Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(1): 62-73.e9, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29526462

RESUMEN

Aggregates of human islet amyloid polypeptide (IAPP) in the pancreas of patients with type 2 diabetes (T2D) are thought to contribute to ß cell dysfunction and death. To understand how IAPP harms cells and how this might be overcome, we created a yeast model of IAPP toxicity. Ste24, an evolutionarily conserved protease that was recently reported to degrade peptides stuck within the translocon between the cytoplasm and the endoplasmic reticulum, was the strongest suppressor of IAPP toxicity. By testing variants of the human homolog, ZMPSTE24, with varying activity levels, the rescue of IAPP toxicity proved to be directly proportional to the declogging efficiency. Clinically relevant ZMPSTE24 variants identified in the largest database of exomes sequences derived from T2D patients were characterized using the yeast model, revealing 14 partial loss-of-function variants, which were enriched among diabetes patients over 2-fold. Thus, clogging of the translocon by IAPP oligomers may contribute to ß cell failure.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/toxicidad , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Metaloendopeptidasas/química , Metaloendopeptidasas/genética , Modelos Biológicos , Mutagénesis , Agregado de Proteínas/fisiología , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos
2.
J Biol Chem ; 299(5): 104682, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37030503

RESUMEN

Islet amyloid polypeptide (amylin) secreted from the pancreas crosses from the blood to the brain parenchyma and forms cerebral mixed amylin-ß amyloid (Aß) plaques in persons with Alzheimer's disease (AD). Cerebral amylin-Aß plaques are found in both sporadic and early-onset familial AD; however, the role of amylin-Aß co-aggregation in potential mechanisms underlying this association remains unknown, in part due to lack of assays for detection of these complexes. Here, we report the development of an ELISA to detect amylin-Aß hetero-oligomers in brain tissue and blood. The amylin-Aß ELISA relies on a monoclonal anti-Aß mid-domain antibody (detection) and a polyclonal anti-amylin antibody (capture) designed to recognize an epitope that is distinct from the high affinity amylin-Aß binding sites. The utility of this assay is supported by the analysis of molecular amylin-Aß codeposition in postmortem brain tissue obtained from persons with and without AD pathology. By using transgenic AD-model rats, we show that this new assay can detect circulating amylin-Aß hetero-oligomers in the blood and is sensitive to their dissociation to monomers. This is important because therapeutic strategies to block amylin-Aß co-aggregation could reduce or delay the development and progression of AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Encéfalo , Animales , Ratones , Ratas , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Ratones Transgénicos , Páncreas/metabolismo , Ratas Transgénicas
3.
Neurobiol Dis ; 196: 106485, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38643861

RESUMEN

Research evidence indicating common metabolic mechanisms through which type 2 diabetes mellitus (T2DM) increases risk of late-onset Alzheimer's dementia (LOAD) has accumulated over recent decades. The aim of this systematic review is to provide a comprehensive review of common mechanisms, which have hitherto been discussed in separate perspectives, and to assemble and evaluate candidate loci and epigenetic modifications contributing to polygenic risk linkages between T2DM and LOAD. For the systematic review on pathophysiological mechanisms, both human and animal studies up to December 2023 are included. For the qualitative meta-analysis of genomic bases, human association studies were examined; for epigenetic mechanisms, data from human studies and animal models were accepted. Papers describing pathophysiological studies were identified in databases, and further literature gathered from cited work. For genomic and epigenomic studies, literature mining was conducted by formalised search codes using Boolean operators in search engines, and augmented by GeneRif citations in Entrez Gene, and other sources (WikiGenes, etc.). For the systematic review of pathophysiological mechanisms, 923 publications were evaluated, and 138 gene loci extracted for testing candidate risk linkages. 3 57 publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight insulin signalling, inflammation and inflammasome pathways, proteolysis, gluconeogenesis and glycolysis, glycosylation, lipoprotein metabolism and oxidation, cell cycle regulation or survival, autophagic-lysosomal pathways, and energy. Documented findings suggest interplay between brain insulin resistance, neuroinflammation, insult compensatory mechanisms, and peripheral metabolic dysregulation in T2DM and LOAD linkage. The results allow for more streamlined longitudinal studies of T2DM-LOAD risk linkages.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Epigénesis Genética
4.
Small ; : e2312046, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829034

RESUMEN

Accurate construction of artificial nano-chaperones' structure is crucial for precise regulation of protein conformational transformation, facilitating effective treatment of proteopathy. However, how the ligand-anchors of nano-chaperones affect the spatial conformational changes in proteins remains unclear, limiting the development of efficient nano-chaperones. In this study, three types of gold nanoparticles (AuNPs) with different core/ligands interface anchor structures (Au─NH─R, Au─S─R, and Au─C≡C─R, R = benzoic acid) are synthesized as an ideal model to investigate the effect of interfacial anchors on Aß and amylin fibrillization. Computational results revealed that the distinct interfacial anchors imparted diverse distributions of electrostatic potential on the nanointerface and core/ligands bond strength of AuNPs, leading to differential interactions with amyloid peptides. Experimental results demonstrated that all three types of AuNPs exhibit site-specific inhibitory effects on Aß40 fibrillization due to preferential binding. For amylin, amino-anchored AuNPs demonstrate strong adsorption to multiple sites on amylin and effectively inhibit fibrillization. Conversely, thiol- and alkyne-anchored AuNPs adsorb at the head region of amylin, promoting folding and fibrillization. This study not only provided molecular insights into how core/ligands interfacial anchors of nanomaterials induce spatial conformational changes in amyloid peptides but also offered guidance for precisely engineering artificial-chaperones' nanointerfaces to regulate the conformational transformation of proteins.

5.
Mass Spectrom Rev ; 42(3): 984-1007, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-34558100

RESUMEN

Amylin (islet amyloid polypeptide [IAPP]) is a neuroendocrine hormone synthesized with insulin in the beta cells of pancreatic islets. The two hormones act in different ways: in fact insulin triggers glucose uptake in muscle and liver cells, removing glucose from the bloodstream and making it available for energy use and storage, while amylin regulates glucose homeostasis. Aside these positive physiological aspects, human amyloid polypeptide (hIAPP) readily forms amyloid in vitro. Amyloids are aggregates of proteins and in the human body amyloids are considered responsible of the development of various diseases. These aspects have been widely described and discussed in literature and to give a view of the highly complexity of this biochemical behavior the different physical, chemical, biological and medical aspects are shortly described in this review. It is strongly affected by the presence on metal ions, responsible for or inhibiting the formation of fibrils. Mass spectrometry resulted (and still results) to be a particularly powerful tool to obtain valid and effective experimental data to describe the hIAPP behavior. Aside classical approaches devoted to investigation on metal ion-hIAPP structures, which reflects on the identification of metal-protein interaction site(s) and of possible metal-induced conformational changes of the protein, interesting results have been obtained by ion mobility mass spectrometry, giving, on the basis of collisional cross-section data, information on both the oligomerization processes and the conformation changes. Laser ablation electrospray ionization-ion mobility spectrometry-mass spectrometry (LAESI-IMS-MS), allowed to obtain information on the binding stoichiometry, complex dissociation constant, and the oxidation state of the copper for the amylin-copper interaction. Alternatively to inorganic ions, small organic molecules have been tested by ESI-IMS-MS as inhibitor of amyloid assembly. Also in this case the obtained data demonstrate the validity of the ESI-IMS-MS approach as a high-throughput screen for inhibitors of amyloid assembly, providing valid information concerning the identity of the interacting species, the nature of binding and the effect of the ligand on protein aggregation. Effects of Cu2+ and Zn2+ ions in the degradation of human and murine IAPP by insulin-degrading enzyme were studied by liquid chromatography/mass spectrometry (LC/MS). The literature data show that mass spectrometry is a highly valid and effective tool in the study of the amylin behavior, so to individuate medical strategies to avoid the undesired formation of amyloids in in vivo conditions.


Asunto(s)
Insulinas , Polipéptido Amiloide de los Islotes Pancreáticos , Ratones , Humanos , Animales , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Cobre/química , Cobre/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Amiloide/química , Amiloide/metabolismo , Glucosa
6.
Anal Biochem ; 692: 115570, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38763320

RESUMEN

Zinc plays a crucial role both in the immune system and endocrine processes. Zinc restriction in the diet has been shown to lead to degeneration of the endocrine pancreas, resulting in hormonal imbalance within the ß-cells. Proteostasismay vary depending on the stage of a pathophysiological process, which underscores the need for tools aimed at directly analyzing biological status. Among proteomics methods, MALDI-ToF-MS can serve as a rapid peptidomics tool for analyzing extracts or by histological imaging. Here we report the optimization of MALDI imaging mass spectrometry analysis of histological thin sections from mouse pancreas. This optimization enables the identification of the major islet peptide hormones as well as the major accumulated precursors and/or proteolytic products of peptide hormones. Cross-validation of the identified peptide hormones was performed by LC-ESI-MS from pancreatic islet extracts. Mice subjected to a zinc-restricted diet exhibited a relatively lower amount of peptide intermediates compared to the control group. These findings provide evidence for a complex modulation of proteostasis by micronutrients imbalance, a phenomenon directly accessed by MALDI-MSI.


Asunto(s)
Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Zinc , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Ratones , Zinc/análisis , Zinc/metabolismo , Hormonas Pancreáticas/metabolismo , Islotes Pancreáticos/metabolismo , Ratones Endogámicos C57BL , Páncreas/metabolismo , Masculino
7.
J Fluoresc ; 34(1): 245-251, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37195541

RESUMEN

In more than 50 to 90% of type 2 diabetic patients, under the influence of various factors, the production of islet amyloid polypeptide or amylin in pancreatic beta cells increases. Spontaneous accumulation of amylin peptide in the form of insoluble amyloid fibrils and soluble oligomers is one of the main causes of beta cell death in diabetic patients. The objective of the present study was to evaluate the effect of pyrogallol, as a phenolic compound, on inhibiting the formation of amylin protein amyloid fibrils. In this study, different techniques such as the thioflavin T (ThT) and 1-Anilino-8-naphthalene sulfonate (ANS) fluorescence intensity and the circular dichroism (CD) spectrum, will be used to investigate the effects of this compound on inhibiting the formation of amyloid fibrils. To investigate the interaction sites of pyrogallol with amylin, docking studies were performed. Our results that pyrogallol in a dose-dependent manner (0.5:1, 1:1, and 5:1, Pyr to Amylin) inhibits the amylin amyloid fibrils formation. Docking analysis revealed that pyrogallol forms hydrogen bonds with valine 17 and asparagine 21. In addition, this compound forms 2 more hydrogen bonds with asparagine 22. This compound also forms hydrophobic bonds with histidine 18. Considering this data and the direct relationship between oxidative stress and the formation of amylin amyloid accumulations in diabetes, the use of compounds with both antioxidant and anti-amyloid properties can be considered an important therapeutic strategy for type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Polipéptido Amiloide de los Islotes Pancreáticos , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Amiloide/química , Amiloide/metabolismo , Pirogalol , Asparagina
8.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062913

RESUMEN

Pancreas-derived islet amyloid polypeptide (IAPP) aggregates and deposits in the pancreas and periphery of Type 2 Diabetes (T2D) patients, contributing to diabetic complications. The excess IAPP can be removed by autoantibodies, and increased levels of immunoglobulin (Ig) G against IAPP have been reported in T2D patients. However, whether other Ig classes are also affected and if the levels can be managed is less known. This pre-post study examines IgA levels against IAPP oligomers (IAPPO-IgA) in T2D patients and assesses the impact of the Okinawa-based Nordic (O-BN) diet-a low-carbohydrate, high-fiber diet-on these levels after following the diet for 3 months. IAPP, IAPPO-IgA, and total IgA levels were measured in plasma and fecal samples from n = 30 T2D patients collected at baseline, after 3 months of diet, and after additional 4 months of unrestricted diets (a clinical follow-up). The IAPP and IAPPO-IgA levels were significantly lower after 3 months, with the latter also being significantly reduced at the clinical follow-up. The reduction in plasma IAPP and IAPPO-IgA levels correlated with reductions in plasma levels of metabolic and inflammatory markers. Hence, following the O-BN diet for at least 3 months is sufficient to reduce circulating IAPP and IAPPO-IgA levels, which may be principal in managing T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inmunoglobulina A , Polipéptido Amiloide de los Islotes Pancreáticos , Humanos , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Inmunoglobulina A/sangre , Inmunoglobulina A/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/sangre , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Japón , Adulto
9.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791099

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive loss of motor neurons. Emerging evidence suggests a potential link between metabolic dysregulation and ALS pathogenesis. This study aimed to investigate the relationship between metabolic hormones and disease progression in ALS patients. A cross-sectional study was conducted involving 44 ALS patients recruited from a tertiary care center. Serum levels of insulin, total amylin, C-peptide, active ghrelin, GIP (gastric inhibitory peptide), GLP-1 active (glucagon-like peptide-1), glucagon, PYY (peptide YY), PP (pancreatic polypeptide), leptin, interleukin-6, MCP-1 (monocyte chemoattractant protein-1), and TNFα (tumor necrosis factor alpha) were measured, and correlations with ALSFRS-R, evolution scores, and biomarkers were analyzed using Spearman correlation coefficients. Subgroup analyses based on ALS subtypes, progression pattern of disease, and disease progression rate patterns were performed. Significant correlations were observed between metabolic hormones and ALS evolution scores. Insulin and amylin exhibited strong correlations with disease progression and clinical functional outcomes, with insulin showing particularly robust associations. Other hormones such as C-peptide, leptin, and GLP-1 also showed correlations with ALS progression and functional status. Subgroup analyses revealed differences in hormone levels based on sex and disease evolution patterns, with male patients showing higher amylin and glucagon levels. ALS patients with slower disease progression exhibited elevated levels of amylin and insulin. Our findings suggest a potential role for metabolic hormones in modulating ALS progression and functional outcomes. Further research is needed to elucidate the underlying mechanisms and explore the therapeutic implications of targeting metabolic pathways in ALS management.


Asunto(s)
Esclerosis Amiotrófica Lateral , Biomarcadores , Insulina , Polipéptido Amiloide de los Islotes Pancreáticos , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/sangre , Masculino , Femenino , Persona de Mediana Edad , Anciano , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/sangre , Estudios Transversales , Biomarcadores/sangre , Insulina/metabolismo , Insulina/sangre , Progresión de la Enfermedad , Leptina/sangre , Leptina/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/sangre , Péptido C/sangre , Péptido C/metabolismo , Ghrelina/metabolismo , Ghrelina/sangre , Glucagón/sangre , Glucagón/metabolismo , Adulto , Hormonas/metabolismo , Hormonas/sangre
10.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338796

RESUMEN

Diabetes mellitus is a devastating chronic metabolic disease. Since the majority of type 2 diabetes mellitus patients are overweight or obese, a novel term-diabesity-has emerged. The gut-brain axis plays a critical function in maintaining glucose and energy homeostasis and involves a variety of peptides. Amylin is a neuroendocrine anorexigenic polypeptide hormone, which is co-secreted with insulin from ß-cells of the pancreas in response to food consumption. Aside from its effect on glucose homeostasis, amylin inhibits homeostatic and hedonic feeding, induces satiety, and decreases body weight. In this narrative review, we summarized the current evidence and ongoing studies on the mechanism of action, clinical pharmacology, and applications of amylin and its analogs, pramlintide and cagrilintide, in the field of diabetology, endocrinology, and metabolism disorders, such as obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Polipéptido Amiloide de los Islotes Pancreáticos , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/uso terapéutico , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglucemiantes/farmacología , Insulina/uso terapéutico , Obesidad/tratamiento farmacológico , Glucosa/uso terapéutico , Amiloide/fisiología
11.
J Headache Pain ; 25(1): 36, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38481170

RESUMEN

BACKGROUND: The upper cervical dorsal root ganglia (DRG) are important for the transmission of sensory information associated with the back of the head and neck, contributing to head pain. Calcitonin receptor (CTR)-based receptors, such as the amylin 1 (AMY1) receptor, and ligands, calcitonin gene-related peptide (CGRP) and amylin, have been linked to migraine and pain. However, the contribution of this system to nociception involving the cervical DRG is unclear. Therefore, this study aimed to determine the relative distribution of the CTR, CGRP, and amylin in upper cervical DRG. METHODS: CTR, CGRP, and amylin immunofluorescence was examined relative to neural markers in C1/2 DRG from male and female mice, rats, and human cases. Immunofluorescence was supported by RNA-fluorescence in situ hybridization examining amylin mRNA distribution in rat DRG. RESULTS: Amylin immunofluorescence was observed in neuronal soma and fibres. Amylin mRNA (Iapp) was also detected. Amylin and CGRP co-expression was observed in 19% (mouse), 17% (rat), and 36% (human) of DRG neurons in distinct vesicle-like neuronal puncta from one another. CTR immunoreactivity was present in DRG neurons, and both peptides produced receptor signalling in primary DRG cell cultures. CTR-positive neurons frequently co-expressed amylin and/or CGRP (66% rat; 84% human), with some sex differences. CONCLUSIONS: Amylin and CGRP could both be local peptide agonists for CTR-based receptors in upper cervical DRG, potentially acting through autocrine and/or paracrine signalling mechanisms to modulate neuron function. Amylin and its receptors could represent novel pain targets.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Receptores de Calcitonina , Ratas , Femenino , Masculino , Humanos , Ratones , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Ganglios Espinales , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Hibridación Fluorescente in Situ , Dolor , ARN Mensajero
12.
J Proteome Res ; 22(1): 235-245, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36412564

RESUMEN

We combine liquid chromatography coupled with ion mobility spectrometry-mass spectrometry to elucidate how short exposure to corticosterone (Cort) alters the output of mouse pancreatic islet hormones. The workflow enables the robust separation of mouse insulin 1 (Ins1) and insulin 2 (Ins2) and the detection of major islet hormones in a homogenate equivalent to 100-150 islet cells. We show that Ins2 has a unique structure and is degraded much faster than Ins1. Further investigation indicates that Ins2 may populate both T and R states, whereas Ins1 may not. The assemblies of Ins1's B-chain also introduce more structural heterogeneity than Ins2. Collectively, these features account for their unique degradation profiles, the diabetes risk associated with Ins1, and the protective effect of Ins2. In the same experiments, we observe that the ratio of amylin to Ins1 increased significantly in Cort-treated mice (15:1) compared to the control mice (42:1), correlating well with ß-cell proliferation observed in immunoassays on the same animal model. We observe no increase in intact full-length insulin levels but more of the truncated forms, indicating that enzymatic activity is accelerated. Our data provide a molecular basis for reduced insulin action induced by Cort and connections between insulin turnover and insulin resistance.


Asunto(s)
Resistencia a la Insulina , Células Secretoras de Insulina , Ratones , Animales , Corticosterona/farmacología , Corticosterona/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
13.
Neuropathol Appl Neurobiol ; 49(4): e12917, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37317631

RESUMEN

AIMS: This study aims to study the association between pancreatic islet amyloid polypeptide (IAPP) and Alzheimer's disease neuropathological change (ADNC) in brain biopsies obtained from subjects with idiopathic normal pressure hydrocephalus (iNPH) and in post-mortem (PM) brain samples obtained from aged individuals. METHODS: For the immunohistochemical (IHC) analyses, two IAPP antibodies (Abs), monoclonal and polyclonal, and Abs directed towards ADNC were applied. RESULTS: The iNPH cohort included 113 subjects. Amyloid-ß (Aß) was detected in 50% and hyperphosphorylated τ (HPτ) in 47% of the cases. Concomitant pathology was seen in 32%. The PM cohort included 77 subjects. Aß was detected in 69% and HPτ in 91% of the cases. Combined Aß/HPτ pathology was seen in 62%. Reactivity for the monoclonal IAPP was not detected in the brain tissue in either of the cohorts. Reactivity for the polyclonal IAPP was observed in all 77 PM brain samples. CONCLUSIONS: There was no specific expression of IAPP in human brain tissue; hence, an association between IAPP and ADNC is not assessable. Of note, the observed reactivity of the polyclonal IAPP Ab was not reproduced with a specific monoclonal Ab; thus, we considered the observed staining with the polyclonal Ab to be unreliable. When using IHC, several pitfalls, especially the choice of an Ab, always need to be considered. Polyclonal Abs cross-react with other epitopes and proteins, thus leading to false-positive results. This seems to be the case for the polyclonal IAPP Abs in the human brain.


Asunto(s)
Enfermedad de Alzheimer , Polipéptido Amiloide de los Islotes Pancreáticos , Humanos , Anciano , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Biopsia
14.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569648

RESUMEN

Migraine is a debilitating neurological condition affecting millions of people worldwide. Until a few years ago, preventive migraine treatments were based on molecules with pleiotropic targets, developed for other indications, and discovered by serendipity to be effective in migraine prevention, although often burdened by tolerability issues leading to low adherence. However, the progresses in unravelling the migraine pathophysiology allowed identifying novel putative targets as calcitonin gene-related peptide (CGRP). Nevertheless, despite the revolution brought by CGRP monoclonal antibodies and gepants, a significant percentage of patients still remains burdened by an unsatisfactory response, suggesting that other pathways may play a critical role, with an extent of involvement varying among different migraine patients. Specifically, neuropeptides of the CGRP family, such as adrenomedullin and amylin; molecules of the secretin family, such as pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP); receptors, such as transient receptor potential (TRP) channels; intracellular downstream determinants, such as potassium channels, but also the opioid system and the purinergic pathway, have been suggested to be involved in migraine pathophysiology. The present review provides an overview of these pathways, highlighting, based on preclinical and clinical evidence, as well as provocative studies, their potential role as future targets for migraine preventive treatment.


Asunto(s)
Trastornos Migrañosos , Humanos , Animales , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Transducción de Señal/efectos de los fármacos , Péptido Intestinal Vasoactivo/uso terapéutico , Canales de Potasio/metabolismo , Analgésicos Opioides
15.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835377

RESUMEN

Little information is available concerning protein expression of the calcitonin receptor-like receptor (CALCRL) at the protein level. Here, we developed a rabbit monoclonal antibody, 8H9L8, which is directed against human CALCRL but cross-reacts with the rat and mouse forms of the receptor. We confirmed antibody specificity via Western blot analyses and immunocytochemistry using the CALCRL-expressing neuroendocrine tumour cell line BON-1 and a CALCRL-specific small interfering RNA (siRNA). We then used the antibody for immunohistochemical analyses of various formalin-fixed, paraffin-embedded specimens of normal and neoplastic tissues. In nearly all tissue specimens examined, CALCRL expression was detected in the capillary endothelium, smooth muscles of the arterioles and arteries, and immune cells. Analyses of normal human, rat, and mouse tissues revealed that CALCRL was primarily present in distinct cell populations in the cerebral cortex; pituitary; dorsal root ganglia; epithelia, muscles, and glands of the larger bronchi; intestinal mucosa (particularly in enteroendocrine cells); intestinal ganglia; exocrine and endocrine pancreas; arteries, capillaries, and glomerular capillary loops in the kidneys; the adrenals; Leydig cells in the testicles; and syncytiotrophoblasts in the placenta. In the neoplastic tissues, CALCRL was predominantly expressed in thyroid carcinomas, parathyroid adenomas, small-cell lung cancers, large-cell neuroendocrine carcinomas of the lung, pancreatic neuroendocrine neoplasms, renal clear-cell carcinomas, pheochromocytomas, lymphomas, and melanomas. In these tumours with strong expression of CALCRL, the receptor may represent a useful target structure for future therapies.


Asunto(s)
Proteína Similar al Receptor de Calcitonina , Neoplasias , Animales , Humanos , Masculino , Ratones , Ratas , Adrenomedulina/metabolismo , Arterias/metabolismo , Proteína Similar al Receptor de Calcitonina/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/metabolismo , Neoplasias/metabolismo
16.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835187

RESUMEN

Pancreas-derived islet amyloid polypeptide (IAPP) crosses the blood-brain barrier and co-deposits with amyloid beta (Aß) in brains of type 2 diabetes (T2D) and Alzheimer's disease (AD) patients. Depositions might be related to the circulating IAPP levels, but it warrants further investigation. Autoantibodies recognizing toxic IAPP oligomers (IAPPO) but not monomers (IAPPM) or fibrils have been found in T2D, but studies on AD are lacking. In this study, we have analyzed plasma from two cohorts and found that levels of neither immunoglobulin (Ig) M, nor IgG or IgA against IAPPM or IAPPO were altered in AD patients compared with controls. However, our results show significantly lower IAPPO-IgA levels in apolipoprotein E (APOE) 4 carriers compared with non-carriers in an allele dose-dependent manner, and the decrease is linked to the AD pathology. Furthermore, plasma IAPP-Ig levels, especially IAPP-IgA, correlated with cognitive decline, C-reactive protein, cerebrospinal fluid Aß and tau, neurofibrillary tangles, and brain IAPP exclusively in APOE4 non-carriers. We speculate that the reduction in IAPPO-IgA levels may be caused by increased plasma IAPPO levels or masked epitopes in APOE4 carriers and propose that IgA and APOE4 status play a specific role in clearance of circulatory IAPPO, which may influence the amount of IAPP deposition in the AD brain.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Polipéptido Amiloide de los Islotes Pancreáticos , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Diabetes Mellitus Tipo 2/metabolismo , Inmunoglobulina A , Polipéptido Amiloide de los Islotes Pancreáticos/sangre , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo
17.
J Headache Pain ; 24(1): 125, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37691118

RESUMEN

Targeting CGRP has proved to be efficacious, tolerable, and safe to treat migraine; however, many patients with migraine do not benefit from drugs that antagonize the CGRPergic system. Therefore, this review focuses on summarizing the general pharmacology of the different types of treatments currently available, which target directly or indirectly the CGRP receptor or its ligand. Moreover, the latest evidence regarding the selectivity and site of action of CGRP small molecule antagonists (gepants) and monoclonal antibodies is critically discussed. Finally, the reasons behind non-responders to anti-CGRP drugs and rationale for combining and/or switching between these therapies are addressed.


Asunto(s)
Anticuerpos Monoclonales , Trastornos Migrañosos , Humanos , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/farmacología , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/uso terapéutico , Trastornos Migrañosos/tratamiento farmacológico , Receptores de Péptido Relacionado con el Gen de Calcitonina , Transducción de Señal
18.
J Headache Pain ; 24(1): 76, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37370051

RESUMEN

BACKGROUND: Migraine is a disabling and chronic neurovascular headache disorder. Trigeminal vascular activation and release of calcitonin gene-related peptide (CGRP) play a pivotal role in the pathogenesis of migraine. This knowledge has led to the development of CGRP(-receptor) therapies. Yet, a substantial proportion of patients do not respond to these treatments. Therefore, alternative targets for future therapies are warranted. The current narrative review provides a comprehensive overview of the pathophysiological role of these possible non-CGRP targets in migraine. FINDINGS: We covered targets of the metabotropic receptors (pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), amylin, and adrenomedullin), intracellular targets (nitric oxide (NO), phosphodiesterase-3 (PDE3) and -5 (PDE5)), and ion channels (potassium, calcium, transient receptor potential (TRP), and acid-sensing ion channels (ASIC)). The majority of non-CGRP targets were able to induce migraine-like attacks, except for (i) calcium channels, as it is not yet possible to directly target channels to elucidate their precise involvement in migraine; (ii) TRP channels, activation of which can induce non-migraine headache; and (iii) ASICs, as their potential in inducing migraine attacks has not been investigated thus far. Drugs that target its receptors exist for PACAP, NO, and the potassium, TRP, and ASIC channels. No selective drugs exist for the other targets, however, some existing (migraine) treatments appear to indirectly antagonize responses to amylin, adrenomedullin, and calcium channels. Drugs against PACAP, NO, potassium channels, TRP channels, and only a PAC1 antibody have been tested for migraine treatment, albeit with ambiguous results. CONCLUSION: While current research on these non-CGRP drug targets has not yet led to the development of efficacious therapies, human provocation studies using these targets have provided valuable insight into underlying mechanisms of migraine headaches and auras. Further studies are needed on these alternative therapies in non-responders of CGRP(-receptor) targeted therapies with the ultimate aim to pave the way towards a headache-free future for all migraine patients.


Asunto(s)
Trastornos de Cefalalgia , Trastornos Migrañosos , Humanos , Adrenomedulina/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Trastornos Migrañosos/tratamiento farmacológico , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina
19.
J Cell Physiol ; 237(2): 1119-1142, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34636428

RESUMEN

Islet amyloid polypeptide (IAPP or amylin) is a hormone co-secreted with insulin by pancreatic ß-cells and is the major component of islet amyloid. Islet amyloid is found in the pancreas of patients with type 2 diabetes (T2D) and may be involved in ß-cell dysfunction and death, observed in this disease. Thus, investigating the aspects related to amyloid formation is relevant to the development of strategies towards ß-cell protection. In this sense, IAPP misprocessing, IAPP overproduction, and disturbances in intra- and extracellular environments seem to be decisive for IAPP to form islet amyloid. Islet amyloid toxicity in ß-cells may be triggered in intra- and/or extracellular sites by membrane damage, endoplasmic reticulum stress, autophagy disruption, mitochondrial dysfunction, inflammation, and apoptosis. Importantly, different approaches have been suggested to prevent islet amyloid cytotoxicity, from inhibition of IAPP aggregation to attenuation of cell death mechanisms. Such approaches have improved ß-cell function and prevented the development of hyperglycemia in animals. Therefore, counteracting islet amyloid may be a promising therapy for T2D treatment.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Amiloide/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/metabolismo
20.
Arch Biochem Biophys ; 728: 109354, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35863477

RESUMEN

Dipyridamole is currently used as a medication that inhibits blood clot formation and it is also investigated in the context of neurodegenerative and other amyloid related diseases. Here, we propose this molecule as a new diagnostic tool to follow the aggregation properties of three different amyloidogenic proteins tested (insulin, amylin and amyloid ß peptide 1-40). Results show that dipyridamole is sensitive to early stage amyloid formation undetected by thioflavin T, giving a different response for the aggregation of the three different proteins. In addition, we show that dipyridamole is also able to enhance ubiquitin chain growth, paving the way to its potential application as therapeutic agent in neurodegenerative diseases.


Asunto(s)
Péptidos beta-Amiloides , Proteínas Amiloidogénicas , Amiloide , Dipiridamol , Polipéptido Amiloide de los Islotes Pancreáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA