Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(13): 4038-4043, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38511834

RESUMEN

Specific heat capacity is one of the most fundamental thermodynamic properties of materials. In this work, we measured the specific heat capacity of PbSe nanocrystals with diameters ranging from 5 to 23 nm, and its value increases significantly from 0.2 to 0.6 J g-1 °C-1. We propose a mass assignment model to describe the specific heat capacity of nanocrystals, which divides it into four parts: electron, inner, surface, and ligand. By eliminating the contribution of ligand and electron specific heat capacity, the specific heat capacity of the inorganic core is linearly proportional to its surface-to-volume ratio, showing the size dependence. Based on this linear relationship, surface specific heat capacity accounts for 40-60% of the specific heat capacity of nanocrystals with size decreasing. It can be attributed to the uncoordinated surface atoms, which is evidenced by the appearance of extra surface phonons in Raman spectra and ab initio molecular dynamics (AIMD) simulations.

2.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526683

RESUMEN

Knowledge of the temperature dependence of the isobaric specific heat (Cp) upon deep supercooling can give insights regarding the anomalous properties of water. If a maximum in Cp exists at a specific temperature, as in the isothermal compressibility, it would further validate the liquid-liquid critical point model that can explain the anomalous increase in thermodynamic response functions. The challenge is that the relevant temperature range falls in the region where ice crystallization becomes rapid, which has previously excluded experiments. Here, we have utilized a methodology of ultrafast calorimetry by determining the temperature jump from femtosecond X-ray pulses after heating with an infrared laser pulse and with a sufficiently long time delay between the pulses to allow measurements at constant pressure. Evaporative cooling of ∼15-µm diameter droplets in vacuum enabled us to reach a temperature down to ∼228 K with a small fraction of the droplets remaining unfrozen. We observed a sharp increase in Cp, from 88 J/mol/K at 244 K to about 218 J/mol/K at 229 K where a maximum is seen. The Cp maximum is at a similar temperature as the maxima of the isothermal compressibility and correlation length. From the Cp measurement, we estimated the excess entropy and self-diffusion coefficient of water and these properties decrease rapidly below 235 K.

3.
Molecules ; 29(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38792189

RESUMEN

A novel ternary eutectic salt, NaNO3-KNO3-Na2SO4 (TMS), was designed and prepared for thermal energy storage (TES) to address the issues of the narrow temperature range and low specific heat of solar salt molten salt. The thermo-physical properties of TMS-2, such as melting point, decomposition temperature, fusion enthalpy, density, viscosity, specific heat capacity and volumetric thermal energy storage capacity (ETES), were determined. Furthermore, a comparison of the thermo-physical properties between commercial solar salt and TMS-2 was carried out. TMS-2 had a melting point 6.5 °C lower and a decomposition temperature 38.93 °C higher than those of solar salt. The use temperature range of TMS molten salt was 45.43 °C larger than that of solar salt, which had been widened about 13.17%. Within the testing temperature range, the average specific heat capacity of TMS-2 (1.69 J·K-1·g-1) was 9.03% higher than that of solar salt (1.55 J·K-1·g-1). TMS-2 also showed higher density, slightly higher viscosity and higher ETES. XRD, FTIR and Raman spectra SEM showed that the composition and structure of the synthesized new molten salt were different, which explained the specific heat capacity increasing. Molecular dynamic (MD) simulation was performed to explore the different macroscopic properties of solar salt and TMS at the molecular level. The MD simulation results suggested that cation-cation and cation-anion interactions became weaker as the temperature increased and the randomness of molecular motion increased, which revealed that the interaction between the cation cluster and anion cluster became loose. The stronger interaction between Na-SO4 cation-anion clusters indicated that TMS-2 molten salt had a higher specific heat capacity than solar salt. The result of the thermal stability analysis indicated that the weight losses of solar salt and TMS-2 at 550 °C were only 27% and 53%, respectively. Both the simulation and experimental study indicated that TMS-2 is a promising candidate fluid for solar power generation systems.

4.
Virol J ; 20(1): 84, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37131169

RESUMEN

BACKGROUND: Thermal inactivation is a conventional and effective method of eliminating the infectivity of pathogens from specimens in clinical and biological laboratories, and reducing the risk of occupational exposure and environmental contamination. During the COVID-19 pandemic, specimens from patients and potentially infected individuals were heat treated and processed under BSL-2 conditions in a safe, cost-effective, and timely manner. The temperature and duration of heat treatment are optimized and standardized in the protocol according to the susceptibility of the pathogen and the impact on the integrity of the specimens, but the heating device is often undefined. Devices and medium transferring the thermal energy vary in heating rate, specific heat capacity, and conductivity, resulting in variations in efficiency and inactivation outcome that may compromise biosafety and downstream biological assays. METHODS: We evaluated the water bath and hot air oven in terms of pathogen inactivation efficiency, which are the most commonly used inactivation devices in hospitals and biological laboratories. By evaluating the temperature equilibrium and viral titer elimination under various conditions, we studied the devices and their inactivation outcomes under identical treatment protocol, and to analyzed the factors, such as energy conductivity, specific heat capacity, and heating rate, underlying the inactivation efficiencies. RESULTS: We compared thermal inactivation of coronavirus using different devices, and have found that the water bath was more efficient at reducing infectivity, with higher heat transfer and thermal equilibration than a forced hot air oven. In addition to the efficiency, the water bath showed relative consistency in temperature equilibration of samples of different volumes, reduced the need for prolonged heating, and eliminated the risk of pathogen spread by forced airflow. CONCLUSIONS: Our data support the proposal to define the heating device in the thermal inactivation protocol and in the specimen management policy.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , Pandemias/prevención & control , Calor , Temperatura , Agua
5.
Adv Exp Med Biol ; 1438: 135-145, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37845452

RESUMEN

Cancers are complex, heterogeneous, dynamic and aggressive diseases exhibiting a series of characteristic biophysical traits which complement the original biological hallmarks of cancers favouring progressive growth, metastasis, and contributing to immune evasion and treatment resistance. One of the prevalent differences between most solid tumors and their corresponding, healthy tissues is a significantly higher water content (hyperhydration) in cancers. As a consequence, cancers have distinctly higher (Fick's) diffusion coefficients D [cm2 s-1] for the respiratory gases O2 and CO2, the key substrate glucose, and for the oncometabolite lactate. In addition, cancers have (a) clearly increased specific heat capacities cp [J g-1 K-1], thus representing high-capacity-tissues upon therapeutic heating induced by electromagnetic irradiation, and (b) higher thermal conductivities k [W m-1 K-1], i.e., increased abilities to conduct heat. Therefore, in diffusion analyses (e.g., when describing critical O2 and glucose supplies or CO2 removal, and the development of hypoxic subvolumes) and for modeling temperature distributions in hyperthermia treatment planning, these specific cancer-related data must be considered in order to reliably reflect oncologic thermo-radiotherapy settings.


Asunto(s)
Neoplasias , Intoxicación por Agua , Humanos , Dióxido de Carbono , Ácido Láctico , Neoplasias/terapia , Temperatura
6.
Drug Dev Ind Pharm ; 49(6): 416-428, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37278581

RESUMEN

OBJECTIVE: The investigation of benznidazole (BZN), excipients, and tablets aims to evaluate their thermal energy and tableting effects. They aim to understand better the molecular and pharmaceutical processing techniques of the formulation. SIGNIFICANCE: The Product Quality Review, part of Good Manufacturing Practices, is essential to highlight trends and identify product and process improvements. METHODS: A set of technique approaches, infrared spectroscopy, X-ray diffraction, and thermal analysis with isoconversional kinetic study, were applied in the protocol. RESULTS: X-ray experiments suggest talc and α-lactose monohydrate dehydration and conversion of ß-lactose to stable α-lactose upon tableting. The signal crystallization at 167 °C in the DSC curve confirmed this observation. A calorimetric study showed a decrease in the thermal stability of BZN tablets. Therefore, the temperature is a critical process parameter. The specific heat capacity (Cp) of BZN, measured by DSC, was 10.04 J/g at 25 °C and 9.06 J/g at 160 °C. Thermal decomposition required 78 kJ mol-1. Compared with the tablet (about 200 kJ mol-1), the necessary energy is two-fold lower, as observed in the kinetic study by non-isothermal TG experiment at 5; 7.5; 10; and 15 °C min-1. CONCLUSIONS: These results indicate the necessity of considering the thermal energy and tableting effects of BZN manufacturing, which contributes significantly to the molecular mechanistic understanding of this drug delivery system.


Asunto(s)
Química Farmacéutica , Calor , Lactosa/química , Comprimidos/química
7.
Pharm Res ; 39(4): 795-803, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35314998

RESUMEN

PURPOSES: This article describes an interesting phenomenon in which optimized freeze-dried (FD) biopharmaceutical formulations are generally more prone to degradation than their liquid counterparts during dropping and proposes an underlying cause for this surprising phenomenon. METHODS: Two monoclonal antibodies (mAbs) and a fusion protein (FP) were used as model biopharmaceuticals. The stability after dropping stress was determined by ultraviolet-visible (UV-Vis), size exclusion high-performance liquid chromatography (SE-HPLC), micro-flow imaging (MFI), and dynamic light scattering (DLS). RESULTS: Contrary to what we would normally assume, the FD formulations of the three biopharmaceuticals studied here generally showed much higher amounts of protein sub-visible particles (SbVPs) than liquid formulations after applying the same dropping stress as determined by MFI and DLS. Traditional techniques, such as UV-Vis and SE-HPLC, could hardly detect such degradation. CONCLUSIONS: We propose that the higher temperature caused by dropping for the FD powders than the liquid formulations was probably one of the root causes for the higher amount of particles formed for the FD powders. We also recommend that dropping stress should be included for early-stage screening and choosing liquid versus FD biopharmaceutical formulations.


Asunto(s)
Productos Biológicos , Anticuerpos Monoclonales/química , Estabilidad de Medicamentos , Liofilización , Polvos
8.
Int J Hyperthermia ; 39(1): 987-997, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35876086

RESUMEN

PURPOSE: Tumor perfusion is considered to be the principal factor determining the build-up of therapeutically effective thermal fields. This assumes that malignancies have lower perfusions than their homologous tissues. This assumption, however, ignores the fact that several tumor types have higher perfusions than their healthy counterparts. Additionally, flow changes upon hyperthermia (39-43 °C) are non-predictable and extremely heterogeneous. Therefore, modeling temperature distribution further requires a more robust parameter, different in malignancies and healthy tissues, i.e., water content (Cw), which highly determines thermal properties upon electromagnetic irradiation. METHOD: Systematic literature reviews of Cw and specific heat capacities (cp) were conducted up to 28 February 2022, providing an updated, comprehensive data overview based on original manuscripts, reviews and databases. RESULTS: Cw- and cp-values of cancers and their corresponding healthy tissues are presented. Strong correlations between these two parameters are described. In general, malignant tumors have distinctly higher Cw values than their homologous tissues. With increasing Cw in low-water-content normal tissues (<70 wt.%), cp rises exponentially from 1.5 to 3.3 J·g-1·K-1. In high-water-content normal tissues (≥70 wt.%), cp increases linearly from 3.5 to 3.8 J·g-1·K-1. In malignant tumors (>80 wt.%), cp rises linearly from 3.6 to 3.9 J·g-1·K-1. Cancers contain up to 27% more water than their tissues of origin and must be considered as 'high-capacitance-tissues'. CONCLUSIONS: Hyperhydration of cancers result in higher cp-values, causing cancers to be better heat reservoirs than corresponding normal tissues upon electromagnetic irradiation. Reliable, tissue-/cancer-specific cp values must be considered when modeling temperature distributions in hyperthermic treatment.


Asunto(s)
Hipertermia Inducida , Neoplasias , Fenómenos Electromagnéticos , Calor , Humanos , Neoplasias/radioterapia , Agua
9.
Sci Technol Adv Mater ; 17(1): 610-617, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27877907

RESUMEN

In this paper, we theoretically consider a two dimensional nanomaterial which is a form of hydrogenated penta-graphene; we call it penta-graphane. This structure is obtained by adding hydrogen atoms to the sp2 bonded carbon atoms of penta-graphene. We investigate the thermodynamic and mechanical stability of penta-graphane. We also study the electronic and phononic structure of penta-graphane. Firstly, we use density functional theory with the revised Perdew-Burke-Ernzerhof approximation to compute the band structure. Then one-shot GW (G0W0) approach for estimating accurate band gap is applied. The indirect band gap of penta-graphane is 5.78 eV, which is close to the band gap of diamond. Therefore, this new structure is a good electrical insulator. We also investigate the structural stability of penta-graphane by computing the phonon structure. Finally, we calculate its specific heat capacity from the phonon density of states. Penta-graphane has a high specific heat capacity, and can potentially be used for storing and transferring energy.

10.
Biochim Biophys Acta ; 1830(10): 4675-80, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23665587

RESUMEN

BACKGROUND: Microalbuminuria (MA) has been questioned as a predictor of progressive renal dysfunction in patients with type 1 diabetes (T1D). Consequently, new clinical end points are needed that identify or predict patients that are at risk for early renal function decline (ERFD). The potential clinical utility of differential scanning calorimetry (DSC) analysis of blood plasma and other biofluids has recently been reported. This method provides an alternate physical basis with which to study disease-associated changes in the bulk plasma proteome. METHODS: DSC analysis of blood plasma was applied to identify unique signatures of ERFD in subjects enrolled in the 1st Joslin Study of the Natural History of Microalbuminuria in Type 1 Diabetes, a prospective cohort study of T1D patients. Recent data suggests that differences in the plasma peptidome of these patients correlate with longitudinal measures of renal function. Differences in DSC profile (thermogram) features were evaluated between T1D MA individuals exhibiting ERFD (n=15) and matched control subjects (n=14). RESULTS: The average control group thermogram resembled a previously defined healthy thermogram. Differences were evident between ERFD and control individuals. Heat capacity values of the main two transitions were found to be significant discriminators of patient status. CONCLUSIONS: Results from this pilot study suggest the potential utility of DSC proteome analysis to prognostic indicators of renal disease in T1D. GENERAL SIGNIFICANCE: DSC shows sensitivity to changes in the bulk plasma proteome that correlate with clinical status in T1D providing additional support for the utility of DSC profiling in clinical diagnostics.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Calorimetría/métodos , Diabetes Mellitus Tipo 1/sangre , Riñón/fisiopatología , Proteoma , Diabetes Mellitus Tipo 1/fisiopatología , Humanos , Pruebas de Función Renal
11.
Heliyon ; 10(11): e31835, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38947454

RESUMEN

During the measurement of multiphase flow in low yield oil wells, the liquid volume will vary with the operating characteristics of the pumping unit. Using the pulsating characteristics of the up and down strokes of a pumping unit, the flow rate is measured when there is a flow rate on the up stroke, and the water content is measured when the fluid is stationary on the down stroke. In this paper, the heat transfer method is used to measure the water content of the oil water mixture during the down stroke process. At this time, the water content can be expressed as the instantaneous water content of the oil well. Firstly, the feasibility of measuring water content using heat transfer method is demonstrated theoretically, and then the temperature change of the heating probe PT300 is simulated. Finally, the actual temperature of PT300 is measured experimentally. Comparing the experimental value with the simulation value, the calculated measurement error is within 1.27 %, which indicates that the heat transfer method is feasible for measuring water content. Using the same single sensor to measure oil water two-phase flow using the pulsation characteristics of the up and down strokes of a pumping unit is a major innovation in this paper. And lays a foundation for the detection of multiphase flow using heat transfer methods. The successful implementation of the text heat transfer method for measuring water content has broken the previous situation of multiple sensor detection, simplified the structure of multiphase flow instruments, and extended the life of the instrument.

12.
Food Res Int ; 192: 114816, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147509

RESUMEN

Lipids are the key matrix for the presence of odorants in meat products. The formation mechanism of odorants of air-fried (AF) pork at 230 °C was elucidated from the perspectives of lipids and heat transfer using physicochemical analyses and multidimensional statistics. Twenty-nine key aroma compounds were identified, with pyrazines predominantly contributing to the roasty aroma of air-fried roasted pork. Untargeted lipidomics revealed 1184 lipids in pork during roasting, with phosphatidylcholine (PC), phosphatidylethanolamine (PE), and triglyceride (TG) being the major lipids accounting for about 60 % of the total lipids. TG with C18 acyl groups, such as TG 16:1_18:1_18:2 and TG 18:0_18:0_20:3, were particularly significant in forming the aroma of AF pork. The OPLS-DA model identified seven potential biomarkers that differentiate five roasting times, including PC 16:0_18:3 and 2-ethyl-3,5-dimethylpyrazine. Notably, a lower specific heat capacity and water activity accelerated heat transfer, promoting the formation and retention of odorants in AF pork.


Asunto(s)
Culinaria , Cromatografía de Gases y Espectrometría de Masas , Odorantes , Culinaria/métodos , Odorantes/análisis , Animales , Porcinos , Cromatografía de Gases y Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión , Calor , Pirazinas/análisis , Lípidos/análisis , Productos de la Carne/análisis , Triglicéridos/análisis , Lipidómica/métodos , Carne de Cerdo/análisis
13.
Heliyon ; 10(16): e36064, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39229518

RESUMEN

High entropy alloys (HEAs) are alloys composed of five or more primary elements in equal or nearly equal proportions of atoms. In the present study, the thermophysical properties of the CoCrFeNiCu high entropy alloy (HEA) were investigated by a molecular dynamics (MD) method at nanoscale. The effects of the content of individual elements on lattice thermal conductivity k p were revealed, and the results suggested that adjusting the atomic content can be a way to control the lattice thermal conductivity of HEAs. The effects of temperature on k p were investigated quantitively, and a power-law relationship of k p with T -0.419 was suggested, which agrees with previous findings. The effects of temperature and the content of individual elements on volumetric specific heat capacity C v were also studied: as the temperature increases, the C v of all HEAs slightly decreases and then increases. The effects of atomic content on C v varied with the comprising elements. To further understand heat transfer mechanisms in the HEAs, the phonon density of states (PDOS) at different temperatures and varying atomic composition was calculated: Co and Ni elements facilitate the high-frequency vibration of phonons and the Cu environment weakens the heat transfer via low-frequency vibration of photons. As the temperature increases, the phonon mean free path (MFP) in the equiatomic CoCrFeNiCu HEA decreases, which may be attributed to the accelerated momentum of atoms and intensified collisions of phonons. The present research provides theoretical foundations for alloy design and have implications for high-performance alloy smelting.

14.
Materials (Basel) ; 17(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38399205

RESUMEN

This study critically reviews the key aspects of nanoparticles and their impact on molten salts (MSs) for thermal energy storage (TES) in concentrated solar power (CSP). It then conducts a comprehensive analysis of MS nanofluids, focusing on identifying the best combinations of salts and nanoparticles to increase the specific heat capacity (SHC) efficiently. Various methods and approaches for the synthesis of these nanofluids are explained. The article presents different experimental techniques used to characterize nanofluids, including measuring the SHC and thermal conductivity and analyzing particle dispersion. It also discusses the challenges associated with characterizing these nanofluids. The study aims to investigate the underlying mechanisms behind the observed increase in SHC in MS nanofluids. Finally, it summarizes potential areas for future research, highlighting crucial domains for further investigation and advancement.

15.
Materials (Basel) ; 16(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37959497

RESUMEN

In recent years, regenerative thermal oxidizer (RTO) has been widely used in the petroleum industry, chemical industry, etc. The massive storage required by solid waste has become a serious problem. Due to their chemical composition, bauxite tailings as raw materials for high-temperature thermal storage ceramics show enormous potential in the fields of research and application. In this study, we propose a method for preparing ferric-rich and high specific storage capacity by adding Fe2O3 powder to bauxite tailings. Based on a 7:3 mass ratio of bauxite tailings to lepidolite, Fe2O3 powder with different mass fractions (7 wt%, 15 wt%, 20 wt%, 30 wt%, and 40 wt%) was added to the ceramic material to improve the physical properties and thermal storage capacity of thermal storage ceramics. The results showed that ferric-rich thermal storage ceramics with optimal performance were obtained by holding them at a sintering temperature of 1000 °C for 2 h. When the Fe2O3 content was 15 wt%, the bulk density of the thermal storage ceramic reached 2.53 g/cm3, the compressive strength was 120.81 MPa, and the specific heat capacity was 1.06 J/(g·K). This study has practical guidance significance in the preparation of high thermal storage ceramics at low temperatures and low costs.

16.
Environ Sci Pollut Res Int ; 30(12): 33475-33484, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36480137

RESUMEN

Spontaneous combustion of coal seams can produce a high temperature of about 800 ℃, which greatly changes the thermal conductivity of the overlying loess layer. The thermal conductivity of loess plays an important role in ecological restoration design and the calculation of roadbed and slope stability. In this study, loess in northern Shaanxi, China was taken as the research object to measure the mass-loss rate and heat conduction parameters of loess specimens after high temperature. The test results show that, between 23 and 900 °C, with temperature increasing, the mass-loss rate is reduced. And the heat conduction coefficient (λ), specific heat capacity (c), and thermal diffusion coefficient (α) decreased by 48.9%, 23.1%, and 35.6%. This is due to the air thermal resistance effect caused by the increase of pores and cracks in loess specimens after high temperature.


Asunto(s)
Calor , Temperatura , Conductividad Térmica , China
17.
Int J Pharm ; 642: 123130, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37331643

RESUMEN

Thermal conductivity and specific heat capacity are two important parameters for the drying process of pharmaceutical materials during methods such as wet granulation that can be observed in the overall tablet manufacturing process. In this study, a transient line heat source method was used for the first time to determine the thermal conductivity and volumetric specific heat capacity of common pharmaceutical components and binary mixtures, with moisture content ranging from 0 % to 30 % w.b and active ingredient loading between 0 % and 50 % by weight. A three-parameter least squares regression model relating the thermal properties to moisture content and porosity was evaluated at a 95 % confidence interval, with R2 values ranging from 0.832 to 0.997. Relationships were established between thermal conductivity, volumetric specific heat capacity, porosity, and moisture content for pharmaceutical ingredients including acetaminophen, microcrystalline cellulose, and lactose monohydrate.


Asunto(s)
Excipientes , Calor , Polvos/química , Porosidad , Conductividad Térmica , Excipientes/química , Comprimidos/química , Composición de Medicamentos , Agua/química
18.
Evolution ; 77(6): 1341-1353, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37075174

RESUMEN

Substrate properties can affect the thermal balance of organisms, and the colored integument, alongside other factors, may influence heat transfer via differential absorption and reflection. Dark coloration may lead to higher heat absorption and could be advantageous when substrates are cool (and vice versa for bright coloration), but these effects are rarely investigated. Here, we examined the effect of substrate reflectance, specific heat capacity (cp), and body size on the dorso-ventral brightness using 276 samples from 12 species of cordylid lizards distributed across 26 sites in South Africa. We predicted, and found, that bright ventral colors occur more frequently in low cp (i.e., drier, with little energy needed for temperature change) substrates, especially in larger body-sized individuals, possibly to better modulate heat transfer with the surrounding environment. By contrast, dorsal brightness was not associated with body size nor any substrate thermal property, suggesting selection pressures other than thermoregulation. Ancestral estimation and evolutionary rate analyses suggest that ventral brightness rapidly differentiated within the Cordylinae starting 25 Mya, coinciding with an aridification period, further hinting at a thermoregulatory role for ventral colors. Our study indicates that substrate properties can have a direct role in shaping the evolution of ventral brightness in ectotherms.


Asunto(s)
Lagartos , Humanos , Animales , Lagartos/fisiología , Regulación de la Temperatura Corporal , Tamaño Corporal , Calor , Frío
19.
Food Res Int ; 173(Pt 2): 113370, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803706

RESUMEN

The role of lipids in aroma formation of circulating non-fried roasted (CNR) chicken with different roasting times was studied using ultra-high performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS)-based lipidomics and heat transfer analysis. Thirteen odorants were confirmed as important aroma compounds of CNR chicken, including dimethyl trisulfide, 3,5-dimethyl-2-ethylpyrazine, nonanal, and 1-octen-3-ol. A comprehensive lipidomics analysis identified 1254 lipids in roasted chickens, classified into 23 distinct lipid categories that included 281 phosphatidylcholines (PC), 223 phosphatidylethanolamines (PE), and 202 triglycerides (TG). Using OPLS-DA analysis, the lipid PG (18:1_18:1) showed promise as a potential biomarker for distinguishing between chickens subjected to CNR treatments with varying roasting times. The lipids PC, PE, and their derivatives are likely to play a crucial role in the formation of aroma compounds. In addition, TGs that contributed to the retention of key odorants in roasted chicken included TG (16:0_16:0_18:1), TG (16:0_16:0_18:0), and TG (16:0_18:1_18:1). Findings further showed that lower water activity and specific heat capacity promoted the formation and retention of aroma compounds during the CNR process. This study contributed to a better understanding of the formation of aroma compounds through lipid oxidation in roasted chicken.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Animales , Odorantes/análisis , Pollos , Cromatografía Líquida de Alta Presión , Calor , Lipidómica , Compuestos Orgánicos Volátiles/análisis , Espectrometría de Masas , Lípidos
20.
Int J Radiat Biol ; 99(1): 82-88, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-32720858

RESUMEN

PURPOSE: To clarify the radiosensitization mechanism masking the Auger effect of the cells possessing brominated DNA, the electronic properties of DNA-related molecules containing Br were investigated by X-ray spectroscopy and specific heat measurement. MATERIALS AND METHODS: X-ray absorption near-edge structure (XANES) and X-ray photoemission spectroscopy (XPS) were used to measure the electronic properties of the nucleotides with and without Br. We determined the specific heat of 5-bromouracil crystals with thymine as a reference molecule at low temperatures of 3-48 K to calculate the microscopic state numbers. RESULTS: Obtained XANES and XPS spectra indicated that both the lowest unoccupied molecular orbital (LUMO) and the core-levels were not affected by the Br incorporation. The state numbers of 5-bromouracil calculated from the specific heats obtained around 25 K was about 1.5 times larger than that for thymine below 20 K, although the numbers were almost the same below 5 K. DISCUSSION: Our results suggest that the Br atom may not contribute substantially to the LUMO and core-level electronic states of the molecule, but rather to the microscopic states related to the excitation of lattice vibrations, which may be involved in valence electronic states.


Asunto(s)
Bromo , Timina , Bromouracilo , ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA