Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836763

RESUMEN

Mung bean contains up to 32.6% protein and is one of the great sources of plant-based protein. Because many allergens also function as defense-related proteins, it is important to determine their abundance levels in the high-yielding, disease-resistant cultivars. In this study, for the first time, we compared the seed proteome of high-yielding mung bean cultivars developed by a conventional breeding approach. Using a label-free quantitative proteomic platform, we successfully identified and quantified a total of 1373 proteins. Comparative analysis between the high-yielding disease-resistant cultivar (MC5) and the other three cultivars showed that a total of 69 common proteins were significantly altered in their abundances across all cultivars. Bioinformatic analysis of these altered proteins demonstrated that PDF1 (a defensin-like protein) exhibited high sequence similarity and epitope matching with the established peanut allergens, indicating a potential mung bean allergen that showed a cultivar-specific response. Conversely, known mung bean allergen proteins such as PR-2/PR-10 (Vig r 1), Vig r 2, Vig r 4, LTP1, ß-conglycinin, and glycinin G4 showed no alternation in the MC5 compared to other cultivars. Taken together, our findings suggest that the known allergen profiles may not be impacted by the conventional plant breeding method to develop improved mung bean cultivars.

2.
Food Chem (Oxf) ; 4: 100109, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35495776

RESUMEN

Among legumes, the lentil (Lens culinaris) is a major dietary component in many Mediterranean and Asian countries due to its high nutritional value, especially protein. However, allergic reactions triggered by lentil consumption have also been documented in many countries. Complete allergens profiling is critical for better management of lentil food allergies. Earlier studies suggested Len c 1, a 47 kDa vicilin, Len c 2, a seed-specific-biotinylated 66-kDa protein, and Len c 3, low molecular weight lipid transfer proteins (LTPs) were major allergenic proteins in lentils. Recently, mass-spectrometry-based proteomic platforms successfully identified proteins from lentil samples homologous to known plant allergens. Furthermore, in silico analysis using 337 protein sequences revealed lentil allergens that have not previously been identified as potential allergens in lentil. Herein, we discuss the feasibility of omics platforms utilized for lentil allergens profiling and quantification. In addition, we propose some future strategies that might be beneficial for profiling and development of precise assays for lentil allergens and could facilitate identification of the low allergen-containing lentil cultivars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA