Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Clin Exp Hypertens ; 41(7): 657-661, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30311805

RESUMEN

Backgrounds and aims: Increased arterial stiffness may increase cardiovascular morbidity and mortality. Angiotensin II type 1 receptor blockers (ARBs) are potentially useful in controlling the central blood pressure and arterial stiffness in mild to moderate essential hypertension, while the effects of ARBs in aged patients with essential hypertension are not entirely investigated. Methods: The carotid-femoral arterial pulse wave velocity (PWV) was measured in aged patients with essential hypertension. Results: In a cross-sectional study, PWV value was significantly higher in these old patients with essential hypertension, compared to patients without essential hypertension. In correlation analysis, PWV was associated positively with age, hypertension duration, and carotid atherosclerosis. However, there was no relationship between PWV and gender in aged patients with essential hypertension. In a perspective study, 6-12 months administration of ARBs (losartan, 50 mg/day; telmisartan, 40 mg/day; valsartan 80 mg/day; irbesartan, 150 mg/day) remarkably reduced PWV in aged patients with essential hypertension. Regression analyses of multiple factors indicated that the effects of ARBs on arterial stiffness were not associated with the reduction of blood pressure. Conclusion: ARB treatment is a negative risk factor of arterial stiffness in aged patients with essential hypertension.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Hipertensión Esencial/tratamiento farmacológico , Rigidez Vascular/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Aorta/fisiopatología , Presión Sanguínea/efectos de los fármacos , Estudios Transversales , Hipertensión Esencial/fisiopatología , Femenino , Humanos , Losartán/farmacología , Masculino , Persona de Mediana Edad , Análisis de la Onda del Pulso , Telmisartán/farmacología , Valsartán/farmacología
2.
Clin Exp Hypertens ; 40(2): 192-201, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28872356

RESUMEN

BACKGROUND: We have previously reported that the long-term exposure of organophosphorus induces vascular dementia (VD) in rats. As a coenzyme, vitamin B6 is mainly involved in the regulation of metabolisms. Whether vitamin B6 improves VD remains unknown. METHODS: The model of VD was induced by feeding rats with isocarbophos (0.5 mg/kg per two day, 12 weeks). The blood flow of the posterior cerebral artery (PCA) in rat was assessed by transcranial Doppler (TCD). The learning and memory were evaluated by the Morris Water Maze (MWM) test. RESULTS: Administration of vitamin B6 increased the blood flow in the right and left posterior cerebral arteries and improved the functions of learning and memory in isocarbophos-treated rats. Vitamin B6 increased the protein levels of N-methyl-D-aspartate receptor (NMDAR) 2B, postsynaptic densities (PSDs) protein 95, and calmodulin-dependent protein kinase II (CaMK-II) in the hippocampus, which were decreased by isocarbophos in rats. Morphological analysis by light microscope and electronic microscope indicated disruptions of the hippocampus caused by isocarbophos were normalized by vitamin B6. Importantly, the antagonist of NMDAR signaling by eliprodil abolished these beneficial effects produced by vitamin B6 on PCA blood flow, learning, memory, and hippocampus structure in rats, as well as the protein expression of NMDAR 2B, PSDs protein 95, and CaMK-II in the hippocampus. CONCLUSION: Vitamin B6 activates NMDAR signaling to prevent isocarbophos-induced VD in rats.


Asunto(s)
Demencia Vascular/metabolismo , Demencia Vascular/prevención & control , Receptores de N-Metil-D-Aspartato/metabolismo , Vitamina B 6/farmacología , Complejo Vitamínico B/farmacología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Circulación Cerebrovascular/efectos de los fármacos , Demencia Vascular/inducido químicamente , Homólogo 4 de la Proteína Discs Large/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Hipocampo/ultraestructura , Hipertensión/fisiopatología , Malatión/análogos & derivados , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Piperidinas/farmacología , Arteria Cerebral Posterior/diagnóstico por imagen , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Ultrasonografía Doppler
3.
Circulation ; 134(22): 1752-1765, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27765794

RESUMEN

BACKGROUND: GTP cyclohydrolase 1 (GCH1) deficiency is critical for endothelial nitric oxide synthase uncoupling in endothelial dysfunction. MicroRNAs (miRs) are a class of regulatory RNAs that negatively regulate gene expression. We investigated whether statins prevent endothelial dysfunction via miR-dependent GCH1 upregulation. METHODS: Endothelial function was assessed by measuring acetylcholine-induced vasorelaxation in the organ chamber. MiR-133a expression was assessed by quantitative reverse transcription polymerase chain reaction and fluorescence in situ hybridization. RESULTS: We first demonstrated that GCH1 mRNA is a target of miR-133a. In endothelial cells, miR-133a was robustly induced by cytokines/oxidants and inhibited by lovastatin. Furthermore, lovastatin upregulated GCH1 and tetrahydrobiopterin, and recoupled endothelial nitric oxide synthase in stressed endothelial cells. These actions of lovastatin were abolished by enforced miR-133a expression and were mirrored by a miR-133a antagomir. In mice, hyperlipidemia- or hyperglycemia-induced ectopic miR-133a expression in the vascular endothelium, reduced GCH1 protein and tetrahydrobiopterin levels, and impaired endothelial function, which were reversed by lovastatin or miR-133a antagomir. These beneficial effects of lovastatin in mice were abrogated by in vivo miR-133a overexpression or GCH1 knockdown. In rats, multiple cardiovascular risk factors including hyperglycemia, dyslipidemia, and hyperhomocysteinemia resulted in increased miR-133a vascular expression, reduced GCH1 expression, uncoupled endothelial nitric oxide synthase function, and induced endothelial dysfunction, which were prevented by lovastatin. CONCLUSIONS: Statin inhibits aberrant miR-133a expression in the vascular endothelium to prevent endothelial dysfunction by targeting GCH1. Therefore, miR-133a represents an important therapeutic target for preventing cardiovascular diseases.


Asunto(s)
Células Endoteliales/efectos de los fármacos , GTP Ciclohidrolasa/deficiencia , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , MicroARNs/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Animales , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , GTP Ciclohidrolasa/genética , GTP Ciclohidrolasa/metabolismo , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Lovastatina/farmacología , Ratones , MicroARNs/biosíntesis , MicroARNs/genética , MicroARNs/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , ARN Mensajero/genética , Ratas , Factores de Riesgo , Regulación hacia Arriba
4.
J Cell Mol Med ; 20(4): 731-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26818681

RESUMEN

Vascular dementia, being the most severe form of vascular cognitive impairment (VCI), is caused by cerebrovascular disease. Whether organophosphorus causes VCI remains unknown. Isocarbophos (0.5 mg/kg per 2 days) was intragastrically administrated to rats for 16 weeks. The structure and function of cerebral arteries were assayed. The learning and memory were evaluated by serial tests of step-down, step-through and morris water maze. Long-term administration of isocarbophos reduced the hippocampal acetylcholinesterase (AChE) activity and acetylcholine (ACh) content but did not alter the plasma AChE activity, and significantly damaged the functions of learning and memory. Moreover, isocarbophos remarkably induced endothelial dysfunction in the middle cerebral artery and the expressions of ICAM-1 and VCAM-1 in the posterior cerebral artery. Morphological analysis by light microscopy and electron microscopy indicated disruptions of the hippocampus and vascular wall in the cerebral arteries from isocarbophos-treated rats. Treatment of isocarbophos injured primary neuronal and astroglial cells isolated from rats. Correlation analysis demonstrated that there was a high correlation between vascular function of cerebral artery and hippocampal AChE activity or ACh content in rats. In conclusion, chronic administration of isocarbophos induces impairments of memory and learning, which is possibly related to cerebral vascular dysfunction.


Asunto(s)
Disfunción Cognitiva/inducido químicamente , Hipocampo/efectos de los fármacos , Malatión/análogos & derivados , Arteria Cerebral Media/efectos de los fármacos , Plaguicidas/toxicidad , Arteria Cerebral Posterior/efectos de los fármacos , Acetilcolina/antagonistas & inhibidores , Acetilcolina/metabolismo , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Circulación Cerebrovascular , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Expresión Génica , Hipocampo/irrigación sanguínea , Hipocampo/metabolismo , Hipocampo/patología , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Malatión/toxicidad , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Arteria Cerebral Media/metabolismo , Arteria Cerebral Media/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Arteria Cerebral Posterior/metabolismo , Arteria Cerebral Posterior/patología , Cultivo Primario de Células , Ratas , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
5.
Drug Des Devel Ther ; 18: 475-491, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38405578

RESUMEN

Purpose: The underlying causes of pulmonary arterial hypertension (PAH) often remain obscure. Addressing PAH with effective treatments presents a formidable challenge. Studies have shown that Hydroxysafflor yellow A (HSYA) has a potential role in PAH, While the mechanism underlies its protective role is still unclear. The study was conducted to investigate the potential mechanisms of the protective effects of HSYA. Methods: Using databases such as PharmMapper and GeneCards, we identified active components of HSYA and associated PAH targets, pinpointed intersecting genes, and constructed a protein-protein interaction (PPI) network. Core targets were singled out using Cytoscape for the development of a model illustrating drug-component-target-disease interactions. Intersection targets underwent analysis for Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Selected components were then modeled for target interaction using Autodock and Pymol. In vivo validation in a monocrotaline-induced PAH (MCT-PAH) animal model was utilized to substantiate the predictions made by network pharmacology. Results: We associated HSYA with 113 targets, and PAH with 1737 targets, identifying 34 mutual targets for treatment by HSYA. HSYA predominantly affects 9 core targets. Molecular docking unveiled hydrogen bond interactions between HSYA and several PAH-related proteins such as ANXA5, EGFR, SRC, PPARG, PGR, and ESR1. Conclusion: Utilizing network pharmacology and molecular docking approaches, we investigated potential targets and relevant human disease pathways implicating HSYA in PAH therapy, such as the chemical carcinogenesis receptor activation pathway and the cancer pathway. Our findings were corroborated by the efficacious use of HSYA in an MCT-induced rat PAH model, confirming its therapeutic potential.


Asunto(s)
Chalcona , Chalcona/análogos & derivados , Medicamentos Herbarios Chinos , Hipertensión Arterial Pulmonar , Quinonas , Humanos , Animales , Ratas , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Remodelación Vascular , Simulación del Acoplamiento Molecular , Chalcona/farmacología
6.
Int Immunopharmacol ; 132: 111946, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38552292

RESUMEN

Ensuring the homeostatic integrity of pulmonary artery endothelial cells (PAECs) is essential for combatting pulmonary arterial hypertension (PAH), as it equips the cells to withstand microenvironmental challenges. Spermidine (SPD), a potent facilitator of autophagy, has been identified as a significant contributor to PAECs function and survival. Despite SPD's observed benefits, a comprehensive understanding of its protective mechanisms has remained elusive. Through an integrated approach combining metabolomics and molecular biology, this study uncovers the molecular pathways employed by SPD in mitigating PAH induced by monocrotaline (MCT) in a Sprague-Dawley rat model. The study demonstrates that SPD administration (5 mg/kg/day) significantly corrects right ventricular impairment and pathological changes in pulmonary tissues following MCT exposure (60 mg/kg). Metabolomic profiling identified a purine metabolism disorder in MCT-treated rats, which SPD effectively normalized, conferring a protective effect against PAH progression. Subsequent in vitro analysis showed that SPD (0.8 mM) reduces oxidative stress and apoptosis in PAECs challenged with Dehydromonocrotaline (MCTP, 50 µM), likely by downregulating purine nucleoside phosphorylase (PNP) and modulating polyamine biosynthesis through alterations in S-adenosylmethionine decarboxylase (AMD1) expression and the subsequent production of decarboxylated S-adenosylmethionine (dcSAM). These findings advocate SPD's dual inhibitory effect on PNP and AMD1 as a novel strategy to conserve cellular ATP and alleviate oxidative injuries, thus providing a foundation for SPD's potential therapeutic application in PAH treatment.


Asunto(s)
Células Endoteliales , Monocrotalina , Poliaminas , Hipertensión Arterial Pulmonar , Arteria Pulmonar , Purinas , Ratas Sprague-Dawley , Espermidina , Remodelación Vascular , Animales , Espermidina/farmacología , Espermidina/uso terapéutico , Purinas/farmacología , Poliaminas/metabolismo , Masculino , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Remodelación Vascular/efectos de los fármacos , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/metabolismo , Células Cultivadas , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Purina-Nucleósido Fosforilasa/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/metabolismo , Adenosilmetionina Descarboxilasa/metabolismo , Modelos Animales de Enfermedad , Humanos
7.
Eur J Pharmacol ; 965: 176315, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176636

RESUMEN

Pulmonary arterial hypertension (PAH) is a complex and fatal cardio-pulmonary vascular disease. Decompensated right ventricular hypertrophy (RVH) caused by cardiomyocyte hypertrophy often leads to fatal heart failure, the leading cause of mortality among patients. Sodium butyrate (SB), a compound known to reduce cardiac hypertrophy, was examined for its potential effect and the underlying mechanism of SB on PAH-RVH. The in vivo study showed that SB alleviated RVH and cardiac dysfunction, as well as improved life span and survival rate in MCT-PAH rats. The in vivo and in vitro experiments showed that SB could attenuate cardiomyocyte hypertrophy by reversing the expressions of H19, let-7g-5p, insulin-like growth factor 1 receptor (IGF1 receptor), and pERK. H19 inhibition restored the level of let-7g-5p and prevented the overexpression of IGF1 receptor and pERK in hypertrophic cardiomyocytes. In addition, dual luciferase assay revealed that H19 demonstrated significant binding with let-7g-5p, acting as its endogenous RNA. Briefly, SB attenuated PAH-RVH by inhibiting the H19 overexpression, restoring the level of let-7g-5p, and hindering IGF1 receptor/ERK activation.


Asunto(s)
Hipertensión Pulmonar , MicroARNs , Hipertensión Arterial Pulmonar , Humanos , Ratas , Animales , Hipertrofia Ventricular Derecha , Hipertensión Arterial Pulmonar/complicaciones , Ácido Butírico/farmacología , Ácido Butírico/uso terapéutico , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar Primaria Familiar , MicroARNs/genética , MicroARNs/metabolismo , Factor I del Crecimiento Similar a la Insulina
8.
Eur J Pharmacol ; 959: 176077, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37820784

RESUMEN

Pulmonary artery smooth muscle cells (PASMCs) phenotypic switching and pulmonary artery endothelial cells (PAECs) endothelial-mesenchymal transition (EndMT) are important in promoting pulmonary hypertension (PH)-pulmonary vascular remodeling (PVR). Resveratrol can efficiently inhibit the proliferation of PASMCs, but its application is limited due to its low bioavailability and solubility. In this study, we modified resveratrol to assess the role of A ring N(CH3)2-based derivatives of resveratrol (Res4) in PVR-PASMCs phenotypic switching and PVR-PAECs EndMT. Chemical methods were used for the preparation of Res4; NMRS and HPLC were used to authenticate Res4. Mice developed PVR after 4 weeks of hypoxia (10% O2). Res4 (50 mg/kg/d) attenuated right ventricular systolic pressure, right ventricular hypertrophy, and PVR. PASMCs developed phenotypic switching and PAECs developed EndMT after 2 days of hypoxia (3% O2). Res4 (10 µM) could inhibit PASMCs and PAECs viability. Res4 could decrease proliferating cell nuclear antigen (PCNA) and osteopontin (OPN) expression, and increase α-smooth muscle actin (α-SMA) and vimentin expression in PASMCs. It could also decrease PCNA, α-SMA, vimentin expression and increase platelet endothelial cell adhesion molecule (CD31) expression in PAECs. Notably, Res4 inhibited the phosphorylation levels of mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated protein kinase (ERK), Jun-N-terminal kinase (JNK), and p38 kinase in hypoxia-treated PASMCs and PAECs, indicating MAPK pathway may be involved in Res4-induced inhibition of PASMCs phenotypic switching and PAECs EndMT. Our data demonstrated that Res4 exerts antiproliferative effects by regulating PASMCs phenotypic switching and PAECs EndMT. Res4 may be potentially used as a drug against PH-PVR.


Asunto(s)
Hipertensión Pulmonar , Ratones , Animales , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Resveratrol/farmacología , Resveratrol/metabolismo , Vimentina/metabolismo , Células Endoteliales/metabolismo , Remodelación Vascular , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Arteria Pulmonar , Miocitos del Músculo Liso , Proliferación Celular , Células Cultivadas
9.
Life Sci ; 267: 118831, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33253721

RESUMEN

AIMS: Previous studies demonstrated that H2S has an antihypertension effect on hypertension, but the mechanism involved is unclear until now. The aim of the study is to elucidate the effect of H2S on PH and the mechanism involved. MAIN METHODS: In this study, GYY4137 (a H2S donor) were administered to spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) by intraperitoneally injection daily for consecutive 14 days. Systolic blood pressure (SBP), endothelial-dependent relaxation (EDR), plasma malondialdehyde (MDA), superoxide dismutase (SOD), and H2S levels were measured. Human umbilical vein endothelial cells (HUVECs) were also used to elucidate the mechanism involved in the protect effect of H2S on the injured vessels. KEY FINDINGS: Our results showed that GYY4137 normalized the SBP (P < 0.0001), increased EDR (P < 0.01), reduced oxidative stress (increased the content of SOD and reduced the content of MDA) of SHR. Meanwhile, GYY4137 could promote the proliferation (P < 0.01) and migration (P < 0.01) of HUVECs, increase the expression of endothelial NO synthase (eNOS) and Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) both in SHR and HUVECs treated with GYY4137. In addition to the above results, the PIP3/Akt signaling pathway was activated and the expression of caspase 3 was increased by GYY4137. However, all the above effects of GYY4137 were blocked by ZD6474 (a VEGFR2 inhibitor). SIGNIFICANCE: GYY4137 had a hypotensive and vascular protect effect on PH. This effect might be mediated through upregulating the expression of VEGFR2, which subsequently alleviating oxidant-provoked vascular endothelial dysfunction, and promoting the proliferation and migration of endothelial cells in SHR.


Asunto(s)
Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Morfolinas/farmacología , Compuestos Organotiofosforados/farmacología , Animales , Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Hipertensión/sangre , Masculino , Malondialdehído/sangre , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/sangre , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Oncotarget ; 8(56): 95075-95082, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29221112

RESUMEN

Traditional Chinese medication is increasingly used to treat a wide range of human chronic diseases like cardiovascular diseases and cancers. This study was designed to explore whether ka-sai-ping (KSP), a novel traditional Chinese medicine developed by us, prevents gastric cancer growths and to investigate the underlying mechanism. The xenograft model of mouse gastric cancer was established by injecting MFCs into nude mouse subcutaneously. Cell autophagy was assessed by MDC staining. Lysosome and mitochondria were detected by Lyso-Tracker Red and Mito-Traker Green staining. Incubation of cultured mouse gastric cancer cell line MFCs with KSP for 48 hours, concentration-dependently reduced cell survivals and activated autophagy, which were accompanied with damaged lysosomes and mitochondria. In vivo studies indicated that KSP therapy (20 ml/kg/day) for two weeks suppressed the growth of gastric cancer, increased the protein levels of LC3-II, beclin-1, cathepsin L, bcl-2, p53, and capase-3 in tumor tissues from the xenograft model of mouse gastric cancer. Importantly, all these effects induced by KSP were abolished by co-administration of autophagy inhibitor 3-MA. In conclusion, KSP activates cell autophagy to suppress gastric cancer growths. Clinically, KSP is potentially considered as a medicine to treat patients with gastric cancer.

11.
Sci Rep ; 7: 43508, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28252100

RESUMEN

Endothelial dysfunction, which is caused by endothelial nitric oxide synthase (eNOS) uncoupling, is an initial step in atherosclerosis. This study was designed to explore whether Chinese medicine xin-mai-jia (XMJ) recouples eNOS to exert anti-atherosclerotic effects. Pretreatment of XMJ (25, 50, 100 µg/ml) for 30 minutes concentration-dependently activated eNOS, improved cell viabilities, increased NO generations, and reduced ROS productions in human umbilical vein endothelial cells incubated with H2O2 for 2 hours, accompanied with restoration of BH4. Importantly, these protective effects produced by XMJ were abolished by eNOS inhibitor L-NAME or specific eNOS siRNA in H2O2-treated cells. In ex vivo experiments, exposure of isolated aortic rings from rats to H2O2 for 6 hours dramatically impaired acetylcholine-induced vasorelaxation, reduced NO levels and increased ROS productions, which were ablated by XMJ in concentration-dependent manner. In vivo analysis indicated that administration of XMJ (0.6, 2.0, 6.0 g/kg/d) for 12 weeks remarkably recoupled eNOS and reduced the size of carotid atherosclerotic plaque in rats feeding with high fat diet plus balloon injury. In conclusion, XMJ recouples eNOS to prevent the growth of atherosclerosis in rats. Clinically, XMJ is potentially considered as a medicine to treat patients with atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Medicamentos Herbarios Chinos/farmacología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/etiología , Aterosclerosis/patología , Biomarcadores , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Endotelio Vascular/patología , Perfilación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Peróxido de Hidrógeno/farmacología , Masculino , Medicina Tradicional China , Óxido Nítrico/biosíntesis , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transcriptoma
12.
Exp Ther Med ; 10(5): 1627-1634, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26640529

RESUMEN

The aim of this study was to investigate the protective effects of Xin Mai Jia (XMJ) on atherosclerosis (AS) in rabbits and to explore the underlying mechanisms in order to provide experimental evidence for the clinical application of XMJ. An intraperitoneal injection of vitamin D3, combined with a high-fat diet and sacculus injury, was utilized to establish the AS rabbit model. Following the oral administration of lovastatin, Zhibituo and different dosages of XMJ, respectively, blood was drawn from each rabbit for the detection of blood rheological indicators, such as serum lipids. The pathological changes in the right common carotid artery were observed. Vascular function experiments and the expression detection of common carotid artery-related proteins by immunohistochemistry were conducted. XMJ was observed to decrease the blood lipid levels of the AS rabbits; increase the concentration of high-density lipoprotein and apolipoprotein A; decrease blood viscosity, erythrocyte sedimentation rate and hematocrit; elevate the levels of endothelial nitric oxide synthase (eNOS) and Na+/H+ exchanger 1 in vascular tissues and decrease the levels of angiotensin II receptor, type 1 (AT-1) and endothelin-1 (ET-1). In conclusion, XMJ was shown to lower the blood lipid levels of the experimental AS rabbits, improve the abnormal changes in hemorheology, increase the eNOS content in the vascular tissue, decrease the AT-1 and ET-1 levels and increase the endothelium-dependent vasodilation reaction. XMJ therefore has an anti-AS effect.

13.
Exp Ther Med ; 10(5): 1643-1652, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26640531

RESUMEN

The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA