Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 583(7814): 96-102, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32581362

RESUMEN

Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.


Asunto(s)
Internacionalidad , Programas Nacionales de Salud , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación Completa del Genoma , Complejo 2-3 Proteico Relacionado con la Actina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Bases de Datos Factuales , Eritrocitos/metabolismo , Factor de Transcripción GATA1/genética , Humanos , Fenotipo , Sitios de Carácter Cuantitativo , Receptores de Trombopoyetina/genética , Medicina Estatal , Reino Unido
2.
Blood ; 142(22): 1895-1908, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-37647652

RESUMEN

Genetic studies of platelet reactivity (PR) phenotypes may identify novel antiplatelet drug targets. However, such studies have been limited by small sample sizes (n < 5000) because of the complexity of measuring PR. We trained a model to predict PR from complete blood count (CBC) scattergrams. A genome-wide association study of this phenotype in 29 806 blood donors identified 21 distinct associations implicating 20 genes, of which 6 have been identified previously. The effect size estimates were significantly correlated with estimates from a study of flow cytometry-measured PR and a study of a phenotype of in vitro thrombus formation. A genetic score of PR built from the 21 variants was associated with the incidence rates of myocardial infarction and pulmonary embolism. Mendelian randomization analyses showed that PR was causally associated with the risks of coronary artery disease, stroke, and venous thromboembolism. Our approach provides a blueprint for using phenotype imputation to study the determinants of hard-to-measure but biologically important hematological traits.


Asunto(s)
Inhibidores de Agregación Plaquetaria , Trombosis , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Estudio de Asociación del Genoma Completo , Plaquetas , Trombosis/genética , Recuento de Células Sanguíneas
3.
Genet Med ; 26(5): 101097, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38334070

RESUMEN

PURPOSE: Pathogenic variants of FIG4 generate enlarged lysosomes and neurological and developmental disorders. To identify additional genes regulating lysosomal volume, we carried out a genome-wide activation screen to detect suppression of enlarged lysosomes in FIG4-/- cells. METHODS: The CRISPR-a gene activation screen utilized sgRNAs from the promoters of protein-coding genes. Fluorescence-activated cell sorting separated cells with correction of the enlarged lysosomes from uncorrected cells. Patient variants of SLC12A9 were identified by exome or genome sequencing and studied by segregation analysis and clinical characterization. RESULTS: Overexpression of SLC12A9, a solute co-transporter, corrected lysosomal swelling in FIG4-/- cells. SLC12A9 (NP_064631.2) colocalized with LAMP2 at the lysosome membrane. Biallelic variants of SLC12A9 were identified in 3 unrelated probands with neurodevelopmental disorders. Common features included intellectual disability, skeletal and brain structural abnormalities, congenital heart defects, and hypopigmented hair. Patient 1 was homozygous for nonsense variant p.(Arg615∗), patient 2 was compound heterozygous for p.(Ser109Lysfs∗20) and a large deletion, and proband 3 was compound heterozygous for p.(Glu290Glyfs∗36) and p.(Asn552Lys). Fibroblasts from proband 1 contained enlarged lysosomes that were corrected by wild-type SLC12A9 cDNA. Patient variant p.(Asn552Lys) failed to correct the lysosomal defect. CONCLUSION: Impaired function of SLC12A9 results in enlarged lysosomes and a recessive disorder with a recognizable neurodevelopmental phenotype.


Asunto(s)
Lisosomas , Trastornos del Neurodesarrollo , Simportadores de Cloruro de Sodio-Potasio , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Alelos , Mutación con Pérdida de Función/genética , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Linaje , Fenotipo , Simportadores de Cloruro de Sodio-Potasio/genética
4.
Am J Kidney Dis ; 83(6): 829-833, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38211685

RESUMEN

The etiologies of newborn deaths in neonatal intensive care units usually remain unknown, even after genetic testing. Whole-genome sequencing, combined with artificial intelligence-based methods for predicting the effects of non-coding variants, provide an avenue for resolving these deaths. Using one such method, SpliceAI, we identified a maternally inherited deep intronic PKHD1 splice variant (chr6:52030169T>C), in trans with a pathogenic missense variant (p.Thr36Met), in a newborn who died of autosomal recessive polycystic kidney disease at age 2 days. We validated the deep intronic variant's impact in maternal urine-derived cells expressing PKHD1. Reverse transcription polymerase chain reaction followed by Sanger sequencing showed that the variant causes inclusion of 147bp of the canonical intron between exons 29 and 30 of PKHD1 into the mRNA, including a premature stop codon. Allele-specific expression analysis at a heterozygous site in the mother showed that the mutant allele completely suppresses canonical splicing. In an unrelated healthy control, there was no evidence of transcripts including the novel splice junction. We returned a diagnostic report to the parents, who underwent in vitro embryo selection.


Asunto(s)
Intrones , Riñón Poliquístico Autosómico Recesivo , Receptores de Superficie Celular , Humanos , Recién Nacido , Masculino , Intrones/genética , Mutación Missense , Riñón Poliquístico Autosómico Recesivo/genética , Riñón Poliquístico Autosómico Recesivo/diagnóstico , Receptores de Superficie Celular/genética
5.
Nucleic Acids Res ; 49(17): 9686-9695, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34428295

RESUMEN

Diagnosing mitochondrial disorders remains challenging. This is partly because the clinical phenotypes of patients overlap with those of other sporadic and inherited disorders. Although the widespread availability of genetic testing has increased the rate of diagnosis, the combination of phenotypic and genetic heterogeneity still makes it difficult to reach a timely molecular diagnosis with confidence. An objective, systematic method for describing the phenotypic spectra for each variant provides a potential solution to this problem. We curated the clinical phenotypes of 6688 published individuals with 89 pathogenic mitochondrial DNA (mtDNA) mutations, collating 26 348 human phenotype ontology (HPO) terms to establish the MitoPhen database. This enabled a hypothesis-free definition of mtDNA clinical syndromes, an overview of heteroplasmy-phenotype relationships, the identification of under-recognized phenotypes, and provides a publicly available reference dataset for objective clinical comparison with new patients using the HPO. Studying 77 patients with independently confirmed positive mtDNA diagnoses and 1083 confirmed rare disease cases with a non-mitochondrial nuclear genetic diagnosis, we show that HPO-based phenotype similarity scores can distinguish these two classes of rare disease patients with a false discovery rate <10% at a sensitivity of 80%. Enriching the MitoPhen database with more patients will improve predictions for increasingly rare variants.


Asunto(s)
ADN Mitocondrial/química , Bases de Datos Factuales , Enfermedades Mitocondriales/genética , Ontologías Biológicas , Heteroplasmia , Humanos , Enfermedades Mitocondriales/diagnóstico , Mutación , Fenotipo
6.
Blood ; 136(17): 1907-1918, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32573726

RESUMEN

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular dysplasia. Care delivery for HHT patients is impeded by the need for laborious, repeated phenotyping and gaps in knowledge regarding the relationships between causal DNA variants in ENG, ACVRL1, SMAD4 and GDF2, and clinical manifestations. To address this, we analyzed DNA samples from 183 previously uncharacterized, unrelated HHT and suspected HHT cases using the ThromboGenomics high-throughput sequencing platform. We identified 127 rare variants across 168 heterozygous genotypes. Applying modified American College of Medical Genetics and Genomics Guidelines, 106 variants were classified as pathogenic/likely pathogenic and 21 as nonpathogenic (variant of uncertain significance/benign). Unlike the protein products of ACVRL1 and SMAD4, the extracellular ENG amino acids are not strongly conserved. Our inferences of the functional consequences of causal variants in ENG were therefore informed by the crystal structure of endoglin. We then compared the accuracy of predictions of the causal gene blinded to the genetic data using 2 approaches: subjective clinical predictions and statistical predictions based on 8 Human Phenotype Ontology terms. Both approaches had some predictive power, but they were insufficiently accurate to be used clinically, without genetic testing. The distributions of red cell indices differed by causal gene but not sufficiently for clinical use in isolation from genetic data. We conclude that parallel sequencing of the 4 known HHT genes, multidisciplinary team review of variant calls in the context of detailed clinical information, and statistical and structural modeling improve the prognostication and treatment of HHT.


Asunto(s)
Estudios de Asociación Genética , Mutación , Telangiectasia Hemorrágica Hereditaria/genética , Receptores de Activinas Tipo II/química , Receptores de Activinas Tipo II/genética , Estudios de Cohortes , Análisis Mutacional de ADN/métodos , Endoglina/química , Endoglina/genética , Femenino , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Genómica/métodos , Factor 2 de Diferenciación de Crecimiento/química , Factor 2 de Diferenciación de Crecimiento/genética , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Modelos Moleculares , Fenotipo , Estudios Retrospectivos , Análisis de Secuencia de ADN/métodos , Proteína Smad4/química , Proteína Smad4/genética , Telangiectasia Hemorrágica Hereditaria/epidemiología , Telangiectasia Hemorrágica Hereditaria/patología
7.
Blood ; 136(17): 1956-1967, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32693407

RESUMEN

Gray platelet syndrome (GPS) is a rare recessive disorder caused by biallelic variants in NBEAL2 and characterized by bleeding symptoms, the absence of platelet α-granules, splenomegaly, and bone marrow (BM) fibrosis. Due to the rarity of GPS, it has been difficult to fully understand the pathogenic processes that lead to these clinical sequelae. To discern the spectrum of pathologic features, we performed a detailed clinical genotypic and phenotypic study of 47 patients with GPS and identified 32 new etiologic variants in NBEAL2. The GPS patient cohort exhibited known phenotypes, including macrothrombocytopenia, BM fibrosis, megakaryocyte emperipolesis of neutrophils, splenomegaly, and elevated serum vitamin B12 levels. Novel clinical phenotypes were also observed, including reduced leukocyte counts and increased presence of autoimmune disease and positive autoantibodies. There were widespread differences in the transcriptome and proteome of GPS platelets, neutrophils, monocytes, and CD4 lymphocytes. Proteins less abundant in these cells were enriched for constituents of granules, supporting a role for Nbeal2 in the function of these organelles across a wide range of blood cells. Proteomic analysis of GPS plasma showed increased levels of proteins associated with inflammation and immune response. One-quarter of plasma proteins increased in GPS are known to be synthesized outside of hematopoietic cells, predominantly in the liver. In summary, our data show that, in addition to the well-described platelet defects in GPS, there are immune defects. The abnormal immune cells may be the drivers of systemic abnormalities such as autoimmune disease.


Asunto(s)
Gránulos Citoplasmáticos/patología , Heterogeneidad Genética , Síndrome de Plaquetas Grises , Sistema Inmunológico/patología , Fenotipo , Biopsia , Proteínas Sanguíneas/genética , Estudios de Casos y Controles , Estudios de Cohortes , Gránulos Citoplasmáticos/metabolismo , Diagnóstico Diferencial , Frecuencia de los Genes , Estudios de Asociación Genética , Síndrome de Plaquetas Grises/clasificación , Síndrome de Plaquetas Grises/genética , Síndrome de Plaquetas Grises/inmunología , Síndrome de Plaquetas Grises/patología , Humanos , Sistema Inmunológico/fisiología , Enfermedades del Sistema Inmune/sangre , Enfermedades del Sistema Inmune/diagnóstico , Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/patología , Mutación
8.
Breast Cancer Res ; 23(1): 3, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413557

RESUMEN

BACKGROUND: NRG1 gene fusions may be clinically actionable, since cancers carrying the fusion transcripts can be sensitive to tyrosine kinase inhibitors. The NRG1 gene encodes ligands for the HER2(ERBB2)-ERBB3 heterodimeric receptor tyrosine kinase, and the gene fusions are thought to lead to autocrine stimulation of the receptor. The NRG1 fusion expressed in the breast cancer cell line MDA-MB-175 serves as a model example of such fusions, showing the proposed autocrine loop and exceptional drug sensitivity. However, its structure has not been properly characterised, its oncogenic activity has not been fully explained, and there is limited data on such fusions in breast cancer. METHODS: We analysed genomic rearrangements and transcripts of NRG1 in MDA-MB-175 and a panel of 571 breast cancers. RESULTS: We found that the MDA-MB-175 fusion-originally reported as a DOC4(TENM4)-NRG1 fusion, lacking the cytoplasmic tail of NRG1-is in reality a double fusion, PPP6R3-TENM4-NRG1, producing multiple transcripts, some of which include the cytoplasmic tail. We hypothesise that many NRG1 fusions may be oncogenic not for lacking the cytoplasmic domain but because they do not encode NRG1's nuclear-localised form. The fusion in MDA-MB-175 is the result of a very complex genomic rearrangement, which we partially characterised, that creates additional expressed gene fusions, RSF1-TENM4, TPCN2-RSF1, and MRPL48-GAB2. We searched for NRG1 rearrangements in 571 breast cancers subjected to genome sequencing and transcriptome sequencing and found four cases (0.7%) with fusions, WRN-NRG1, FAM91A1-NRG1, ARHGEF39-NRG1, and ZNF704-NRG1, all splicing into NRG1 at the same exon as in MDA-MB-175. However, the WRN-NRG1 and ARHGEF39-NRG1 fusions were out of frame. We identified rearrangements of NRG1 in many more (8% of) cases that seemed more likely to inactivate than to create activating fusions, or whose outcome could not be predicted because they were complex, or both. This is not surprising because NRG1 can be pro-apoptotic and is inactivated in some breast cancers. CONCLUSIONS: Our results highlight the complexity of rearrangements of NRG1 in breast cancers and confirm that some do not activate but inactivate. Careful interpretation of NRG1 rearrangements will therefore be necessary for appropriate patient management.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama/genética , Neurregulina-1/genética , Proteínas de Fusión Oncogénica/genética , Empalme Alternativo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Reordenamiento Génico , Sitios Genéticos , Humanos , Neurregulina-1/química , Neurregulina-1/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Transducción de Señal , Translocación Genética
9.
Blood ; 134(23): 2082-2091, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31064749

RESUMEN

A targeted high-throughput sequencing (HTS) panel test for clinical diagnostics requires careful consideration of the inclusion of appropriate diagnostic-grade genes, the ability to detect multiple types of genomic variation with high levels of analytic sensitivity and reproducibility, and variant interpretation by a multidisciplinary team (MDT) in the context of the clinical phenotype. We have sequenced 2396 index patients using the ThromboGenomics HTS panel test of diagnostic-grade genes known to harbor variants associated with rare bleeding, thrombotic, or platelet disorders (BTPDs). The molecular diagnostic rate was determined by the clinical phenotype, with an overall rate of 49.2% for all thrombotic, coagulation, platelet count, and function disorder patients and a rate of 3.2% for patients with unexplained bleeding disorders characterized by normal hemostasis test results. The MDT classified 745 unique variants, including copy number variants (CNVs) and intronic variants, as pathogenic, likely pathogenic, or variants of uncertain significance. Half of these variants (50.9%) are novel and 41 unique variants were identified in 7 genes recently found to be implicated in BTPDs. Inspection of canonical hemostasis pathways identified 29 patients with evidence of oligogenic inheritance. A molecular diagnosis has been reported for 894 index patients providing evidence that introducing an HTS genetic test is a valuable addition to laboratory diagnostics in patients with a high likelihood of having an inherited BTPD.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas , Hemorragia , Secuenciación de Nucleótidos de Alto Rendimiento , Trombosis , Trastornos de las Plaquetas Sanguíneas/diagnóstico , Trastornos de las Plaquetas Sanguíneas/genética , Femenino , Dosificación de Gen , Hemorragia/diagnóstico , Hemorragia/genética , Hemostasis/genética , Humanos , Masculino , Trombosis/diagnóstico , Trombosis/genética
10.
Blood ; 134(23): 2070-2081, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31217188

RESUMEN

To identify novel causes of hereditary thrombocytopenia, we performed a genetic association analysis of whole-genome sequencing data from 13 037 individuals enrolled in the National Institute for Health Research (NIHR) BioResource, including 233 cases with isolated thrombocytopenia. We found an association between rare variants in the transcription factor-encoding gene IKZF5 and thrombocytopenia. We report 5 causal missense variants in or near IKZF5 zinc fingers, of which 2 occurred de novo and 3 co-segregated in 3 pedigrees. A canonical DNA-zinc finger binding model predicts that 3 of the variants alter DNA recognition. Expression studies showed that chromatin binding was disrupted in mutant compared with wild-type IKZF5, and electron microscopy revealed a reduced quantity of α granules in normally sized platelets. Proplatelet formation was reduced in megakaryocytes from 7 cases relative to 6 controls. Comparison of RNA-sequencing data from platelets, monocytes, neutrophils, and CD4+ T cells from 3 cases and 14 healthy controls showed 1194 differentially expressed genes in platelets but only 4 differentially expressed genes in each of the other blood cell types. In conclusion, IKZF5 is a novel transcriptional regulator of megakaryopoiesis and the eighth transcription factor associated with dominant thrombocytopenia in humans.


Asunto(s)
Plaquetas , Enfermedades Genéticas Congénitas , Mutación de Línea Germinal , Factor de Transcripción Ikaros , Mutación Missense , Trombocitopenia , Trombopoyesis/genética , Plaquetas/metabolismo , Plaquetas/ultraestructura , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestructura , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/ultraestructura , Femenino , Regulación de la Expresión Génica , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Células HEK293 , Humanos , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Masculino , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/patología
11.
Haematologica ; 106(5): 1423-1432, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32299908

RESUMEN

We have identified a rare missense variant on chromosome 9, position 125145990 (GRCh37), in exon 8 in PTGS1 (the gene encoding cyclo-oxygenase 1, COX-1, the target of anti-thrombotic aspirin therapy). We report that in the homozygous state within a large consanguineous family this variant is associated with a bleeding phenotype and alterations in platelet reactivity and eicosanoid production. Western blotting and confocal imaging demonstrated that COX-1 was absent in the platelets of three family members homozygous for the PTGS1 variant but present in their leukocytes. Platelet reactivity, as assessed by aggregometry, lumi-aggregometry and flow cytometry, was impaired in homozygous family members, as were platelet adhesion and spreading. The productions of COX-derived eicosanoids by stimulated platelets were greatly reduced but there were no changes in the levels of urinary metabolites of COX-derived eicosanoids. The proband exhibited additional defects in platelet aggregation and spreading which may explain why her bleeding phenotype was slightly more severe than those of other homozygous affected relatives. This is the first demonstration in humans of the specific loss of platelet COX-1 activity and provides insight into its consequences for platelet function and eicosanoid metabolism. Notably despite the absence of thromboxane A2 (TXA2) formation by platelets, urinary TXA2 metabolites were in the normal range indicating these cannot be assumed as markers of in vivo platelet function. Results from this study are important benchmarks for the effects of aspirin upon platelet COX-1, platelet function and eicosanoid production as they define selective platelet COX-1 ablation within humans.


Asunto(s)
Aspirina , Pruebas de Función Plaquetaria , Plaquetas , Ciclooxigenasa 1/genética , Femenino , Humanos , Agregación Plaquetaria/genética , Tromboxano A2
12.
Haematologica ; 106(10): 2613-2623, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32703790

RESUMEN

Transcriptional profiling of hematopoietic cell subpopulations has helped to characterize the developmental stages of the hematopoietic system and the molecular bases of malignant and non-malignant blood diseases. Previously, only the genes targeted by expression microarrays could be profiled genome-wide. High-throughput RNA sequencing, however, encompasses a broader repertoire of RNA molecules, without restriction to previously annotated genes. We analyzed the BLUEPRINT consortium RNA-sequencing data for mature hematopoietic cell types. The data comprised 90 total RNA-sequencing samples, each composed of one of 27 cell types, and 32 small RNA-sequencing samples, each composed of one of 11 cell types. We estimated gene and isoform expression levels for each cell type using existing annotations from Ensembl. We then used guided transcriptome assembly to discover unannotated transcripts. We identified hundreds of novel non-coding RNA genes and showed that the majority have cell type-dependent expression. We also characterized the expression of circular RNA and found that these are also cell type-specific. These analyses refine the active transcriptional landscape of mature hematopoietic cells, highlight abundant genes and transcriptional isoforms for each blood cell type, and provide a valuable resource for researchers of hematologic development and diseases. Finally, we made the data accessible via a web-based interface: https://blueprint.haem.cam.ac.uk/bloodatlas/.


Asunto(s)
ARN Largo no Codificante , Transcriptoma , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Circular , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN
13.
Hum Mutat ; 41(1): 277-290, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31562665

RESUMEN

The heterogeneous manifestations of MYH9-related disorder (MYH9-RD), characterized by macrothrombocytopenia, Döhle-like inclusion bodies in leukocytes, bleeding of variable severity with, in some cases, ear, eye, kidney, and liver involvement, make the diagnosis for these patients still challenging in clinical practice. We collected phenotypic data and analyzed the genetic variants in more than 3,000 patients with a bleeding or platelet disorder. Patients were enrolled in the BRIDGE-BPD and ThromboGenomics Projects and their samples processed by high throughput sequencing (HTS). We identified 50 patients with a rare variant in MYH9. All patients had macrothrombocytes and all except two had thrombocytopenia. Some degree of bleeding diathesis was reported in 41 of the 50 patients. Eleven patients presented hearing impairment, three renal failure and two elevated liver enzymes. Among the 28 rare variants identified in MYH9, 12 were novel. HTS was instrumental in diagnosing 23 patients (46%). Our results confirm the clinical heterogeneity of MYH9-RD and show that, in the presence of an unclassified platelet disorder with macrothrombocytes, MYH9-RD should always be considered. A HTS-based strategy is a reliable method to reach a conclusive diagnosis of MYH9-RD in clinical practice.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Cadenas Pesadas de Miosina/genética , Adolescente , Adulto , Anciano , Alelos , Niño , Preescolar , Mapeo Cromosómico , Evolución Molecular , Femenino , Técnica del Anticuerpo Fluorescente , Expresión Génica , Estudios de Asociación Genética/métodos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación , Cadenas Pesadas de Miosina/metabolismo , Fenotipo , Adulto Joven
14.
Am J Hum Genet ; 101(1): 104-114, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28669401

RESUMEN

We present a rapid and powerful inference procedure for identifying loci associated with rare hereditary disorders using Bayesian model comparison. Under a baseline model, disease risk is fixed across all individuals in a study. Under an association model, disease risk depends on a latent bipartition of rare variants into pathogenic and non-pathogenic variants, the number of pathogenic alleles that each individual carries, and the mode of inheritance. A parameter indicating presence of an association and the parameters representing the pathogenicity of each variant and the mode of inheritance can be inferred in a Bayesian framework. Variant-specific prior information derived from allele frequency databases, consequence prediction algorithms, or genomic datasets can be integrated into the inference. Association models can be fitted to different subsets of variants in a locus and compared using a model selection procedure. This procedure can improve inference if only a particular class of variants confers disease risk and can suggest particular disease etiologies related to that class. We show that our method, called BeviMed, is more powerful and informative than existing rare variant association methods in the context of dominant and recessive disorders. The high computational efficiency of our algorithm makes it feasible to test for associations in the large non-coding fraction of the genome. We have applied BeviMed to whole-genome sequencing data from 6,586 individuals with diverse rare diseases. We show that it can identify multiple loci involved in rare diseases, while correctly inferring the modes of inheritance, the likely pathogenic variants, and the variant classes responsible.


Asunto(s)
Predisposición Genética a la Enfermedad , Variación Genética , Estudio de Asociación del Genoma Completo , Enfermedades Raras/genética , Cardiomiopatías/genética , Simulación por Computador , Sitios Genéticos , Humanos , Síndromes de Inmunodeficiencia/genética , Péptidos y Proteínas de Señalización Intercelular , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Enfermedades de Inmunodeficiencia Primaria , Probabilidad , Enfermedades de la Retina/genética , Trombocitopenia/genética
15.
Blood ; 132(19): 2067-2077, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30213874

RESUMEN

The ephrin transmembrane receptor family of tyrosine kinases is involved in platelet function. We report the first EPHB2 variant affecting platelets in 2 siblings (P1 and P2) from a consanguineous family with recurrent bleeding and normal platelet counts. Whole-exome sequencing identified a c.2233C>T variant (missense p.R745C) of the EPHB2 gene. P1 and P2 were homozygous for this variant, while their asymptomatic parents were heterozygous. The p.R745C variant within the tyrosine kinase domain was associated with defects in platelet aggregation, αIIbß3 activation, and granule secretion induced by G-protein-coupled receptor (GPCR) agonists and convulxin, as well as in thrombus formation on collagen under flow. In contrast, clot retraction, flow-dependent platelet adhesion, and spreading on fibrinogen were only mildly affected, indicating limited effects on αIIbß3 outside-in signaling. Most importantly, Lyn, Syk, and FcRγ phosphorylation, the initial steps in glycoprotein VI (GPVI) platelet signaling were drastically impaired in the absence of platelet-platelet contact, indicating a positive role for EPHB2 in GPVI activation. Likewise platelet activation by PAR4-AP showed defective Src activation, as opposed to normal protein kinase C activity and Ca2+ mobilization. Overexpression of wild-type and R745C EPHB2 variant in RBL-2H3 (rat basophilic leukemia) cells stably expressing human GPVI confirmed that EPHB2 R745C mutation impaired EPHB2 autophosphorylation but had no effect on ephrin ligand-induced EPHB2 clustering, suggesting it did not interfere with EPHB2-ephrin-mediated cell-to-cell contact. In conclusion, this novel inherited platelet disorder affecting EPHB2 demonstrates this tyrosine kinase receptor plays an important role in platelet function through crosstalk with GPVI and GPCR signaling.


Asunto(s)
Plaquetas/patología , Mutación Missense , Activación Plaquetaria , Receptor EphB2/genética , Adolescente , Plaquetas/metabolismo , Plaquetas/ultraestructura , Niño , Femenino , Humanos , Masculino , Linaje , Adhesividad Plaquetaria , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Receptor EphB2/metabolismo , Transducción de Señal , Adulto Joven
16.
Blood ; 132(13): 1399-1412, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-29898956

RESUMEN

Unlike primary myelofibrosis (PMF) in adults, myelofibrosis in children is rare. Congenital (inherited) forms of myelofibrosis (cMF) have been described, but the underlying genetic mechanisms remain elusive. Here we describe 4 families with autosomal recessive inherited macrothrombocytopenia with focal myelofibrosis due to germ line loss-of-function mutations in the megakaryocyte-specific immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptor G6b-B (G6b, C6orf25, or MPIG6B). Patients presented with a mild-to-moderate bleeding diathesis, macrothrombocytopenia, anemia, leukocytosis and atypical megakaryocytes associated with a distinctive, focal, perimegakaryocytic pattern of bone marrow fibrosis. In addition to identifying the responsible gene, the description of G6b-B as the mutated protein potentially implicates aberrant G6b-B megakaryocytic signaling and activation in the pathogenesis of myelofibrosis. Targeted insertion of human G6b in mice rescued the knockout phenotype and a copy number effect of human G6b-B expression was observed. Homozygous knockin mice expressed 25% of human G6b-B and exhibited a marginal reduction in platelet count and mild alterations in platelet function; these phenotypes were more severe in heterozygous mice that expressed only 12% of human G6b-B. This study establishes G6b-B as a critical regulator of platelet homeostasis in humans and mice. In addition, the humanized G6b mouse will provide an invaluable tool for further investigating the physiological functions of human G6b-B as well as testing the efficacy of drugs targeting this receptor.


Asunto(s)
Mutación con Pérdida de Función , Mielofibrosis Primaria/congénito , Receptores Inmunológicos/genética , Trombocitopenia/congénito , Adolescente , Adulto , Animales , Plaquetas/metabolismo , Plaquetas/patología , Niño , Preescolar , Femenino , Técnicas de Sustitución del Gen , Humanos , Lactante , Masculino , Megacariocitos/metabolismo , Megacariocitos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linaje , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/patología , Trombocitopenia/genética , Trombocitopenia/patología , Adulto Joven
17.
Am J Hum Genet ; 98(3): 490-499, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26924528

RESUMEN

Rare genetic disorders, which can now be studied systematically with affordable genome sequencing, are often caused by high-penetrance rare variants. Such disorders are often heterogeneous and characterized by abnormalities spanning multiple organ systems ascertained with variable clinical precision. Existing methods for identifying genes with variants responsible for rare diseases summarize phenotypes with unstructured binary or quantitative variables. The Human Phenotype Ontology (HPO) allows composite phenotypes to be represented systematically but association methods accounting for the ontological relationship between HPO terms do not exist. We present a Bayesian method to model the association between an HPO-coded patient phenotype and genotype. Our method estimates the probability of an association together with an HPO-coded phenotype characteristic of the disease. We thus formalize a clinical approach to phenotyping that is lacking in standard regression techniques for rare disease research. We demonstrate the power of our method by uncovering a number of true associations in a large collection of genome-sequenced and HPO-coded cases with rare diseases.


Asunto(s)
Estudios de Asociación Genética/métodos , Fenotipo , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Actinina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Teorema de Bayes , Bases de Datos Genéticas , Forminas , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Modelos Logísticos , Modelos Genéticos
18.
Blood ; 130(8): 1026-1030, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28637664

RESUMEN

Heritable platelet function disorders (PFDs) are genetically heterogeneous and poorly characterized. Pathogenic variants in RASGRP2, which encodes calcium and diacylglycerol-regulated guanine exchange factor I (CalDAG-GEFI), have been reported previously in 3 pedigrees with bleeding and reduced platelet aggregation responses. To better define the phenotype associated with pathogenic RASGRP2 variants, we compared high-throughput sequencing and phenotype data from 2042 cases in pedigrees with unexplained bleeding or platelet disorders to data from 5422 controls. Eleven cases harbored 11 different, previously unreported RASGRP2 variants that were biallelic and likely pathogenic. The variants included 5 high-impact variants predicted to prevent CalDAG-GEFI expression and 6 missense variants affecting the CalDAG-GEFI CDC25 domain, which mediates Rap1 activation during platelet inside-out αIIbß3 signaling. Cases with biallelic RASGRP2 variants had abnormal mucocutaneous, surgical, and dental bleeding from childhood, requiring ≥1 blood or platelet transfusion in 78% of cases. Platelets displayed reduced aggregation in response to adenosine 5'-diphosphate and epinephrine, but variable aggregation defects with other agonists. There were no other consistent clinical or laboratory features. These data enable definition of human CalDAG-GEFI deficiency as a nonsyndromic, recessive PFD associated with a moderate or severe bleeding phenotype and complex defects in platelet aggregation.


Asunto(s)
Plaquetas/patología , Factores de Intercambio de Guanina Nucleótido/genética , Hemorragia/genética , Mutación/genética , Alelos , Secuencia de Bases , Femenino , Humanos , Masculino , Linaje
19.
Blood ; 129(4): 520-524, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28064200

RESUMEN

The von Willebrand receptor complex, which is composed of the glycoproteins Ibα, Ibß, GPV, and GPIX, plays an essential role in the earliest steps in hemostasis. During the last 4 decades, it has become apparent that loss of function of any 1 of 3 of the genes encoding these glycoproteins (namely, GP1BA, GP1BB, and GP9) leads to autosomal recessive macrothrombocytopenia complicated by bleeding. A small number of variants in GP1BA have been reported to cause a milder and dominant form of macrothrombocytopenia, but only 2 tentative reports exist of such a variant in GP1BB By analyzing data from a collection of more than 1000 genome-sequenced patients with a rare bleeding and/or platelet disorder, we have identified a significant association between rare monoallelic variants in GP1BB and macrothrombocytopenia. To strengthen our findings, we sought further cases in 2 additional collections in the United Kingdom and Japan. Across 18 families exhibiting phenotypes consistent with autosomal dominant inheritance of macrothrombocytopenia, we report on 27 affected cases carrying 1 of 9 rare variants in GP1BB.


Asunto(s)
Plaquetas/metabolismo , Hemorragia/genética , Mutación , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Trombocitopenia/genética , Alelos , Plaquetas/patología , Estudios de Casos y Controles , Femenino , Expresión Génica , Genes Dominantes , Genoma Humano , Hemorragia/diagnóstico , Hemorragia/metabolismo , Hemorragia/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Linaje , Recuento de Plaquetas , Trombocitopenia/diagnóstico , Trombocitopenia/metabolismo , Trombocitopenia/patología
20.
Haematologica ; 104(5): 1036-1045, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30467204

RESUMEN

Sphingolipids are fundamental to membrane trafficking, apoptosis, and cell differentiation and proliferation. KDSR or 3-keto-dihydrosphingosine reductase is an essential enzyme for de novo sphingolipid synthesis, and pathogenic mutations in KDSR result in the severe skin disorder erythrokeratodermia variabilis et progressiva-4 Four of the eight reported cases also had thrombocytopenia but the underlying mechanism has remained unexplored. Here we expand upon the phenotypic spectrum of KDSR deficiency with studies in two siblings with novel compound heterozygous variants associated with thrombocytopenia, anemia, and minimal skin involvement. We report a novel phenotype of progressive juvenile myelofibrosis in the propositus, with spontaneous recovery of anemia and thrombocytopenia in the first decade of life. Examination of bone marrow biopsies showed megakaryocyte hyperproliferation and dysplasia. Megakaryocytes obtained by culture of CD34+ stem cells confirmed hyperproliferation and showed reduced proplatelet formation. The effect of KDSR insufficiency on the sphingolipid profile was unknown, and was explored in vivo and in vitro by a broad metabolomics screen that indicated activation of an in vivo compensatory pathway that leads to normalization of downstream metabolites such as ceramide. Differentiation of propositus-derived induced pluripotent stem cells to megakaryocytes followed by expression of functional KDSR showed correction of the aberrant cellular and biochemical phenotypes, corroborating the critical role of KDSR in proplatelet formation. Finally, Kdsr depletion in zebrafish recapitulated the thrombocytopenia and showed biochemical changes similar to those observed in the affected siblings. These studies support an important role for sphingolipids as regulators of cytoskeletal organization during megakaryopoiesis and proplatelet formation.


Asunto(s)
Oxidorreductasas de Alcohol/deficiencia , Plaquetas/patología , Células Madre Pluripotentes Inducidas/patología , Megacariocitos/patología , Esfingolípidos/metabolismo , Trombocitopenia/etiología , Oxidorreductasas de Alcohol/genética , Animales , Plaquetas/metabolismo , Diferenciación Celular , Células Cultivadas , Niño , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Megacariocitos/metabolismo , Metabolómica , Mutación , Linaje , Pronóstico , Trombocitopenia/metabolismo , Trombocitopenia/patología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA