Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(6): 1476-1489.e21, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38401541

RESUMEN

Attention filters sensory inputs to enhance task-relevant information. It is guided by an "attentional template" that represents the stimulus features that are currently relevant. To understand how the brain learns and uses templates, we trained monkeys to perform a visual search task that required them to repeatedly learn new attentional templates. Neural recordings found that templates were represented across the prefrontal and parietal cortex in a structured manner, such that perceptually neighboring templates had similar neural representations. When the task changed, a new attentional template was learned by incrementally shifting the template toward rewarded features. Finally, we found that attentional templates transformed stimulus features into a common value representation that allowed the same decision-making mechanisms to deploy attention, regardless of the identity of the template. Altogether, our results provide insight into the neural mechanisms by which the brain learns to control attention and how attention can be flexibly deployed across tasks.


Asunto(s)
Atención , Toma de Decisiones , Aprendizaje , Lóbulo Parietal , Recompensa , Animales , Haplorrinos
2.
J Neurosci ; 44(33)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38955488

RESUMEN

Adaptive behaviors require the ability to resolve conflicting information caused by the processing of incompatible sensory inputs. Prominent theories of attention have posited that early selective attention helps mitigate cognitive interference caused by conflicting sensory information by facilitating the processing of task-relevant sensory inputs and filtering out behaviorally irrelevant information. Surprisingly, many recent studies that investigated the role of early selective attention on conflict mitigation have failed to provide positive evidence. Here, we examined changes in the selectivity of early visuospatial attention in male and female human subjects performing an attention-cueing Eriksen flanker task, where they discriminated the shape of a visual target surrounded by congruent or incongruent distractors. We used the inverted encoding model to reconstruct spatial representations of visual selective attention from the topographical patterns of amplitude modulations in alpha band oscillations in scalp EEG (∼8-12 Hz). We found that the fidelity of the alpha-based spatial reconstruction was significantly higher in the incongruent compared with the congruent condition. Importantly, these conflict-related modulations in the reconstruction fidelity occurred at a much earlier time window than those of the lateralized posterior event-related potentials associated with target selection and distractor suppression processes, as well as conflict-related modulations in the frontocentral negative-going wave and midline-frontal theta oscillations (∼3-7 Hz), thought to track executive control functions. Taken together, our data suggest that conflict resolution is supported by the cascade of neural processes underlying early selective visuospatial attention and frontal executive functions that unfold over time.


Asunto(s)
Atención , Percepción Espacial , Percepción Visual , Humanos , Masculino , Femenino , Atención/fisiología , Adulto Joven , Adulto , Percepción Espacial/fisiología , Percepción Visual/fisiología , Electroencefalografía , Estimulación Luminosa/métodos , Conflicto Psicológico , Señales (Psicología) , Potenciales Evocados/fisiología
3.
Brain ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864500

RESUMEN

The fate of deprived sensory cortices - visual regions in the blind and auditory regions in the deaf - exemplifies the extent to which experience can change brain regions. These regions are frequently seen to activate during tasks involving other sensory modalities, leading many accounts to infer that these regions have started processing sensory information of other modalities. However, such observations can also imply that these regions are now activating to any task event regardless of the sensory modality. Activating to task events, irrespective of the sensory modality involved, is a feature of the multiple-demands (MD) network. These are a common set of regions within the frontal and parietal cortices that activate in response to any kind of control demand. Thus, demands as diverse as attention, perceptual difficulty, rule-switching, updating working memory, inhibiting responses, decision-making, and difficult arithmetic - all activate these same set of regions that are thought to instantiate domain-general cognitive control and underpin fluid intelligence. We investigated if deprived sensory cortices, or foci within them, become part of the MD network. We tested if the same foci within the visual regions of the blind and auditory regions of the deaf activated to different control demands. We found that control demands related to updating auditory working memory, difficult tactile decisions, time-duration judgments, and sensorimotor-speed - all activated the entire bilateral occipital regions in the blind but not in the sighted. These occipital regions in the blind were the only regions outside the canonical fronto-parietal MD regions to show such activation to multiple control demands. Further, compared to the sighted, these occipital regions in the blind had higher functional connectivity with fronto-parietal MD regions. Early deaf, in contrast, did not activate their auditory regions to different control demands, showing that auditory regions do not become MD regions in the deaf. We suggest that visual regions in the blind do not take a new sensory role but become part of the MD network, and this is not a response of all deprived sensory cortices but a feature unique to the visual regions.

4.
Brain ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869168

RESUMEN

Control of actions allows adaptive, goal-directed behaviour. The basal ganglia, including the subthalamic nucleus, are thought to play a central role in dynamically controlling actions through recurrent negative feedback loops with the cerebral cortex. Here, we summarize recent translational studies that used deep brain stimulation to record neural activity from and apply electrical stimulation to the subthalamic nucleus in people with Parkinson's disease. These studies have elucidated spatial, spectral and temporal features of the neural mechanisms underlying the controlled delay of actions in cortico-subthalamic networks and demonstrated their causal effects on behaviour in distinct processing windows. While these mechanisms have been conceptualized as control signals for suppressing impulsive response tendencies in conflict tasks and as decision threshold adjustments in value-based and perceptual decisions, we propose a common framework linking decision-making, cognition and movement. Within this framework subthalamic deep brain stimulation can lead to suboptimal choices by reducing the time that patients take for deliberation before committing to an action. However, clinical studies have consistently shown that the occurrence of impulse control disorders is reduced, not increased, after subthalamic deep brain stimulation surgery. This apparent contradiction can be reconciled when recognizing the multifaceted nature of impulsivity, its underlying mechanisms and modulation by treatment. While subthalamic deep brain stimulation renders patients susceptible to making decisions without proper forethought, this can be disentangled from effects related to dopamine comprising sensitivity to benefits vs. costs, reward delay aversion and learning from outcomes. Alterations in these dopamine-mediated mechanisms are thought to underlie the development of impulse control disorders, and can be relatively spared with reduced dopaminergic medication after subthalamic deep brain stimulation. Together, results from studies using deep brain stimulation as an experimental tool have improved our understanding of action control in the human brain and have important implications for treatment of patients with Neurological disorders.

5.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38183181

RESUMEN

The prevalence of physically inactive lifestyles in modern society raises concerns about the potential association with poor brain health, particularly in the lateral prefrontal cortex, which is crucial for human prosocial behavior. Here, we explored the relationship between physical activity and prosocial behavior, focusing on potential neural markers, including intra-brain functional connectivity and inter-brain synchrony in the lateral prefrontal cortex. Forty participants, each paired with a stranger, completed two experimental conditions in a randomized order: (i) face-to-face and (ii) face stimulus (eye-to-eye contact with a face stimulus of a fictitious person displayed on the screen). Following each condition, participants played economic games with either their partner or an assumed person displayed on the screen. Neural activity in the lateral prefrontal cortex was recorded by functional near-infrared spectroscopy hyperscanning. Sparse multiset canonical correlation analysis showed that a physically inactive lifestyle was covaried with poorer reciprocity, greater trust, shorter decision-making time, and weaker intra-brain connectivity in the dorsal lateral prefrontal cortex and poorer inter-brain synchrony in the ventral lateral prefrontal cortex. These associations were observed exclusively in the face-to-face condition. Our findings suggest that a physically inactive lifestyle may alter human prosocial behavior by impairing adaptable prosocial decision-making in response to social factors through altered intra-brain functional connectivity and inter-brain synchrony.


Asunto(s)
Altruismo , Espectroscopía Infrarroja Corta , Humanos , Espectroscopía Infrarroja Corta/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Mapeo Encefálico/métodos , Ejercicio Físico
6.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38244562

RESUMEN

Theoretical models suggest that executive functions rely on both domain-general and domain-specific processes. Supporting this view, prior brain imaging studies have revealed that executive activations converge and diverge within broadly characterized brain networks. However, the lack of precise anatomical mappings has impeded our understanding of the interplay between domain-general and domain-specific processes. To address this challenge, we used the high-resolution multimodal magnetic resonance imaging approach of the Human Connectome Project to scan participants performing 3 canonical executive tasks: n-back, rule switching, and stop signal. The results reveal that, at the individual level, different executive activations converge within 9 domain-general territories distributed in frontal, parietal, and temporal cortices. Each task exhibits a unique topography characterized by finely detailed activation gradients within domain-general territory shifted toward adjacent resting-state networks; n-back activations shift toward the default mode, rule switching toward dorsal attention, and stop signal toward cingulo-opercular networks. Importantly, the strongest activations arise at multimodal neurobiological definitions of network borders. Matching results are seen in circumscribed regions of the caudate nucleus, thalamus, and cerebellum. The shifting peaks of local gradients at the intersection of task-specific networks provide a novel mechanistic insight into how partially-specialized networks interact with neighboring domain-general territories to generate distinct executive functions.


Asunto(s)
Conectoma , Función Ejecutiva , Humanos , Función Ejecutiva/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Núcleo Caudado , Atención/fisiología , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología
7.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38314589

RESUMEN

Sentence comprehension is highly practiced and largely automatic, but this belies the complexity of the underlying processes. We used functional neuroimaging to investigate garden-path sentences that cause difficulty during comprehension, in order to unpack the different processes used to support sentence interpretation. By investigating garden-path and other types of sentences within the same individuals, we functionally profiled different regions within the temporal and frontal cortices in the left hemisphere. The results revealed that different aspects of comprehension difficulty are handled by left posterior temporal, left anterior temporal, ventral left frontal, and dorsal left frontal cortices. The functional profiles of these regions likely lie along a spectrum of specificity to generality, including language-specific processing of linguistic representations, more general conflict resolution processes operating over linguistic representations, and processes for handling difficulty in general. These findings suggest that difficulty is not unitary and that there is a role for a variety of linguistic and non-linguistic processes in supporting comprehension.


Asunto(s)
Comprensión , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Lenguaje , Lingüística , Neuroimagen Funcional , Mapeo Encefálico
8.
J Physiol ; 602(8): 1775-1790, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38516712

RESUMEN

Hypertension-related changes in brain function place individuals at higher risk for cognitive impairment and Alzheimer's disease. The existing functional neuroimaging literature has identified important neural and behavioural differences between normotensive and hypertensive individuals. However, previously-used methods (i.e. magnetic resonance imaging, functional near-infrared spectroscopy) rely on neurovascular coupling, which is a useful but indirect measure of neuronal activity. Furthermore, most studies fail to distinguish between controlled and uncontrolled hypertensive individuals, who exhibit significant behavioural and clinical differences. To partially remedy this gap in the literature, we used magnetoencephalography (MEG) to directly examine neuronal activity that is invariant to neurovascular coupling changes induced by hypertension. Our study included 52 participants (19 healthy controls, 15 controlled hypertensives, 18 uncontrolled hypertensives) who completed a modified flanker attention task during MEG. We identified significant oscillatory neural responses in two frequencies (alpha: 8-14 Hz, gamma: 48-60 Hz) for imaging and used grand-averaged images to determine seeds for whole-brain connectivity analysis. We then conducted Fisher-z tests for each pair of groups, using the relationship between the neural connectivity and behavioural attention effects. This highlighted a distributed network of regions associated with cognitive control and selective attention, including frontal-occipital and interhemispheric occipital connections. Importantly, the inferior frontal cortex exhibited a unique neurobehavioural relationship that distinguished the uncontrolled hypertensive group from the controlled hypertensive and normotensive groups. This is the first investigation of hypertension using MEG and identifies critical whole-brain connectivity differences based on hypertension profiles. KEY POINTS: Structural and functional changes in brain circuitry scale with hypertension severity and increase the risk of cognitive impairment and Alzheimer's disease. We harness the excellent spatiotemporal precision of magnetoencephalography (MEG) to directly quantify dynamic functional connectivity in healthy control, controlled hypertensive and uncontrolled hypertensive groups during a flanker task. In the first MEG study of hypertension, we show that there are neurobehavioural relationships that distinguish the uncontrolled hypertensive group from healthy and controlled hypertensive group in the prefrontal cortex. These results provide novel insights into the differential impact of hypertension on brain dynamics underlying selective attention.


Asunto(s)
Enfermedad de Alzheimer , Hipertensión , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Magnetoencefalografía , Imagen por Resonancia Magnética , Mapeo Encefálico , Atención , Hipertensión/diagnóstico por imagen
9.
Hum Brain Mapp ; 45(8): e26716, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38798117

RESUMEN

Acute psychosocial stress affects learning, memory, and attention, but the evidence for the influence of stress on the neural processes supporting cognitive control remains mixed. We investigated how acute psychosocial stress influences performance and neural processing during the Go/NoGo task-an established cognitive control task. The experimental group underwent the Trier Social Stress Test (TSST) acute stress induction, whereas the control group completed personality questionnaires. Then, participants completed a functional magnetic resonance imaging (fMRI) Go/NoGo task, with self-report, blood pressure and salivary cortisol measurements of induced stress taken intermittently throughout the experimental session. The TSST was successful in eliciting a stress response, as indicated by significant Stress > Control between-group differences in subjective stress ratings and systolic blood pressure. We did not identify significant differences in cortisol levels, however. The stress induction also impacted subsequent Go/NoGo task performance, with participants who underwent the TSST making fewer commission errors on trials requiring the most inhibitory control (NoGo Green) relative to the control group, suggesting increased vigilance. Univariate analysis of fMRI task-evoked brain activity revealed no differences between stress and control groups for any region. However, using multivariate pattern analysis, stress and control groups were reliably differentiated by activation patterns contrasting the most demanding NoGo trials (i.e., NoGo Green trials) versus baseline in the medial intraparietal area (mIPA, affiliated with the dorsal attention network) and subregions of the cerebellum (affiliated with the default mode network). These results align with prior reports linking the mIPA and the cerebellum to visuomotor coordination, a function central to cognitive control processes underlying goal-directed behavior. This suggests that stressor-induced hypervigilance may produce a facilitative effect on response inhibition which is represented neurally by the activation patterns of cognitive control regions.


Asunto(s)
Inhibición Psicológica , Imagen por Resonancia Magnética , Estrés Psicológico , Humanos , Estrés Psicológico/fisiopatología , Estrés Psicológico/diagnóstico por imagen , Masculino , Femenino , Adulto , Adulto Joven , Función Ejecutiva/fisiología , Hidrocortisona/metabolismo , Desempeño Psicomotor/fisiología
10.
Hum Brain Mapp ; 45(1): e26549, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38224538

RESUMEN

The ability to identify and resolve conflicts between standard, well-trained behaviors and behaviors required by the current context is an essential feature of cognitive control. To date, no consensus has been reached on the brain mechanisms involved in exerting such control: while some studies identified diverse patterns of activity across different conflicts, other studies reported common resources across conflict tasks or even across simple tasks devoid of the conflict component. The latter reports attributed the entire activity observed in the presence of conflict to longer time spent on the task (i.e., to the so-called time-on-task effects). Here, we used an extended Multi-Source Interference Task (MSIT) which combines Simon and flanker types of interference to determine shared and conflict-specific mechanisms of conflict resolution in fMRI and their separability from the time-on-task effects. Large portions of the activity in the dorsal attention network and decreases of activity in the default mode network were shared across the tasks and scaled in parallel with increasing reaction times. Importantly, the activity in the sensory and sensorimotor cortices, as well as in the posterior medial frontal cortex (pMFC) - a key region implicated in conflict processing - could not be exhaustively explained by the time-on-task effects.


Asunto(s)
Encéfalo , Conflicto Psicológico , Humanos , Encéfalo/diagnóstico por imagen , Tiempo de Reacción , Lóbulo Frontal , Mapeo Encefálico
11.
Hum Brain Mapp ; 45(11): e26804, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39126346

RESUMEN

An underlying hypothesis for broad transfer from cognitive training is that the regional brain signals engaged during the training task are related to the transfer tasks. However, it is unclear whether the brain activations elicited from a specific cognitive task can generalize to performance of other tasks, esp. in normal aging where cognitive training holds much promise. In this large dual-site functional magnetic resonance imaging (fMRI) study, we aimed to characterize the neurobehavioral correlates of task-switching in normal aging and examine whether the task-switching-related fMRI-blood-oxygen-level-dependent (BOLD) signals, engaged during varieties of cognitive control, generalize to other tasks of executive control and general cognition. We therefore used a hybrid blocked and event-related fMRI task-switching paradigm to investigate brain regions associated with multiple types of cognitive control on 129 non-demented older adults (65-85 years). This large dataset provided a unique opportunity for a data-driven partial least squares-correlation approach to investigate the generalizability of multiple fMRI-BOLD signals associated with task-switching costs to other tasks of executive control, general cognition, and demographic characteristics. While some fMRI signals generalized beyond the scanned task, others did not. Results indicate right middle frontal brain activation as detrimental to task-switching performance, whereas inferior frontal and caudate activations were related to faster processing speed during the fMRI task-switching, but activations of these regions did not predict performance on other tasks of executive control or general cognition. However, BOLD signals from the right lateral occipital cortex engaged during the fMRI task positively predicted performance on a working memory updating task, and BOLD signals from the left post-central gyrus that were disengaged during the fMRI task were related to slower processing speed in the task as well as to lower general cognition. Together, these results suggest generalizability of these BOLD signals beyond the scanned task. The findings also provided evidence for the general slowing hypothesis of aging as most variance in the data were explained by low processing speed and global low BOLD signal in older age. As processing speed shared variance with task-switching and other executive control tasks, it might be a possible basis of generalizability between these tasks. Additional results support the dedifferentiation hypothesis of brain aging, as right middle frontal activations predicted poorer task-switching performance. Overall, we observed that the BOLD signals related to the fMRI task not only generalize to the performance of other executive control tasks, but unique brain predictors of out-of-scanner performance can be identified.


Asunto(s)
Mapeo Encefálico , Encéfalo , Cognición , Función Ejecutiva , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Anciano , Función Ejecutiva/fisiología , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Cognición/fisiología , Anciano de 80 o más Años , Análisis de los Mínimos Cuadrados , Envejecimiento/fisiología , Oxígeno/sangre , Pruebas Neuropsicológicas
12.
Hum Brain Mapp ; 45(11): e26727, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39081074

RESUMEN

During our everyday life, the constant flow of information is divided into discrete events, a process conceptualized in Event Segmentation Theory (EST). How people perform event segmentation and the resulting granularity of encapsulated segments likely depends on their metacontrol style. Yet, the underlying neural mechanisms remain undetermined. The current study examines how the metacontrol style affects event segmentation through the analysis of EEG data using multivariate pattern analysis (MVPA) and source localization analysis. We instructed two groups of healthy participants to either segment a movie as fine-grained as possible (fine-grain group) or provided no such instruction (free-segmentation group). The fine-grain group showed more segments and a higher likelihood to set event boundaries upon scene changes, which supports the notion that cognitive control influences segmentation granularity. On a neural level, representational dynamics were decodable 400 ms prior to the decision to close a segment and open a new one, and especially fronto-polar regions (BA10) were associated with this representational dynamic. Groups differed in their use of this representational dynamics to guide behavior and there was a higher sensitivity to incoming information in the Fine-grain group. Moreover, a higher likelihood to set event boundaries was reflected by activity increases in the insular cortex suggesting an increased monitoring of potentially relevant upcoming events. The study connects the EST with the metacontrol framework and relates these to overarching neural concepts of prefrontal cortex function.


Asunto(s)
Electroencefalografía , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Función Ejecutiva/fisiología , Corteza Insular/fisiología , Corteza Insular/diagnóstico por imagen , Mapeo Encefálico , Corteza Cerebral/fisiología , Corteza Cerebral/diagnóstico por imagen
13.
Cogn Affect Behav Neurosci ; 24(3): 402-420, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38291309

RESUMEN

We investigated the simultaneous influence of expectation and experience on metacontrol, which we define as the instantiation of context-specific control states. These states could entail heightened control states in preparation for frequent task switching or lowered control states for task repetition. Specifically, we examined whether "expectations" regarding future control demands prompt proactive metacontrol, while "experiences" with items associated with specific control demands facilitate reactive metacontrol. In Experiment 1, we utilized EEG with a high temporal resolution to differentiate between brain activities associated with proactive and reactive metacontrol. We successfully observed cue-locked and image-locked ERP patterns associated with proactive and reactive metacontrol, respectively, supporting concurrent instantiation of two metacontrol modes. In Experiment 2, we focused on individual differences to investigate the modulatory role of working memory capacity (WMC) in the concurrent instantiation of two metacontrol modes. Our findings revealed that individuals with higher WMC exhibited enhanced proactive metacontrol, indicated by smaller response time variability (RTV). Additionally, individuals with higher WMC showed a lower tendency to rely on reactive metacontrol, indicated by a smaller item-specific switch probability (ISSP) effect. In conclusion, our results suggest that proactive and reactive metacontrol can coexist, but their interplay is influenced by individuals' WMC. Higher WMC promotes the use of proactive metacontrol while attenuating reliance on reactive metacontrol. This study provides insights into the interplay between proactive and reactive metacontrol and highlights the impact of WMC on their concurrent instantiation.


Asunto(s)
Electroencefalografía , Potenciales Evocados , Memoria a Corto Plazo , Humanos , Memoria a Corto Plazo/fisiología , Masculino , Femenino , Adulto Joven , Electroencefalografía/métodos , Adulto , Potenciales Evocados/fisiología , Encéfalo/fisiología , Tiempo de Reacción/fisiología , Función Ejecutiva/fisiología , Adolescente , Individualidad , Anticipación Psicológica/fisiología
14.
Artículo en Inglés | MEDLINE | ID: mdl-38773020

RESUMEN

Major depressive disorder (MDD) is a debilitating mental disorder and the leading cause of disease burden. Major depressive disorder is associated with emotional impairment and cognitive deficit. Cognitive control, which is the ability to use perceptions, knowledge, and information about goals and motivations to shape the selection of goal-directed actions or thoughts, is a primary function of the prefrontal cortex (PFC). Psychotropic medications are one of the main treatments for MDD, but they are not effective for all patients. An alternative treatment is transcranial magnetic stimulation (TMS). Previous studies have provided mixed results on the cognitive-enhancing effects of TMS treatment in patients with MDD. Some studies have found significant improvement, while others have not. There is a lack of understanding of the specific effects of different TMS protocols and stimulation parameters on cognitive control in MDD. Thus, this review aims to synthesize the effectiveness of the TMS methods and a qualitative assessment of their potential benefits in improving cognitive functioning in patients with MDD. We reviewed 21 studies in which participants underwent a treatment of any transcranial magnetic stimulation protocol, such as repetitive TMS or theta-burst stimulation. One of the primary outcome measures was any change in the cognitive control process. Overall, the findings indicate that transcranial magnetic stimulation (TMS) may enhance cognitive function in patients with MDD. Most of the reviewed studies supported the notion of cognitive improvement following TMS treatment. Notably, improvements were predominantly observed in inhibition, attention, set shifting/flexibility, and memory domains. However, fewer significant improvements were detected in evaluations of visuospatial function and recognition, executive function, phonemic fluency, and speed of information processing. This review found evidence supporting the use of TMS as a treatment for cognitive deficits in patients with MDD. The results are promising, but further research is needed to clarify the specific TMS protocol and stimulation locations that are most effective.

15.
Artículo en Inglés | MEDLINE | ID: mdl-39085586

RESUMEN

In everyday life, humans perform sequences of tasks. These tasks may be disrupted in people with obsessive-compulsive disorder (OCD). Symptoms, such as compulsions, can be considered sequential and often cause repetitions of tasks that disrupt daily living (e.g., checking the stove while cooking). Motor sequences have been used to study behavioral deficits in OCD. However, not all sequences are motor sequences. Some are more "abstract" in that they are composed of a series of tasks (e.g., chopping and stirring) rather than being dependent on individual actions or stimuli. These abstract task sequences require cognitive control mechanisms for their execution. Although theory has proposed deficits in these sequences in OCD as well, they have not been directly investigated. We tested the hypotheses that OCD participants exhibit deficits in the control mechanisms specific to abstract task sequences and more general flexible behavior (measured with task switching within the sequences), relative to health controls (HCs) and clinical controls (participants with anxiety disorders [ANX]). A total of 112 participants completed abstract task sequences consisting of simple categorization tasks. Surprisingly, participants with OCD did not perform worse than HCs or ANX. However, ANX participants showed impairments specific to sequential control that did not extend to more general flexible control. Thus, we showed a novel behavioral dissociation between OCD and ANX specific to abstract task sequential control. These results also implicate deficits in specific frontal sequential control neural circuitry in ANX and not in OCD, where implicit sequential deficits may more closely align with striatal circuits.

16.
Artículo en Inglés | MEDLINE | ID: mdl-39085587

RESUMEN

Previous studies examining conflict processing within the context of a color-word Stroop task have focused on both stimulus and response conflicts. However, it has been unclear whether conflict can emerge independently of stimulus conflict. In this study, a novel arrow-gaze mental-rotation Stroop task was introduced to explore the interplay between conflict processing and mental rotation. A modelling approach was utilized to provide a process-level account of the findings. The results of our Stroop task indicate that conflict can emerge from mental rotation in the absence of stimulus conflict. The strength of this imagery conflict effect decreases and even reverses as mental rotation angles increase. Additionally, it was observed that participants responded more quickly and with greater accuracy to small rather than large face orientations. A comparison of three conflict diffusion models-the diffusion model for conflict tasks (DMC), the dual-stage two-phase model (DSTP), and the shrinking spotlight model (SSP)-yielded consistent support for the DSTP over the DMC and SSP in the majority of instances. The DSTP account of the experimental results revealed an increased nondecision time with increasing mental rotation, a reduction in interference from incompatible stimuli, and an improved drift rate in response selection phase, which suggests enhanced cognitive control. The findings from the model-based analysis provide evidence for a novel interaction between cognitive control and mental rotation.

17.
Psychol Med ; : 1-10, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780379

RESUMEN

BACKGROUND: Cognitive control (CC) involves a top-down mechanism to flexibly respond to complex stimuli and is impaired in schizophrenia. METHODS: This study investigated the impact of increasing complexity of CC processing in 140 subjects with psychosis and 39 healthy adults, with assessments of behavioral performance, neural regions of interest and symptom severity. RESULTS: The lowest level of CC (Stroop task) was impaired in all patients; the intermediate level of CC (Faces task) with explicit emotional information was most impaired in patients with first episode psychosis. Patients showed activation of distinct neural CC and reward networks, but iterative learning based on the higher-order of CC during the trust game, was most impaired in chronic schizophrenia. Subjects with first episode psychosis, and patients with lower symptom load, demonstrate flexibility of the CC network to facilitate learning, which appeared compromised in the more chronic stages of schizophrenia. CONCLUSION: These data suggest optimal windows for opportunities to introduce therapeutic interventions to improve CC.

18.
Anim Cogn ; 27(1): 27, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530456

RESUMEN

Inhibitory control (IC) plays a central role in behaviour control allowing an individual to resist external lures and internal predispositions. While IC has been consistently investigated in humans, other mammals, and birds, research has only recently begun to explore IC in other vertebrates. This review examines current literature on teleost fish, focusing on both methodological and conceptual aspects. I describe the main paradigms adopted to study IC in fish, identifying well-established tasks that fit various research applications and highlighting their advantages and limitations. In the conceptual analysis, I identify two well-developed lines of research with fish examining IC. The first line focuses on a comparative approach aimed to describe IC at the level of species and to understand the evolution of interspecific differences in relation to ecological specialisation, brain size, and factors affecting cognitive performance. Findings suggest several similarities between fish and previously studied vertebrates. The second line of research focuses on intraspecific variability of IC. Available results indicate substantial variation in fish IC related to sex, personality, genetic, age, and phenotypic plasticity, aligning with what is observed with other vertebrates. Overall, this review suggests that although data on teleosts are still scarce compared to mammals, the contribution of this group to IC research is already substantial and can further increase in various disciplines including comparative psychology, cognitive ecology, and neurosciences, and even in applied fields such as psychiatry research.


Asunto(s)
Peces , Vertebrados , Animales , Humanos , Mamíferos , Aves , Personalidad
19.
Psychophysiology ; : e14625, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837767

RESUMEN

A prime goal of psychological science is to understand how humans can flexibly adapt to rapidly changing contexts. The foundation of this cognitive flexibility rests on contextual adjustments of cognitive control, which can be tested using the list-wide proportion congruency effect (LWPC). Blocks with mostly incongruent (MI) trials show smaller conflict interference effects compared to blocks with mostly congruent (MC) trials. A critical debate is how proactive and reactive control processes drive contextual adjustments. In this preregistered study (N = 30), we address this conundrum, by using the theta rhythm as a key neural marker for cognitive control. In a confound-minimized Stroop paradigm with short alternating MC and MI blocks, we tested reaction times, error rates, and participants' individualized theta activity (2-7 Hz) in the scalp-recorded electroencephalogram. An LWPC effect was found for both, reaction times and error rates. Importantly, the results provided clear evidence for reactive control processes in the theta rhythm: Theta power was higher in rare incongruent compared with congruent trials in MC blocks, but there was no such modulation in MI blocks. However, regarding proactive control, there were no differences in sustained theta power between MC and MI blocks. A complementary analysis of the alpha activity (8-14 Hz) also revealed no evidence for sustained attentional resources in MI blocks. These findings suggest that contextual adjustments rely mainly on reactive control processes in the theta rhythm. Proactive control, in the present study, may be limited to a flexible attentional shift but does not seem to require sustained theta activity.

20.
Psychophysiology ; 61(8): e14576, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38556626

RESUMEN

The ability to find the right balance between more persistent and more flexible cognitive-control styles is known as "metacontrol." Recent findings suggest a relevance of aperiodic EEG activity and task conditions that are likely to elicit a specific metacontrol style. Here we investigated whether individual differences in aperiodic EEG activity obtained off-task (during resting state) predict individual cognitive-control styles under task conditions that pose different demands on metacontrol. We analyzed EEG resting-state data, task-EEG, and behavioral outcomes from a sample of N = 65 healthy participants performing a Go/Nogo task. We examined aperiodic activity as indicator of "neural noise" in the EEG power spectrum, and participants were assigned to a high-noise or low-noise group according to a median split of the exponents obtained for resting state. We found that off-task aperiodic exponents predicted different cognitive-control styles in Go and Nogo conditions: Overall, aperiodic exponents were higher (i.e., noise was lower) in the low-noise group, who however showed no difference between Go and Nogo trials, whereas the high-noise group exhibited significant noise reduction in the more persistence-heavy Nogo condition. This suggests that trait-like biases determine the default cognitive-control style, which however can be overwritten or compensated for under challenging task demands. We suggest that aperiodic activity in EEG signals represents valid indicators of highly dynamic arbitration between metacontrol styles, representing the brain's capability to reorganize itself and adapt its neural activity patterns to changing environmental conditions.


Asunto(s)
Electroencefalografía , Función Ejecutiva , Individualidad , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Función Ejecutiva/fisiología , Desempeño Psicomotor/fisiología , Descanso/fisiología , Cognición/fisiología , Inhibición Psicológica , Encéfalo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA