Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(15): 3033-3037, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34358454

RESUMEN

Some biological questions are tough to solve through standard molecular and cell biological methods and naturally lend themselves to investigation by physical approaches. Below, a group of formally trained physicists discuss, among other things, how they apply physics to address biological questions and how physical approaches complement conventional biological approaches.


Asunto(s)
Biofisica/métodos , Modelos Biológicos , Física/métodos , Imagen Individual de Molécula , Biología/educación , Biofisica/tendencias , Cromosomas/química , Cromosomas/ultraestructura , Simulación por Computador , Humanos , Proteínas Motoras Moleculares/química , Origen de la Vida , Física/educación , Imagen Individual de Molécula/métodos
2.
Mol Cell ; 79(1): 140-154.e7, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32464091

RESUMEN

Recent studies of bacterial DNA replication have led to a picture of the replisome as an entity that freely exchanges DNA polymerases and displays intermittent coupling between the helicase and polymerase(s). Challenging the textbook model of the polymerase holoenzyme acting as a stable complex coordinating the replisome, these observations suggest a role of the helicase as the central organizing hub. We show here that the molecular origin of this newly found plasticity lies in the 500-fold increase in strength of the interaction between the polymerase holoenzyme and the replicative helicase upon association of the primase with the replisome. By combining in vitro ensemble-averaged and single-molecule assays, we demonstrate that this conformational switch operates during replication and promotes recruitment of multiple holoenzymes at the fork. Our observations provide a molecular mechanism for polymerase exchange and offer a revised model for the replication reaction that emphasizes its stochasticity.


Asunto(s)
ADN Primasa/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , AdnB Helicasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Holoenzimas/química , ADN Primasa/genética , ADN Bacteriano , ADN Polimerasa Dirigida por ADN/genética , AdnB Helicasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Holoenzimas/genética , Holoenzimas/metabolismo , Conformación Molecular , Unión Proteica , Conformación Proteica
3.
Mol Cell ; 77(1): 17-25.e5, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31704183

RESUMEN

Structural and biochemical studies have revealed the basic principles of how the replisome duplicates genomic DNA, but little is known about its dynamics during DNA replication. We reconstitute the 34 proteins needed to form the S. cerevisiae replisome and show how changing local concentrations of the key DNA polymerases tunes the ability of the complex to efficiently recycle these proteins or to dynamically exchange them. Particularly, we demonstrate redundancy of the Pol α-primase DNA polymerase activity in replication and show that Pol α-primase and the lagging-strand Pol δ can be re-used within the replisome to support the synthesis of large numbers of Okazaki fragments. This unexpected malleability of the replisome might allow it to deal with barriers and resource challenges during replication of large genomes.


Asunto(s)
ADN Polimerasa III/genética , Replicación del ADN/genética , ADN/genética , Células Eucariotas/fisiología , ADN Polimerasa I/genética , ADN Primasa/genética , Saccharomyces cerevisiae/genética
4.
Chem Rev ; 123(23): 13419-13440, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37971892

RESUMEN

The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example. The faithful and timely copying of DNA depends on the simultaneous action of a large set of enzymes and scaffolding factors. This fundamental cellular process is underpinned by dynamic protein-nucleic acid assemblies that must transition between distinct conformations and compositional states. Traditionally viewed as a well-orchestrated molecular machine, recent experimental evidence has unveiled significant variability and heterogeneity in the replication process. In this review, we discuss recent advances in single-molecule approaches and single-particle cryo-EM, which have provided insights into the dynamic processes of DNA replication. We comment on the new challenges faced by structural biologists and biophysicists as they attempt to describe the dynamic cascade of events leading to replisome assembly, activation, and progression. The fundamental principles uncovered and yet to be discovered through the study of DNA replication will inform on similar operating principles for other multi-protein complexes.


Asunto(s)
Replicación del ADN , ADN , ADN/química , Conformación Molecular
5.
Nucleic Acids Res ; 51(1): e5, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321650

RESUMEN

The activity of enzymes is traditionally characterised through bulk-phase biochemical methods that only report on population averages. Single-molecule methods are advantageous in elucidating kinetic and population heterogeneity but are often complicated, time consuming, and lack statistical power. We present a highly-generalisable and high-throughput single-molecule assay to rapidly characterise proteins involved in DNA metabolism. The assay exclusively relies on changes in total fluorescence intensity of surface-immobilised DNA templates as a result of DNA synthesis, unwinding or digestion. Combined with an automated data-analysis pipeline, our method provides enzymatic activity data of thousands of molecules in less than an hour. We demonstrate our method by characterising three fundamentally different enzyme activities: digestion by the phage λ exonuclease, synthesis by the phage Phi29 polymerase, and unwinding by the E. coli UvrD helicase. We observe the previously unknown activity of the UvrD helicase to remove neutravidin bound to 5'-, but not 3'-ends of biotinylated DNA.


Asunto(s)
ADN Helicasas , ADN , ADN/metabolismo , ADN Helicasas/metabolismo , ADN de Cadena Simple , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Cinética
6.
Nucleic Acids Res ; 51(7): 3307-3326, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36938885

RESUMEN

Genome duplication occurs while the template DNA is bound by numerous DNA-binding proteins. Each of these proteins act as potential roadblocks to the replication fork and can have deleterious effects on cells. In Escherichia coli, these roadblocks are displaced by the accessory helicase Rep, a DNA translocase and helicase that interacts with the replisome. The mechanistic details underlying the coordination with replication and roadblock removal by Rep remain poorly understood. Through real-time fluorescence imaging of the DNA produced by individual E. coli replisomes and the simultaneous visualization of fluorescently-labeled Rep, we show that Rep continually surveils elongating replisomes. We found that this association of Rep with the replisome is stochastic and occurs independently of whether the fork is stalled or not. Further, we visualize the efficient rescue of stalled replication forks by directly imaging individual Rep molecules as they remove a model protein roadblock, dCas9, from the template DNA. Using roadblocks of varying DNA-binding stabilities, we conclude that continuation of synthesis is the rate-limiting step of stalled replication rescue.


Asunto(s)
ADN Helicasas , Proteínas de Escherichia coli , ADN/metabolismo , ADN Helicasas/química , Replicación del ADN , Escherichia coli/enzimología , Proteínas de Escherichia coli/química
7.
Nucleic Acids Res ; 51(11): 5714-5742, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37125644

RESUMEN

The bacterial RecF, RecO, and RecR proteins are an epistasis group involved in loading RecA protein into post-replication gaps. However, the targeting mechanism that brings these proteins to appropriate gaps is unclear. Here, we propose that targeting may involve a direct interaction between RecF and DnaN. In vivo, RecF is commonly found at the replication fork. Over-expression of RecF, but not RecO or a RecF ATPase mutant, is extremely toxic to cells. We provide evidence that the molecular basis of the toxicity lies in replisome destabilization. RecF over-expression leads to loss of genomic replisomes, increased recombination associated with post-replication gaps, increased plasmid loss, and SOS induction. Using three different methods, we document direct interactions of RecF with the DnaN ß-clamp and DnaG primase that may underlie the replisome effects. In a single-molecule rolling-circle replication system in vitro, physiological levels of RecF protein trigger post-replication gap formation. We suggest that the RecF interactions, particularly with DnaN, reflect a functional link between post-replication gap creation and gap processing by RecA. RecF's varied interactions may begin to explain how the RecFOR system is targeted to rare lesion-containing post-replication gaps, avoiding the potentially deleterious RecA loading onto thousands of other gaps created during replication.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Escherichia coli , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
8.
Nucleic Acids Res ; 51(13): 6540-6553, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37254785

RESUMEN

Bacteriophage T7 single-stranded DNA-binding protein (gp2.5) binds to and protects transiently exposed regions of single-stranded DNA (ssDNA) while dynamically interacting with other proteins of the replication complex. We directly visualize fluorescently labelled T7 gp2.5 binding to ssDNA at the single-molecule level. Upon binding, T7 gp2.5 reduces the contour length of ssDNA by stacking nucleotides in a force-dependent manner, suggesting T7 gp2.5 suppresses the formation of secondary structure. Next, we investigate the binding dynamics of T7 gp2.5 and a deletion mutant lacking 21 C-terminal residues (gp2.5-Δ21C) under various template tensions. Our results show that the base sequence of the DNA molecule, ssDNA conformation induced by template tension, and the acidic terminal domain from T7 gp2.5 significantly impact on the DNA binding parameters of T7 gp2.5. Moreover, we uncover a unique template-catalyzed recycling behaviour of T7 gp2.5, resulting in an apparent cooperative binding to ssDNA, facilitating efficient spatial redistribution of T7 gp2.5 during the synthesis of successive Okazaki fragments. Overall, our findings reveal an efficient binding mechanism that prevents the formation of secondary structures by enabling T7 gp2.5 to rapidly rebind to nearby exposed ssDNA regions, during lagging strand DNA synthesis.


Asunto(s)
Bacteriófago T7 , Proteínas Virales , Bacteriófago T7/genética , ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Conformación Molecular , Proteínas Virales/metabolismo
9.
Mol Cell ; 64(6): 1035-1047, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27889453

RESUMEN

The molecular machinery responsible for DNA replication, the replisome, must efficiently coordinate DNA unwinding with priming and synthesis to complete duplication of both strands. Due to the anti-parallel nature of DNA, the leading strand is copied continuously, while the lagging strand is produced by repeated cycles of priming, DNA looping, and Okazaki-fragment synthesis. Here, we report a multidimensional single-molecule approach to visualize this coordination in the bacteriophage T7 replisome by simultaneously monitoring the kinetics of loop growth and leading-strand synthesis. We show that loops in the lagging strand predominantly occur during priming and only infrequently support subsequent Okazaki-fragment synthesis. Fluorescence imaging reveals polymerases remaining bound to the lagging strand behind the replication fork, consistent with Okazaki-fragment synthesis behind and independent of the replication complex. Individual replisomes display both looping and pausing during priming, reconciling divergent models for the regulation of primer synthesis and revealing an underlying plasticity in replisome operation.


Asunto(s)
Bacteriófago T7/genética , ADN Primasa/genética , Replicación del ADN , ADN Viral/genética , Bacteriófago T7/metabolismo , Bacteriófago T7/ultraestructura , ADN/biosíntesis , ADN/genética , ADN Primasa/metabolismo , ADN Primasa/ultraestructura , ADN Viral/metabolismo , ADN Viral/ultraestructura , Cinética , Imagen Individual de Molécula/métodos , Imagen de Lapso de Tiempo/métodos
10.
Nucleic Acids Res ; 50(10): 5688-5712, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35641110

RESUMEN

Elongation by RNA polymerase is dynamically modulated by accessory factors. The transcription-repair coupling factor (TRCF) recognizes paused/stalled RNAPs and either rescues transcription or initiates transcription termination. Precisely how TRCFs choose to execute either outcome remains unclear. With Escherichia coli as a model, we used single-molecule assays to study dynamic modulation of elongation by Mfd, the bacterial TRCF. We found that nucleotide-bound Mfd converts the elongation complex (EC) into a catalytically poised state, presenting the EC with an opportunity to restart transcription. After long-lived residence in this catalytically poised state, ATP hydrolysis by Mfd remodels the EC through an irreversible process leading to loss of the RNA transcript. Further, biophysical studies revealed that the motor domain of Mfd binds and partially melts DNA containing a template strand overhang. The results explain pathway choice determining the fate of the EC and provide a molecular mechanism for transcription modulation by TRCF.


Asunto(s)
Proteínas Bacterianas , Reparación del ADN , Escherichia coli , Factores de Transcripción , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
11.
Nucleic Acids Res ; 50(12): 6854-6869, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35736210

RESUMEN

Homologs of the mutagenic Escherichia coli DNA polymerase V (pol V) are encoded by numerous pathogens and mobile elements. We have used Rum pol (RumA'2B), from the integrative conjugative element (ICE), R391, as a model mobile element-encoded polymerase (MEPol). The highly mutagenic Rum pol is transferred horizontally into a variety of recipient cells, including many pathogens. Moving between species, it is unclear if Rum pol can function on its own or requires activation by host factors. Here, we show that Rum pol biochemical activity requires the formation of a physical mutasomal complex, Rum Mut, containing RumA'2B-RecA-ATP, with RecA being donated by each recipient bacteria. For R391, Rum Mut specific activities in vitro and mutagenesis rates in vivo depend on the phylogenetic distance of host-cell RecA from E. coli RecA. Rum pol is a highly conserved and effective mobile catalyst of rapid evolution, with the potential to generate a broad mutational landscape that could serve to ensure bacterial adaptation in antibiotic-rich environments leading to the establishment of antibiotic resistance.


Asunto(s)
Escherichia coli , Mutágenos , Rec A Recombinasas , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/metabolismo , Filogenia , Rec A Recombinasas/metabolismo
12.
Nucleic Acids Res ; 49(12): 6804-6816, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34139009

RESUMEN

In Escherichia coli, the DnaB helicase forms the basis for the assembly of the DNA replication complex. The stability of DnaB at the replication fork is likely important for successful replication initiation and progression. Single-molecule experiments have significantly changed the classical model of highly stable replication machines by showing that components exchange with free molecules from the environment. However, due to technical limitations, accurate assessments of DnaB stability in the context of replication are lacking. Using in vitro fluorescence single-molecule imaging, we visualise DnaB loaded on forked DNA templates. That these helicases are highly stable at replication forks, indicated by their observed dwell time of ∼30 min. Addition of the remaining replication factors results in a single DnaB helicase integrated as part of an active replisome. In contrast to the dynamic behaviour of other replisome components, DnaB is maintained within the replisome for the entirety of the replication process. Interestingly, we observe a transient interaction of additional helicases with the replication fork. This interaction is dependent on the τ subunit of the clamp-loader complex. Collectively, our single-molecule observations solidify the role of the DnaB helicase as the stable anchor of the replisome, but also reveal its capacity for dynamic interactions.


Asunto(s)
Replicación del ADN , AdnB Helicasas/metabolismo , ADN Polimerasa Dirigida por ADN , Escherichia coli/genética , Complejos Multienzimáticos , Imagen Individual de Molécula
13.
Proc Natl Acad Sci U S A ; 117(48): 30354-30361, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199603

RESUMEN

Efficient and faithful replication of the genome is essential to maintain genome stability. Replication is carried out by a multiprotein complex called the replisome, which encounters numerous obstacles to its progression. Failure to bypass these obstacles results in genome instability and may facilitate errors leading to disease. Cells use accessory helicases that help the replisome bypass difficult barriers. All eukaryotes contain the accessory helicase Pif1, which tracks in a 5'-3' direction on single-stranded DNA and plays a role in genome maintenance processes. Here, we reveal a previously unknown role for Pif1 in replication barrier bypass. We use an in vitro reconstituted Saccharomyces cerevisiae replisome to demonstrate that Pif1 enables the replisome to bypass an inactive (i.e., dead) Cas9 (dCas9) R-loop barrier. Interestingly, dCas9 R-loops targeted to either strand are bypassed with similar efficiency. Furthermore, we employed a single-molecule fluorescence visualization technique to show that Pif1 facilitates this bypass by enabling the simultaneous removal of the dCas9 protein and the R-loop. We propose that Pif1 is a general displacement helicase for replication bypass of both R-loops and protein blocks.


Asunto(s)
Replicación del ADN , ADN/genética , ADN/metabolismo , Estructuras R-Loop , Proteínas de Unión a Telómeros/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , ADN/química , Edición Génica , Modelos Biológicos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , ARN Guía de Kinetoplastida
14.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139033

RESUMEN

To date, the scientific literature on health variables for Escherichia coli antimicrobial resistance (AMR) has been investigated throughout several systematic reviews, often with a focus on only one aspect of the One Health variables: human, animal, or environment. The aim of this umbrella review is to conduct a systematic synthesis of existing evidence on Escherichia coli AMR in humans in the community from a One Health perspective. PubMed, EMBASE, and CINAHL were searched on "antibiotic resistance" and "systematic review" from inception until 25 March 2022 (PROSPERO: CRD42022316431). The methodological quality was assessed, and the importance of identified variables was tabulated across all included reviews. Twenty-three reviews were included in this study, covering 860 primary studies. All reviews were of (critically) low quality. Most reviews focused on humans (20), 3 on animals, and 1 on both human and environmental variables. Antibiotic use, urinary tract infections, diabetes, and international travel were identified as the most important human variables. Poultry farms and swimming in freshwater were identified as potential sources for AMR transmission from the animal and environmental perspectives. This umbrella review highlights a gap in high-quality literature investigating the time between variable exposure, AMR testing, and animal and environmental AMR variables.


Asunto(s)
Infecciones por Escherichia coli , Salud Única , Animales , Humanos , Escherichia coli/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/epidemiología
15.
Trends Biochem Sci ; 43(3): 149-151, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29290471

RESUMEN

Cells use a suite of specialized enzymes to repair chromosomal double-strand breaks (DSBs). Two recent studies describe how single-molecule fluorescence imaging techniques are used in the direct visualization of some of the key molecular steps involved. De Tullio et al. and Kaniecki et al. watch individual Srs2 helicase molecules disrupt repair intermediates formed by RPA, Rad51, and Rad52 on DNA during homologous recombination.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae , ADN Helicasas/genética , Reparación del ADN , Recombinación Homóloga , Recombinasa Rad51/genética
16.
J Biol Chem ; 296: 100161, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33288678

RESUMEN

Small heat shock proteins (sHsps) are a family of ubiquitous intracellular molecular chaperones; some sHsp family members are upregulated under stress conditions and play a vital role in protein homeostasis (proteostasis). It is commonly accepted that these chaperones work by trapping misfolded proteins to prevent their aggregation; however, fundamental questions regarding the molecular mechanism by which sHsps interact with misfolded proteins remain unanswered. The dynamic and polydisperse nature of sHsp oligomers has made studying them challenging using traditional biochemical approaches. Therefore, we have utilized a single-molecule fluorescence-based approach to observe the chaperone action of human alphaB-crystallin (αBc, HSPB5). Using this approach we have, for the first time, determined the stoichiometries of complexes formed between αBc and a model client protein, chloride intracellular channel 1. By examining the dispersity and stoichiometries of these complexes over time, and in response to different concentrations of αBc, we have uncovered unique and important insights into a two-step mechanism by which αBc interacts with misfolded client proteins to prevent their aggregation.


Asunto(s)
Canales de Cloruro/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Imagen Individual de Molécula/métodos , Cadena B de alfa-Cristalina/química , Sitios de Unión , Carbocianinas/química , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Unión Proteica , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodaminas/química , Soluciones , Coloración y Etiquetado/métodos , Ácidos Sulfónicos/química , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/metabolismo
17.
Nucleic Acids Res ; 48(15): 8490-8508, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32687193

RESUMEN

Several functions have been proposed for the Escherichia coli DNA polymerase IV (pol IV). Although much research has focused on a potential role for pol IV in assisting pol III replisomes in the bypass of lesions, pol IV is rarely found at the replication fork in vivo. Pol IV is expressed at increased levels in E. coli cells exposed to exogenous DNA damaging agents, including many commonly used antibiotics. Here we present live-cell single-molecule microscopy measurements indicating that double-strand breaks induced by antibiotics strongly stimulate pol IV activity. Exposure to the antibiotics ciprofloxacin and trimethoprim leads to the formation of double strand breaks in E. coli cells. RecA and pol IV foci increase after treatment and exhibit strong colocalization. The induction of the SOS response, the appearance of RecA foci, the appearance of pol IV foci and RecA-pol IV colocalization are all dependent on RecB function. The positioning of pol IV foci likely reflects a physical interaction with the RecA* nucleoprotein filaments that has been detected previously in vitro. Our observations provide an in vivo substantiation of a direct role for pol IV in double strand break repair in cells treated with double strand break-inducing antibiotics.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN Polimerasa beta/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Exodesoxirribonucleasa V/ultraestructura , Rec A Recombinasas/genética , Ciprofloxacina/farmacología , Daño del ADN/efectos de los fármacos , ADN Polimerasa beta/genética , Reparación del ADN/genética , Replicación del ADN/genética , Escherichia coli/genética , Escherichia coli/ultraestructura , Exodesoxirribonucleasa V/genética , Imagen Individual de Molécula
18.
Nucleic Acids Res ; 48(1): 212-230, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31665437

RESUMEN

When replication forks encounter template DNA lesions, the lesion is simply skipped in some cases. The resulting lesion-containing gap must be converted to duplex DNA to permit repair. Some gap filling occurs via template switching, a process that generates recombination-like branched DNA intermediates. The Escherichia coli Uup and RadD proteins function in different pathways to process the branched intermediates. Uup is a UvrA-like ABC family ATPase. RadD is a RecQ-like SF2 family ATPase. Loss of both functions uncovers frequent and RecA-independent deletion events in a plasmid-based assay. Elevated levels of crossing over and repeat expansions accompany these deletion events, indicating that many, if not most, of these events are associated with template switching in postreplication gaps as opposed to simple replication slippage. The deletion data underpin simulations indicating that multiple postreplication gaps may be generated per replication cycle. Both Uup and RadD bind to branched DNAs in vitro. RadD protein suppresses crossovers and Uup prevents nucleoid mis-segregation. Loss of Uup and RadD function increases sensitivity to ciprofloxacin. We present Uup and RadD as genomic guardians. These proteins govern two pathways for resolution of branched DNA intermediates such that potentially deleterious genome rearrangements arising from frequent template switching are averted.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/química , Replicación del ADN , ADN Bacteriano/genética , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Transportadoras de Casetes de Unión a ATP/deficiencia , Adenosina Trifosfatasas/deficiencia , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ciprofloxacina/farmacología , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Genoma Bacteriano , Plásmidos/química , Plásmidos/metabolismo , Origen de Réplica , Eliminación de Secuencia
19.
Nucleic Acids Res ; 48(11): 6053-6067, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32374866

RESUMEN

Bacterial single-stranded DNA-binding proteins (SSBs) bind single-stranded DNA and help to recruit heterologous proteins to their sites of action. SSBs perform these essential functions through a modular structural architecture: the N-terminal domain comprises a DNA binding/tetramerization element whereas the C-terminus forms an intrinsically disordered linker (IDL) capped by a protein-interacting SSB-Ct motif. Here we examine the activities of SSB-IDL fusion proteins in which fluorescent domains are inserted within the IDL of Escherichia coli SSB. The SSB-IDL fusions maintain DNA and protein binding activities in vitro, although cooperative DNA binding is impaired. In contrast, an SSB variant with a fluorescent protein attached directly to the C-terminus that is similar to fusions used in previous studies displayed dysfunctional protein interaction activity. The SSB-IDL fusions are readily visualized in single-molecule DNA replication reactions. Escherichia coli strains in which wildtype SSB is replaced by SSB-IDL fusions are viable and display normal growth rates and fitness. The SSB-IDL fusions form detectible SSB foci in cells with frequencies mirroring previously examined fluorescent DNA replication fusion proteins. Cells expressing SSB-IDL fusions are sensitized to some DNA damaging agents. The results highlight the utility of SSB-IDL fusions for biochemical and cellular studies of genome maintenance reactions.


Asunto(s)
Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/química , Fluorescencia , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/química , Daño del ADN , Reparación del ADN , Replicación del ADN , ADN de Cadena Simple/química , Escherichia coli/citología , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Proteínas Intrínsecamente Desordenadas/química , Unión Proteica , Respuesta SOS en Genética
20.
Genes Dev ; 28(11): 1228-38, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24829297

RESUMEN

The parABS system is a widely employed mechanism for plasmid partitioning and chromosome segregation in bacteria. ParB binds to parS sites on plasmids and chromosomes and associates with broad regions of adjacent DNA, a phenomenon known as spreading. Although essential for ParB function, the mechanism of spreading remains poorly understood. Using single-molecule approaches, we discovered that Bacillus subtilis ParB (Spo0J) is able to trap DNA loops. Point mutants in Spo0J that disrupt DNA bridging are defective in spreading and recruitment of structural maintenance of chromosomes (SMC) condensin complexes in vivo. DNA bridging helps to explain how a limited number of Spo0J molecules per parS site (~20) can spread over many kilobases and suggests a mechanism by which ParB proteins could facilitate the loading of SMC complexes. We show that DNA bridging is a property of diverse ParB homologs, suggesting broad evolutionary conservation.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , ADN Primasa/metabolismo , ADN Bacteriano/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Forma del Núcleo Celular/genética , ADN Primasa/genética , Mutación Puntual , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA