Asunto(s)
Apoptosis , Animales , Caspasas , Muerte Celular , Necrosis , Células Vegetales , Plantas
2.
Plant Cell ; 27(3): 926-43, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25736060

RESUMEN

Tudor Staphylococcal Nuclease (TSN or Tudor-SN; also known as SND1) is an evolutionarily conserved protein involved in the transcriptional and posttranscriptional regulation of gene expression in animals. Although TSN was found to be indispensable for normal plant development and stress tolerance, the molecular mechanisms underlying these functions remain elusive. Here, we show that Arabidopsis thaliana TSN is essential for the integrity and function of cytoplasmic messenger ribonucleoprotein (mRNP) complexes called stress granules (SGs) and processing bodies (PBs), sites of posttranscriptional gene regulation during stress. TSN associates with SGs following their microtubule-dependent assembly and plays a scaffolding role in both SGs and PBs. The enzymatically active tandem repeat of four SN domains is crucial for targeting TSN to the cytoplasmic mRNA complexes and is sufficient for the cytoprotective function of TSN during stress. Furthermore, our work connects the cytoprotective function of TSN with its positive role in stress-induced mRNA decapping. While stress led to a pronounced increase in the accumulation of uncapped mRNAs in wild-type plants, this increase was abrogated in TSN knockout plants. Taken together, our results establish TSN as a key enzymatic component of the catabolic machinery responsible for the processing of mRNAs in the cytoplasmic mRNP complexes during stress.


Asunto(s)
Arabidopsis/metabolismo , Gránulos Citoplasmáticos/metabolismo , Nucleasa Microcócica/metabolismo , Procesamiento Postranscripcional del ARN , Estrés Fisiológico , Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Respuesta al Choque Térmico , Cinética , Meristema/citología , Meristema/metabolismo , Nucleasa Microcócica/química , Microtúbulos/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Caperuzas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/genética
3.
New Phytol ; 212(1): 232-43, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27229374

RESUMEN

The caspase-related protease separase (EXTRA SPINDLE POLES, ESP) plays a major role in chromatid disjunction and cell expansion in Arabidopsis thaliana. Whether the expansion phenotypes are linked to defects in cell division in Arabidopsis ESP mutants remains elusive. Here we present the identification, cloning and characterization of the gymnosperm Norway spruce (Picea abies, Pa) ESP. We used the P. abies somatic embryo system and a combination of reverse genetics and microscopy to explore the roles of Pa ESP during embryogenesis. Pa ESP was expressed in the proliferating embryonal mass, while it was absent in the suspensor cells. Pa ESP associated with kinetochore microtubules in metaphase and then with anaphase spindle midzone. During cytokinesis, it localized on the phragmoplast microtubules and on the cell plate. Pa ESP deficiency perturbed anisotropic expansion and reduced mitotic divisions in cotyledonary embryos. Furthermore, whilst Pa ESP can rescue the chromatid nondisjunction phenotype of Arabidopsis ESP mutants, it cannot rescue anisotropic cell expansion. Our data demonstrate that the roles of ESP in daughter chromatid separation and cell expansion are conserved between gymnosperms and angiosperms. However, the mechanisms of ESP-mediated regulation of cell expansion seem to be lineage-specific.


Asunto(s)
Anafase , Picea/citología , Picea/enzimología , Proteínas de Plantas/metabolismo , Semillas/citología , Semillas/enzimología , Separasa/metabolismo , Secuencia de Aminoácidos , Anisotropía , Proliferación Celular , Cromosomas de las Plantas/genética , Clonación Molecular , Citocinesis , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Microtúbulos/metabolismo , Filogenia , Picea/embriología , Transporte de Proteínas , Semillas/embriología , Análisis de Secuencia de Proteína
4.
Plant Cell ; 25(6): 2171-86, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23898031

RESUMEN

Vesicle trafficking plays an important role in cell division, establishment of cell polarity, and translation of environmental cues to developmental responses. However, the molecular mechanisms regulating vesicle trafficking remain poorly understood. Here, we report that the evolutionarily conserved caspase-related protease separase (extra spindle poles [ESP]) is required for the establishment of cell polarity and cytokinesis in Arabidopsis thaliana. At the cellular level, separase colocalizes with microtubules and RabA2a (for RAS genes from rat brainA2a) GTPase-positive structures. Separase facilitates polar targeting of the auxin efflux carrier PIN-formed2 (PIN2) to the rootward side of the root cortex cells. Plants with the radially swollen4 (rsw4) allele with compromised separase activity, in addition to mitotic failure, display isotropic cell growth, perturbation of auxin gradient formation, slower gravitropic response in roots, and cytokinetic failure. Measurements of the dynamics of vesicle markers on the cell plate revealed an overall reduction of the delivery rates of KNOLLE and RabA2a GTPase in separase-deficient roots. Furthermore, dissociation of the clathrin light chain, a protein that plays major role in the formation of coated vesicles, was slower in rsw4 than in the control. Our results demonstrate that separase is a key regulator of vesicle trafficking, which is indispensable for cytokinesis and the establishment of cell polarity.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Polaridad Celular/genética , Citocinesis/genética , Separasa/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Microtúbulos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Separasa/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
5.
J Cell Sci ; 123(Pt 17): 3019-28, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20699356

RESUMEN

Spatial-temporal flexibility of the actin filament network (F-actin) is essential for all basic cellular functions and is governed by a stochastic dynamic model. In this model, actin filaments that randomly polymerise from a pool of free actin are bundled with other filaments and severed by ADF/cofilin. The fate of the severed fragments is not known. It has been proposed that the fragments are disassembled and the monomeric actin recycled for the polymerisation of new filaments. Here, we have generated tobacco cell lines and Arabidopsis plants expressing the actin marker Lifeact to address the mechanisms of F-actin reorganisation in vivo. We found that F-actin is more dynamic in isotropically expanding cells and that the density of the network changes with a periodicity of 70 seconds. The depolymerisation rate, but not the polymerisation rate, of F-actin increases when microtubules are destabilised. New filaments can be assembled from shorter free cytoplasmic fragments, from the products of F-actin severing and by polymerisation from the ends of extant filaments. Thus, remodelling of F-actin might not require bulk depolymerisation of the entire network, but could occur via severing and end-joining of existing polymers.


Asunto(s)
Actinas/metabolismo , Arabidopsis/metabolismo , Citoesqueleto de Actina/metabolismo , Línea Celular
6.
J Cell Sci ; 122(Pt 23): 4383-92, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19903693

RESUMEN

Rab GTPases of the Arabidopsis Rab-E subclass are related to mammalian Rab8 and are implicated in membrane trafficking from the Golgi to the plasma membrane. Using a yeast two-hybrid assay, Arabidopsis phosphatidylinositol-4-phosphate 5-kinase 2 (PtdIns(4)P 5-kinase 2; also known as PIP5K2), was shown to interact with all five members of the Rab-E subclass but not with other Rab subclasses residing at the Golgi or trans-Golgi network. Interactions in yeast and in vitro were strongest with RAB-E1d[Q74L] and weakest with the RAB-E1d[S29N] suggesting that PIP5K2 interacts with the GTP-bound form. PIP5K2 exhibited kinase activity towards phosphatidylinositol phosphates with a free 5-hydroxyl group, consistent with PtdIns(4)P 5-kinase activity and this activity was stimulated by Rab binding. Rab-E proteins interacted with PIP5K2 via its membrane occupancy and recognition nexus (MORN) domain which is missing from animal and fungal PtdIns(4)P 5-kinases. In plant cells, GFP:PIP5K2 accumulated at the plasma membrane and caused YFP:RAB-E1d to relocate there from its usual position at the Golgi. GFP:PIP5K2 was rapidly turned over by proteasomal activity in planta, and overexpression of YFP:PIP5K2 caused pleiotropic growth abnormalities in transgenic Arabidopsis. We propose that plant cells exhibit a novel interaction in which PIP5K2 binds GTP-bound Rab-E proteins, which may stimulate temporally or spatially localized PtdIns(4,5)P(2) production at the plasma membrane.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Membrana Celular/enzimología , Membrana Celular/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Arabidopsis/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Mutación Puntual , Unión Proteica/genética , Unión Proteica/fisiología , Nicotiana/genética , Nicotiana/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas de Unión al GTP rab/genética
7.
Methods Mol Biol ; 427: 157-71, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18370005

RESUMEN

Plant embryogenesis requires a tight balance between cell proliferation and differentiation. In animals, embryogenesis is dependent on cell migrations, which is in contrast to plant embryogenesis where the rigid cell wall precludes migration. Therefore, plants have to position cells correctly by defining the direction of the division plane during proliferation and control cell shape by local cell expansion. Both these processes are reliant on the organization and dynamics of the cytoskeleton-actin filaments and microtubules. In previous work (7), we have shown that differentiation of the embryo suspensor is accompanied by reorientation of microtubules from random to transverse and reorganization of actin filaments from a fine filamentous network to bundled longitudinal cables. Here, we describe the technique for visualization of cytoskeletal components including actin filaments, microtubules and their associated proteins during the development of plant embryos in whole-mount specimens.


Asunto(s)
Proteínas de Plantas/análisis , Plantas/embriología , Semillas/fisiología , Anafase , Anticuerpos , Western Blotting/métodos , Movimiento Celular , Pared Celular/fisiología , Electroforesis en Gel de Poliacrilamida/métodos , Inmunoensayo/métodos , Metafase , Microtúbulos/fisiología , Células Vegetales , Proteínas de Plantas/aislamiento & purificación , Polilisina , Semillas/citología
8.
Autophagy ; 10(5): 928-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24589969

RESUMEN

Vacuolar programmed cell death (PCD) is indispensable for plant development and is accompanied by a dramatic growth of lytic vacuoles, which gradually digest cytoplasmic content leading to self-clearance of dying cells. Our recent data demonstrate that vacuolar PCD critically requires autophagy and its upstream regulator, a caspase-fold protease metacaspase. Furthermore, both components lie downstream of the point of no return in the cell-death pathway. Here we consider the possibilities that i) autophagy could have both cytotoxic and cytoprotective roles in the vacuolar PCD, and ii) metacaspase could augment autophagic flux through targeting an as yet unknown autophagy repressor.


Asunto(s)
Autofagia/fisiología , Caspasas/fisiología , Fenómenos Fisiológicos de las Plantas , Plantas/enzimología , Vacuolas/fisiología , Animales , Caenorhabditis elegans , Muerte Celular/fisiología , Drosophila melanogaster , Proteínas de Plantas/fisiología , Vacuolas/metabolismo
9.
Curr Biol ; 22(17): 1595-600, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22840520

RESUMEN

Complex animals use a wide variety of adaptor proteins to produce specialized sites of interaction between actin and membranes. Plants do not have these protein families, yet actin-membrane interactions within plant cells are critical for the positioning of subcellular compartments, for coordinating intercellular communication, and for membrane deformation. Novel factors are therefore likely to provide interfaces at actin-membrane contacts in plants, but their identity has remained obscure. Here we identify the plant-specific Networked (NET) superfamily of actin-binding proteins, members of which localize to the actin cytoskeleton and specify different membrane compartments. The founding member of the NET superfamily, NET1A, is anchored at the plasma membrane and predominates at cell junctions, the plasmodesmata. NET1A binds directly to actin filaments via a novel actin-binding domain that defines a superfamily of thirteen Arabidopsis proteins divided into four distinct phylogenetic clades. Members of other clades identify interactions at the tonoplast, nuclear membrane, and pollen tube plasma membrane, emphasizing the role of this superfamily in mediating actin-membrane interactions.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Microfilamentos/fisiología , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Fluorescentes Verdes/análisis , Proteínas de Microfilamentos/análisis , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Modelos Biológicos , Análisis de Secuencia de Proteína , Nicotiana/genética
10.
Curr Biol ; 21(22): 1924-30, 2011 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22079114

RESUMEN

The phragmoplast coordinates cytokinesis in plants [1]. It directs vesicles to the midzone, the site where they coalesce to form the new cell plate. Failure in phragmoplast function results in aborted or incomplete cytokinesis leading to embryo lethality, morphological defects, or multinucleate cells [2, 3]. The asymmetry of vesicular traffic is regulated by microtubules [1, 4, 5, 6], and the current model suggests that this asymmetry is established and maintained through treadmilling of parallel microtubules. However, we have analyzed the behavior of microtubules in the phragmoplast using live-cell imaging coupled with mathematical modeling and dynamic simulations and report that microtubules initiate randomly in the phragmoplast and that the majority exhibit dynamic instability with higher turnover rates nearer to the midzone. The directional transport of vesicles is possible because the majority of the microtubules polymerize toward the midzone. Here, we propose the first inclusive model where microtubule dynamics and phragmoplast asymmetry are consistent with the localization and activity of proteins known to regulate microtubule assembly and disassembly.


Asunto(s)
Citocinesis , Nicotiana/citología , Nicotiana/metabolismo , Línea Celular , Simulación por Computador , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Microtúbulos/metabolismo , Modelos Biológicos , Tubulina (Proteína)/metabolismo
11.
Sci Signal ; 3(152): pe48, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21156934

RESUMEN

Execution of programmed cell death (PCD) in nonmetazoan organisms is morphologically different from apoptotic PCD in animals and lacks a number of key molecular components of apoptotic machinery, including caspases. Yet protozoan, fungal, and plant cells exhibit caspase-like proteolytic activities, which increase in a PCD-dependent manner. This poses a question whether nonmetazoan organisms contain structurally dissimilar proteases that functionally substitute for caspases. Putative ancestors of caspases, metacaspases, are candidates for this role; however, their distinct substrate specificity raises doubts. The identification of a common biological target of caspases and metacaspases and previously unknown functions unrelated to cell death of metacaspases provide new food for thought.


Asunto(s)
Caspasas , Apoptosis , Eucariontes , Evolución Molecular , Péptido Hidrolasas , Especificidad por Sustrato
12.
Nat Cell Biol ; 11(11): 1347-54, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19820703

RESUMEN

Programmed cell death (PCD) is executed by proteases, which cleave diverse proteins thus modulating their biochemical and cellular functions. Proteases of the caspase family and hundreds of caspase substrates constitute a major part of the PCD degradome in animals. Plants lack close homologues of caspases, but instead possess an ancestral family of cysteine proteases, metacaspases. Although metacaspases are essential for PCD, their natural substrates remain unknown. Here we show that metacaspase mcII-Pa cleaves a phylogenetically conserved protein, TSN (Tudor staphylococcal nuclease), during both developmental and stress-induced PCD. TSN knockdown leads to activation of ectopic cell death during reproduction, impairing plant fertility. Surprisingly, human TSN (also known as p100 or SND1), a multifunctional regulator of gene expression, is cleaved by caspase-3 during apoptosis. This cleavage impairs the ability of TSN to activate mRNA splicing, inhibits its ribonuclease activity and is important for the execution of apoptosis. Our results establish TSN as the first biological substrate of metacaspase and demonstrate that despite the divergence of plants and animals from a common ancestor about one billion years ago and their use of distinct PCD pathways, both have retained a common mechanism to compromise cell viability through the cleavage of the same substrate, TSN.


Asunto(s)
Apoptosis/fisiología , Evolución Molecular , Proteínas Nucleares/fisiología , Endonucleasas , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Hidrólisis , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Interferencia de ARN
13.
Plant Cell ; 20(12): 3346-58, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19060108

RESUMEN

The microtubule-associated protein, MAP65, is a member of a family of divergent microtubule-associated proteins from different organisms generally involved in maintaining the integrity of the central spindle in mitosis. The dicotyledon Arabidopsis thaliana and the monocotyledon rice (Oryza sativa) genomes contain 9 and 11 MAP65 genes, respectively. In this work, we show that the majority of these proteins fall into five phylogenetic clades, with the greatest variation between clades being in the C-terminal random coil domain. At least one Arabidopsis and one rice isotype is within each clade, indicating a functional specification for the C terminus. In At MAP65-1, the C-terminal domain is a microtubule binding region (MTB2) harboring the phosphorylation sites that control its activity. The At MAP65 isotypes show differential localization to microtubule arrays and promote microtubule polymerization with variable efficiency in a MTB2-dependent manner. In vivo studies demonstrate that the dynamics of the association and dissociation of different MAP65 isotypes with microtubules can vary up to 10-fold and that this correlates with their ability to promote microtubule polymerization. Our data demonstrate that the C-terminal variable region, MTB2, determines the dynamic properties of individual isotypes and suggest that slower turnover is conditional for more efficient microtubule polymerization.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Immunoblotting , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Plantas/genética , Unión Proteica/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
J Cell Sci ; 119(Pt 15): 3227-37, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16847052

RESUMEN

Cell division depends on the fine control of both microtubule dynamics and microtubule organisation. The microtubule bundling protein MAP65 is a ;midzone MAP' essential for the integrity of the anaphase spindle and cell division. Arabidopsis thaliana MAP65-1 (AtMAP65-1) binds and bundles microtubules by forming 25 nm cross-bridges. Moreover, as AtMAP65-1 bundles microtubules in interphase, anaphase and telophase but does not bind microtubules in prophase or metaphase, its activity through the cell cycle must be under tight control. Here we show that AtMAP65-1 is hyperphosphorylated during prometaphase and metaphase and that CDK and MAPK are involved in this phosphorylation. This phosphorylation inhibits AtMAP65-1 activity. Expression of non-phosphorylatable AtMAP65-1 has a negative effect on mitotic progression resulting in excessive accumulation of microtubules in the metaphase spindle midzone causing a delay in mitosis. We conclude that normal metaphase spindle organisation and the transition to anaphase is dependent on inactivation of AtMAP65-1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ciclo Celular/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Células Cultivadas , Quinasas Ciclina-Dependientes/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/ultraestructura , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosforilación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Huso Acromático/metabolismo , Nicotiana/citología
15.
J Cell Sci ; 118(Pt 14): 3195-201, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16014384

RESUMEN

Plant microtubules are intrinsically more dynamic than those from animals. We know little about the dynamics of the interaction of plant microtubule-associated proteins (MAPs) with microtubules. Here, we have used tobacco and Arabidopsis MAPs with relative molecular mass 65 kDa (NtMAP65-1a and AtMAP65-1), to study their interaction with microtubules in vivo. Using fluorescence recovery after photobleaching we report that the turnover of both NtMAP65-1a and AtMAP65-1 bound to microtubules is four- to fivefold faster than microtubule treadmilling (13 seconds compared with 56 seconds, respectively) and that the replacement of NtMAP65-1a on microtubules is by random association rather than by translocation along microtubules. MAP65 will only bind polymerised microtubules and not its component tubulin dimers. The turnover of NtMAP65-1a and AtMAP65-1 on microtubules is similar in the interphase cortical array, the preprophase band and the phragmoplast, strongly suggesting that their role in these arrays is the same. NtMAP65-1a and AtMAP65-1 are not observed to bind microtubules in the metaphase spindle and their rate of recovery is consistent with their cytoplasmic localisation. In addition, the dramatic reappearance of NtMAP65-1a on microtubules at the spindle midzone in anaphase B suggests that NtMAP65-1a is controlled post-translationally. We conclude that the dynamic properties of these MAPs in vivo taken together with the fact that they have been shown not to effect microtubule polymerisation in vitro, makes them ideally suited to a role in crossbridging microtubules that need to retain spatial organisation in rapidly reorganising microtubule arrays.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/ultraestructura , Dimerización , Recuperación de Fluorescencia tras Fotoblanqueo , Microtúbulos/ultraestructura , Mitosis/fisiología , Resonancia por Plasmón de Superficie , Nicotiana/ultraestructura , Tubulina (Proteína)/metabolismo
16.
Philos Trans R Soc Lond B Biol Sci ; 357(1422): 791-8, 2002 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-12079674

RESUMEN

The plant actin cytoskeleton is a highly dynamic, fibrous structure essential in many cellular processes including cell division and cytoplasmic streaming. This structure is stimulus responsive, being affected by internal stimuli, by biotic and abiotic stresses mediated in signal transduction pathways by actin-binding proteins. The completion of the Arabidopsis genome sequence has allowed a comparative identification of many actin-binding proteins. However, not all are conserved in plants, which possibly reflects the differences in the processes involved in morphogenesis between plant and other cells. Here we have searched for the Arabidopsis equivalents of 67 animal/fungal actin-binding proteins and show that 36 are not conserved in plants. One protein that is conserved across phylogeny is actin-depolymerizing factor or cofilin and we describe our work on the activity of vegetative tissue and pollen-specific isoforms of this protein in plant cells, concluding that they are functionally distinct.


Asunto(s)
Actinas/metabolismo , Arabidopsis/fisiología , Genoma de Planta , Proteínas de Microfilamentos/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Bases de Datos de Proteínas
17.
Plant J ; 33(5): 813-24, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12609024

RESUMEN

Cell and tissue patterning in plant embryo development is well documented. Moreover, it has recently been shown that successful embryogenesis is reliant on programmed cell death (PCD). The cytoskeleton governs cell morphogenesis. However, surprisingly little is known about the role of the cytoskeleton in plant embryogenesis and associated PCD. We have used the gymnosperm, Picea abies, somatic embryogenesis model system to address this question. Formation of the apical-basal embryonic pattern in P. abies proceeds through the establishment of three major cell types: the meristematic cells of the embryonal mass on one pole and the terminally differentiated suspensor cells on the other, separated by the embryonal tube cells. The organisation of microtubules and F-actin changes successively from the embryonal mass towards the distal end of the embryo suspensor. The microtubule arrays appear normal in the embryonal mass cells, but the microtubule network is partially disorganised in the embryonal tube cells and the microtubules disrupted in the suspensor cells. In the same embryos, the microtubule-associated protein, MAP-65, is bound only to organised microtubules. In contrast, in a developmentally arrested cell line, which is incapable of normal embryonic pattern formation, MAP-65 does not bind the cortical microtubules and we suggest that this is a criterion for proembryogenic masses (PEMs) to passage into early embryogeny. In embryos, the organisation of F-actin gradually changes from a fine network in the embryonal mass cells to thick cables in the suspensor cells in which the microtubule network is completely degraded. F-actin de-polymerisation drugs abolish normal embryonic pattern formation and associated PCD in the suspensor, strongly suggesting that the actin network is vital in this PCD pathway.


Asunto(s)
Apoptosis , Citoesqueleto/metabolismo , Picea/citología , Picea/embriología , Proteínas de Plantas , Semillas/citología , Semillas/embriología , Actinas/metabolismo , Tipificación del Cuerpo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo
18.
Plant Cell ; 16(8): 2035-47, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15273298

RESUMEN

The 65-kD microtubule-associated protein (MAP65) family is a family of plant microtubule-bundling proteins. Functional analysis is complicated by the heterogeneity within this family: there are nine MAP65 genes in Arabidopsis thaliana, AtMAP65-1 to AtMAP65-9. To begin the functional dissection of the Arabidopsis MAP65 proteins, we have concentrated on a single isoform, AtMAP65-1, and examined its effect on the dynamics of mammalian microtubules. We show that recombinant AtMAP65-1 does not promote polymerization and does not stabilize microtubules against cold-induced microtubule depolymerization. However, we show that it does induce microtubule bundling in vitro and that this protein forms 25-nm cross-bridges between microtubules. We further demonstrate that the microtubule binding region resides in the C-terminal half of the protein and that Ala409 and Ala420 are essential for the interaction with microtubules. Ala420 is a conserved amino acid in the AtMAP65 family and is mutated to Val in the cytokinesis-defective mutant pleiade-4 of the AtMAP65-3/PLEIADE gene. We show that AtMAP65-1 can form dimers and that a region in the N terminus is responsible for this activity. Neither the microtubule binding region nor the dimerization region alone could induce microtubule bundling, strongly suggesting that dimerization is necessary to produce the microtubule cross-bridges. In vivo, AtMAP65-1 is ubiquitously expressed both during the cell cycle and in all plant organs and tissues with the exception of anthers and petals. Moreover, using an antiserum raised to AtMAP65-1, we show that AtMAP65-1 binds microtubules at specific stages of the cell cycle.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión , Ciclo Celular/fisiología , Células Cultivadas , Dimerización , Regulación de la Expresión Génica de las Plantas , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Datos de Secuencia Molecular , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Porcinos , Tubulina (Proteína)/metabolismo
19.
Plant Cell ; 14(11): 2915-27, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12417710

RESUMEN

Pollen tube growth is dependent on a dynamic actin cytoskeleton, suggesting that actin-regulating proteins are involved. We have examined the regulation of the lily pollen-specific actin-depolymerizing factor (ADF) LlADF1. Its actin binding and depolymerizing activity is pH sensitive, inhibited by certain phosphoinositides, but not controlled by phosphorylation. Compared with its F-actin binding properties, its low activity in depolymerization assays has been used to explain why pollen ADF decorates F-actin in pollen grains. This low activity is incompatible with a role in increasing actin dynamics necessary to promote pollen tube growth. We have identified a plant homolog of actin-interacting protein, AIP1, which enhances the depolymerization of F-actin in the presence of LlADF1 by approximately 60%. Both pollen ADF and pollen AIP1 bind F-actin in pollen grains but are mainly cytoplasmic in pollen tubes. Our results suggest that together these proteins remodel actin filaments as pollen grains enter and exit dormancy.


Asunto(s)
Actinas/metabolismo , Magnoliopsida/genética , Proteínas de Microfilamentos/genética , Polen/crecimiento & desarrollo , Factores Despolimerizantes de la Actina , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Clonación Molecular , Secuencia Conservada/genética , Citoesqueleto/metabolismo , Destrina , Regulación de la Expresión Génica de las Plantas/genética , Concentración de Iones de Hidrógeno , Lilium/genética , Lilium/metabolismo , Magnoliopsida/metabolismo , Proteínas de Microfilamentos/efectos de los fármacos , Proteínas de Microfilamentos/metabolismo , Fosfolípidos/farmacología , Fosforilación , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos , Zea mays/genética , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA