Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.020
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(8): e2310051121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346198

RESUMEN

Over the last 10,000 y, humans have manipulated fallow deer populations with varying outcomes. Persian fallow deer (Dama mesopotamica) are now endangered. European fallow deer (Dama dama) are globally widespread and are simultaneously considered wild, domestic, endangered, invasive and are even the national animal of Barbuda and Antigua. Despite their close association with people, there is no consensus regarding their natural ranges or the timing and circumstances of their human-mediated translocations and extirpations. Our mitochondrial analyses of modern and archaeological specimens revealed two distinct clades of European fallow deer present in Anatolia and the Balkans. Zooarchaeological evidence suggests these regions were their sole glacial refugia. By combining biomolecular analyses with archaeological and textual evidence, we chart the declining distribution of Persian fallow deer and demonstrate that humans repeatedly translocated European fallow deer, sourced from the most geographically distant populations. Deer taken to Neolithic Chios and Rhodes derived not from nearby Anatolia, but from the Balkans. Though fallow deer were translocated throughout the Mediterranean as part of their association with the Greco-Roman goddesses Artemis and Diana, deer taken to Roman Mallorca were not locally available Dama dama, but Dama mesopotamica. Romans also initially introduced fallow deer to Northern Europe but the species became extinct and was reintroduced in the medieval period, this time from Anatolia. European colonial powers then transported deer populations across the globe. The biocultural histories of fallow deer challenge preconceptions about the divisions between wild and domestic species and provide information that should underpin modern management strategies.


Asunto(s)
Ciervos , Animales , Humanos , Peninsula Balcánica
2.
Methods ; 230: 1-8, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038505

RESUMEN

Carbon dots (CD) are widely investigated particles with interesting fluorescent properties which are reported to be used for various purposes, as they are biocompatible, resistant to photobleaching and with tuneable properties depending on the specific CD surface chemistry. In this work, we report on the possibility to use opportunely designed CD to distinguish among isobaric peptides almost undistinguishable by mass spectrometry, as well as to monitor protein aggregation phenomena. Particularly, cell-penetrating peptides containing the carnosine moiety at different positions in the peptide chain produce sequence specific fluorescent signals. Analogously, different insulin oligomerization states can also be distinguished by the newly proposed experimental approach. The latter is here described in details and can be potentially applied to any kind of peptide or protein.

3.
J Proteome Res ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132695

RESUMEN

Dengue fever is a rapidly emerging tropical disease and an important cause of morbidity in its severe form worldwide. A wide spectrum of the pathophysiology is associated with the transition of dengue fever to severe dengue, which is driven by the host immune response and might reflect in patients' proteome profile. This study aims to analyze the plasma from different phases of dengue-infected patients at two time points. A mass-spectrometry-based proteomic approach was utilized to understand the involvement of probable candidate proteins toward developing a more severe, hemorrhagic form of dengue fever. Dengue-infected hospital-admitted patients with <5 days of fever were included in this study. Patient samples from the acute phase were screened for the presence of NS1 antigen using ELISA and subjected to molecular serotyping. Dengue molecular serotype-confirmed patient samples, pairwise from acute and critical phases with healthy control were subjected to qualitative and quantitative proteomic analysis, and then pathway analysis was performed. The protein-protein interaction network between the dengue virus and host proteins was depicted in the search for proteins associated with severe dengue pathophysiology. An array of apolipoprotein, cytokines, and endothelial proteins in association with virus replication and endothelial dysfunction were validated as biomolecules involved in severe dengue pathophysiology.

4.
Cancer Metastasis Rev ; 42(3): 891-925, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37368179

RESUMEN

Advanced and recurrent gynecological cancers lack effective treatment and have poor prognosis. Besides, there is urgent need for conservative treatment for fertility protection of young patients. Therefore, continued efforts are needed to further define underlying therapeutic targets and explore novel targeted strategies. Considerable advancements have been made with new insights into molecular mechanisms on cancer progression and breakthroughs in novel treatment strategies. Herein, we review the research that holds unique novelty and potential translational power to alter the current landscape of gynecological cancers and improve effective treatments. We outline the advent of promising therapies with their targeted biomolecules, including hormone receptor-targeted agents, inhibitors targeting epigenetic regulators, antiangiogenic agents, inhibitors of abnormal signaling pathways, poly (ADP-ribose) polymerase (PARP) inhibitors, agents targeting immune-suppressive regulators, and repurposed existing drugs. We particularly highlight clinical evidence and trace the ongoing clinical trials to investigate the translational value. Taken together, we conduct a thorough review on emerging agents for gynecological cancer treatment and further discuss their potential challenges and future opportunities.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Terapia Molecular Dirigida
5.
J Comput Chem ; 45(21): 1846-1869, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38682874

RESUMEN

Advanced vibrational spectroscopic experiments have reached a level of sophistication that can only be matched by numerical simulations in order to provide an unequivocal analysis, a crucial step to understand the structure-function relationship of biomolecules. While density functional theory (DFT) has become the standard method when targeting medium-size or larger systems, the problem of its reliability and accuracy are well-known and have been abundantly documented. To establish a reliable computational protocol, especially when accuracy is critical, a tailored benchmark is usually required. This is generally done over a short list of known candidates, with the basis set often fixed a priori. In this work, we present a systematic study of the performance of DFT-based hybrid and double-hybrid functionals in the prediction of vibrational energies and infrared intensities at the harmonic level and beyond, considering anharmonic effects through vibrational perturbation theory at the second order. The study is performed for the six-lowest energy glycine conformers, utilizing available "state-of-the-art" accurate theoretical and experimental data as reference. Focusing on the most intense fundamental vibrations in the mid-infrared range of glycine conformers, the role of the basis sets is also investigated considering the balance between computational cost and accuracy. Targeting larger systems, a broad range of hybrid schemes with different computational costs is also tested.

6.
Chembiochem ; 25(10): e202400150, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38554039

RESUMEN

1,2,3-triazole is an important building block in organic chemistry. It is now well known as a bioisostere for various functions, such as the amide or the ester bond, positioning it as a key pharmacophore in medicinal chemistry and it has found applications in various fields including life sciences. Attention was first focused on the synthesis of 1,4-disubstituted 1,2,3-triazole molecules however 1,4,5-trisubstituted 1,2,3-triazoles have now emerged as valuable molecules due to the possibility to expand the structural modularity. In the last decade, methods mainly derived from the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction have been developed to access halo-triazole compounds and have been applied to nucleosides, carbohydrates, peptides and proteins. In addition, late-stage modification of halo-triazole derivatives by metal-mediated cross-coupling or halo-exchange reactions offer the possibility to access highly functionalized molecules that can be used as tools for chemical biology. This review summarizes the synthesis, the functionalization, and the applications of 1,4,5-trisubstituted halo-1,2,3-triazoles in biologically relevant molecules.


Asunto(s)
Reacción de Cicloadición , Triazoles , Triazoles/química , Triazoles/síntesis química , Cobre/química , Catálisis , Azidas/química , Alquinos/química , Alquinos/síntesis química , Proteínas/química , Péptidos/química , Péptidos/síntesis química , Química Clic , Nucleósidos/química , Nucleósidos/síntesis química , Carbohidratos/química , Carbohidratos/síntesis química
7.
Brief Bioinform ; 23(6)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36220772

RESUMEN

The recent biotechnological progress has allowed life scientists and physicians to access an unprecedented, massive amount of data at all levels (molecular, supramolecular, cellular and so on) of biological complexity. So far, mostly classical computational efforts have been dedicated to the simulation, prediction or de novo design of biomolecules, in order to improve the understanding of their function or to develop novel therapeutics. At a higher level of complexity, the progress of omics disciplines (genomics, transcriptomics, proteomics and metabolomics) has prompted researchers to develop informatics means to describe and annotate new biomolecules identified with a resolution down to the single cell, but also with a high-throughput speed. Machine learning approaches have been implemented to both the modelling studies and the handling of biomedical data. Quantum computing (QC) approaches hold the promise to resolve, speed up or refine the analysis of a wide range of these computational problems. Here, we review and comment on recently developed QC algorithms for biocomputing, with a particular focus on multi-scale modelling and genomic analyses. Indeed, differently from other computational approaches such as protein structure prediction, these problems have been shown to be adequately mapped onto quantum architectures, the main limit for their immediate use being the number of qubits and decoherence effects in the available quantum machines. Possible advantages over the classical counterparts are highlighted, along with a description of some hybrid classical/quantum approaches, which could be the closest to be realistically applied in biocomputation.


Asunto(s)
Biología Computacional , Metodologías Computacionales , Teoría Cuántica , Genómica , Algoritmos
8.
J Fluoresc ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180575

RESUMEN

This work focuses on the synthesis of Bentonite supported nano zero valent bimetallic nanoparticles (B/nZVCu-M NPs) to be utilized for fast and highly sensitive, reversible, fluorescent determination of dopamine (DA) in the presence of dopamine, other biomolecules and ions. The X-ray Photoelectron Spectroscopy(XPS), Powder X-Ray Diffraction(PXRD) and Scanning Electron Microscopy(SEM) revealed the formation of nanoparticles with size ranging from 15 to 20 nm. The composition was revealed by Fourier Transform Infrared(FTIR) Spectoscopy and Energy Dispersive X-Ray (EDX) Analysis. The Limits of Detection(LOD) were noted to be 5.57nM and 6.07nM. The binding of DA is noted to be reversible with respect to EDTA2-. Furthermore, the developed sensor exhibited good repeatability, satisfactory long-term stability, and was successfully used for the selective detection of dopamine sample with desired recoveries or reversibilities. The main aim of our work is to selectively detect dopamine in presence of its major interferents and biomolecules that are normally present/ co-exist with dopamine in biological systems.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39121461

RESUMEN

BACKGROUND AND AIM: Exosome-like nanoparticles (ELNs) have emerged as crucial mediators of intercellular communication, evaluated as potential bioactive nutraceutical biomolecules. We hypothesized that oral ELNs have some therapeutic effect on irritable bowel syndrome (IBS). METHODS: In our study, ELNs from tea (Camellia sinensis) leaves were extracted by differential centrifugation. We investigated the role of ELNs by assessing visceral hypersensitivity, body weight, bowel habits, tight junctions, and corticotropin-releasing hormone (CRH) in rats subjected to water avoidance stress (WAS) to mimic IBS with and without ELNs (1 mg/kg per day) for 10 days. RESULTS: The average diameter of ELNs from LCC, FD and MZ tea tree were 165 ± 107, 168 ± 94, and 168 ± 108 nm, the concentration of ELNs were 1.2 × 1013, 1 × 1013, and 1.5 × 1013 particles/mL, respectively. ELNs can be taken up by intestinal epithelial cells. In WAS rats, ELNs significantly restored weight, recovered tight junctions, decreased CRH, and CRH receptor 1 expression levels and inhibited abdominal hypersensitivity in comparison to positive control. CONCLUSIONS: Oral tea-derived ELN improves symptoms of IBS by potentially modulating the CRH pathway.

10.
Environ Res ; 259: 119566, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38971355

RESUMEN

Cultivating productive paddy crops on salty soil to maximise production is a challenging approach to meeting the world's growing food demand. Thus, determining salinity tolerance rates in specific paddy cultivars is urgently needed. In this study, the salt tolerance traits of selected paddy cultivars, ADT45 and ADT39, were investigated by analysing germination, metabolites (pigments and biomolecules), and enzymatic (Superoxide dismutase (SOD), Catalase (CAT), and Peroxidase (POD) adaptation strategies as salt-stress tolerance mechanisms. This study found that salinity-induced reactive oxygen species (ROS) were efficiently detoxified by the antioxidant enzymes Superoxide dismutase (SOD), Catalase (CAT), and Peroxidase (POD) in ADT45 paddy varieties, followed by ADT39. Salinity stress had a significant impact on pigments and essential biomolecules in ADT45 and ADT39 paddy cultivars, including total chlorophyll, anthocyanin, carotenoids, ascorbic acid, hydrogen peroxide (H2O2), malondialdehyde, and proline. ADT45 demonstrated a significant relationship between H2O2 and antioxidant enzyme levels, followed by ADT39 paddy but not IR64. Morphological, physiological, and biochemical analyses revealed that ADT45, followed by ADT39, is a potential salt-tolerant rice cultivar.


Asunto(s)
Germinación , Oryza , Estrés Salino , Tolerancia a la Sal , Oryza/fisiología , Oryza/crecimiento & desarrollo , Germinación/efectos de los fármacos , Catalasa/metabolismo , Adaptación Fisiológica , Adaptación Biológica , Superóxido Dismutasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo
11.
Biochemistry (Mosc) ; 89(4): 674-687, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38831504

RESUMEN

Chromatin is an epigenetic platform for implementation of DNA-dependent processes. Nucleosome, as a basic level of chromatin compaction, largely determines its properties and structure. In the study of nucleosomes structure and functions physicochemical tools are actively used, such as magnetic and optical "tweezers", "DNA curtains", nuclear magnetic resonance, X-ray crystallography, and cryogenic electron microscopy, as well as optical methods based on Förster resonance energy transfer. Despite the fact that these approaches make it possible to determine a wide range of structural and functional characteristics of chromatin and nucleosomes with high spatial and time resolution, atomic force microscopy (AFM) complements the capabilities of these methods. The results of structural studies of nucleosome focusing on the AFM method development are presented in this review. The possibilities of AFM are considered in the context of application of other physicochemical approaches.


Asunto(s)
Microscopía de Fuerza Atómica , Nucleosomas , Nucleosomas/química , Nucleosomas/ultraestructura , Nucleosomas/metabolismo , Microscopía de Fuerza Atómica/métodos , Humanos , ADN/química , ADN/metabolismo , Animales
12.
J Invertebr Pathol ; 204: 108114, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636720

RESUMEN

Agricultural Productivity and plant health are threatened by the root-knot nematode. The use of biocontrol agents reduces the need for chemical nematicides and improves the general health of agricultural ecosystems by offering a more environmentally friendly and sustainable method of managing nematode infestations. Plant-parasitic nematodes can be efficiently managed with the use of entomopathogenic nematodes (EPNs), which are widely used biocontrol agents. This study focused on the nematicidal activity of the secondary metabolites present in the bacteria Ochrobactrum sp. identified in the EPN, Heterorhabditisindica against Root-Knot Nematode (Meloidogyne incognita). Its effect on egg hatching and survival of juveniles of root- knot nematode (RKN) was examined. The ethyl acetate component of the cell-free culture (CFC) filtrate of the Ochrobactrum sp. bacteria was tested at four different concentrations (25 %, 50 %, 75 % and 100 %) along with broth and distilled water as control. The bioactive compounds of Ochrobactrum sp. bacteria showed the highest suppression of M. incognita egg hatching (100 %) and juvenile mortality (100 %) at 100 % concentration within 24 h of incubation. In this study, unique metabolite compounds were identified through the Gas Chromatography- Mass Spectrometry (GC-MS) analysis, which were found to have anti- nematicidal activity. In light of this, molecular docking studies were conducted to determine the impact of biomolecules from Ochrobactrum sp. using significant proteins of M. incognita, such as calreticulin, sterol carrier protein 2, flavin-containing monooxygenase, pectate lyase, candidate secreted effector, oesophageal gland cell secretory protein and venom allergen-like protein. The results also showed that the biomolecules from Ochrobactrum sp. had a significant inhibitory effect on the different protein targets of M. incognita. 3-Epimacronine and Heraclenin were found to inhibit most of the chosen target protein. Among the targets, the docking analysis revealed that Heraclenin exhibited the highest binding affinity of -8.6 Kcal/mol with the target flavin- containing monooxygenase. Further, the in vitro evaluation of 3- Epimacronine confirmed their nematicidal activity against M. incognita at different concentrations. In light of this, the present study has raised awareness of the unique biomolecules of the bacterial symbiont Ochrobactrum sp. isolated from H. indica that have nematicidal properties.


Asunto(s)
Simulación del Acoplamiento Molecular , Ochrobactrum , Tylenchoidea , Animales , Ochrobactrum/metabolismo , Antinematodos/farmacología , Antinematodos/metabolismo , Antinematodos/química , Control Biológico de Vectores
13.
Mar Drugs ; 22(6)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38921575

RESUMEN

The valorization of aquaculture/fishery processing by-products, as well as unavoidable/unwanted catches and discards in Greece, is currently an underutilized activity despite the fact that there are several best practices in Northern Europe and overseas. One of the main challenges is to determine whether the available quantities for processing are sufficient to warrant the valorization of discards and fish side streams. This is the first attempt to systematically record and analyze the available quantities of fish by-products and discards in Greece spatially and temporally in an effort to create a national exploitation Master Plan for the valorization of this unavoidable and unwanted biomass. A thorough survey conducted within the VIOAXIOPIO project unveiled a substantial biomass of around 19,000 tonnes annually that could be harnessed for valorization. Furthermore, the production of various High-Added-Value Biomolecules (HAVBs) was investigated and experimental trials were conducted to assess the potential yields, with the collected data used to formulate four valorization scenarios.


Asunto(s)
Explotaciones Pesqueras , Peces , Grecia , Animales , Acuicultura , Biomasa , Conservación de los Recursos Naturales , Humanos
14.
Luminescence ; 39(7): e4842, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39051524

RESUMEN

In order to make commercial products less vulnerable to counterfeiting, thermochromic inks have proven to be a viable authentication strategy. Herein, we developed a thermochromic ink for authentication by combining an anthocyanidin (ACYD) extract with alginate (ALG). To increase the anthocyanidin/alginate ink stability, a mordant (ferrous sulfate) was employed to tie up the anthocyanidin biomolecules with alginate. ACYD was extracted from red-cabbage and then immobilized into alginate to serve as an environmentally friendly spectroscopic probe. Thermochromic composite inks (ACYD@ALG) were made by adjusting the content of anthocyanidin. A homogenous blue film (608 nm) was printed on a paper surface and investigated by the CIE Lab coordinate system. The blue color transformed into reddish (477 nm) when heated from 35°C to 65°C. Nanoparticles (NPs) of anthocyanidin/mordant (ACYD/M) were examined for their size and morphology to indicate diameters of 80-90 nm, whereas the ACYD/M-encapsulated alginate nanoparticles showed diameters of 120-150 nm. Multiple analytical techniques were utilized to examine the printed papers. The mechanical and rheological performance of both stamped sheets and ink fluid were explored. The cytotoxicity and antimicrobial efficacy of ink (ACYD@ALG) were investigated.


Asunto(s)
Alginatos , Antocianinas , Tinta , Nanopartículas , Alginatos/química , Antocianinas/química , Antocianinas/farmacología , Nanopartículas/química , Temperatura , Tamaño de la Partícula , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Pruebas de Sensibilidad Microbiana , Humanos , Propiedades de Superficie
15.
Molecules ; 29(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611804

RESUMEN

One can foresee a very near future where ionic liquids will be used in applications such as biomolecular chemistry or medicine. The molecular details of their interaction with biological matter, however, are difficult to investigate due to the vast number of combinations of both the biological systems and the variety of possible liquids. Here, we provide a computational study aimed at understanding the interaction of a special class of biocompatible ionic liquids (choline-aminoate) with two model biological systems: an oligopeptide and an oligonucleotide. We employed molecular dynamics with a polarizable force field. Our results are in line with previous experimental and computational evidence on analogous systems and show how these biocompatible ionic liquids, in their pure form, act as gentle solvents for protein structures while simultaneously destabilizing DNA structure.


Asunto(s)
Líquidos Iónicos , Medicina , Simulación por Computador , Solventes , Colina
16.
Molecules ; 29(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38338447

RESUMEN

Deep eutectic solvents (DESs) have recently gained increased attention for their potential in biotechnological applications. DESs are binary mixtures often consisting of a hydrogen bond acceptor and a hydrogen bond donor, which allows for tailoring their properties for particular applications. If produced from sustainable resources, they can provide a greener alternative to many traditional organic solvents for usage in various applications (e.g., as reaction environment, crystallization agent, or storage medium). To navigate this large design space, it is crucial to comprehend the behavior of biomolecules (e.g., enzymes, proteins, cofactors, and DNA) in DESs and the impact of their individual components. Molecular dynamics (MD) simulations offer a powerful tool for understanding thermodynamic and transport processes at the atomic level and offer insights into their fundamental phenomena, which may not be accessible through experiments. While the experimental investigation of DESs for various biotechnological applications is well progressed, a thorough investigation of biomolecules in DESs via MD simulations has only gained popularity in recent years. Within this work, we aim to provide an overview of the current state of modeling biomolecules with MD simulations in DESs and discuss future directions with a focus for optimizing the molecular simulations and increasing our fundamental knowledge.


Asunto(s)
Disolventes Eutécticos Profundos , Simulación de Dinámica Molecular , Solventes/química , Enlace de Hidrógeno , Biotecnología
17.
Food Technol Biotechnol ; 62(2): 162-176, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39045296

RESUMEN

Research background: Candy is a popular confection worldwide, and it would be beneficial to society if it were converted into a source of antioxidant molecules to eliminate its adverse health effects. The amount of antioxidants available even in fruit candies is questionable due to the high thermal processing losses they undergo and the presence of various food additives. Plantains (Musa paradisiaca) are less known as good sources of biotherapeutic antioxidants, namely l-tryptophan, serotonin and melatonin, and consumption of this highly nutritious fruit is limited to underdeveloped and developing countries. The objectives of this study are: to develop a functional antioxidant-rich sugar-free plantain-based candy with valuable contents of the mentioned biomolecules in synergy; and to ensure its extended shelf life without compromising its physicochemical properties and functionality by wrapping it with a suitable packaging laminate. Experimental approach: To accomplish the first objective, lyophilized plantain powder, sorbitol and mannitol were used as base materials with minimal additives under minimal processing conditions to reduce processing loss. Sensory, proximate, physicochemical and phytochemical properties, including the antioxidant synergy among the mentioned biomolecules of the developed candies were evaluated. For the second objective, the candies were enclosed in two different flexible packaging laminates and the optimal packaging was determined based on the microbiological safety and sensory appeal of the wrapped candies. Subsequently, the above-mentioned properties of the packaged (in the most suitable laminate) candies were evaluated at regular time intervals during storage for assessment of their shelf life. Results and conclusions: The candy had a characteristic flavour of plantain, uniform dark brown colour, rich mouthfeel, pleasant aroma, moderately hard texture and moderate sweetness, along with high antioxidant activity and considerable content of l-tryptophan, serotonin and melatonin (present as a synergistic consortium). During storage of the packaged candy under ambient conditions, it remained microbiologically safe for up to 56 days, and also maintained sensory attributes, antioxidant activity and synergy compared to the control candy. Novelty and scientific contribution: This newly developed semi-hard sugar-free candy with high antioxidant content, containing three important antioxidants, namely l-tryptophan, serotonin and melatonin, could be a good source of biotherapeutic molecules and a substitute for commercial candies consumed globally.

18.
AAPS PharmSciTech ; 25(4): 74, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575778

RESUMEN

Advancements in recombinant DNA technology have made proteins and peptides available for diagnostic and therapeutic applications, but their effectiveness when taken orally leads to poor patient compliance, requiring clinical administration. Among the alternative routes, transmucosal delivery has the advantage of being noninvasive and bypassing hepato-gastrointestinal clearance. Various mucosal routes-buccal, nasal, pulmonary, rectal, and vaginal-have been explored for delivering these macromolecules. Nanofibers, due to their unique properties like high surface-area-to-volume ratio, mechanical strength, and improved encapsulation efficiency, serve as promising carriers for proteins and peptides. These nanofibers can be tailored for quick dissolution, controlled release, enhanced encapsulation, targeted delivery, and improved bioavailability, offering superior pharmaceutical and pharmacokinetic performance compared to conventional methods. This leads to reduced dosages, fewer side effects, and enhanced patient compliance. Hence, nanofibers hold tremendous potential for protein/peptide delivery, especially through mucosal routes. This review focuses on the therapeutic application of proteins and peptides, challenges faced in their conventional delivery, techniques for fabricating different types of nanofibers and, various nanofiber-based dosage forms, and factors influencing nanofiber generation. Insights pertaining to the precise selection of materials used for fabricating nanofibers and regulatory aspects have been covered. Case studies wherein the use of specific protein/peptide-loaded nanofibers and delivered via oral/vaginal/nasal mucosa for diagnostic/therapeutic use and related preclinical and clinical studies conducted have been included in this review.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanofibras , Femenino , Humanos , Sistemas de Liberación de Medicamentos/métodos , Nanofibras/química , Proteínas , Péptidos , Preparaciones Farmacéuticas
19.
Biochem Biophys Res Commun ; 688: 149126, 2023 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-37951153

RESUMEN

The prospective contribution of phyto-nanotechnology to the synthesis of silver nanomaterials for biomedical purposes is attracting increasing interest across the world. Green synthesis of silver nanoparticles (Ag-NPs) through plants has been extensively examined recently, and it is now seen to be a green and efficient path for future exploitation and development of practical nano-factories. Fabrication of Ag-NPs is the process involves use of plant extracts/phyto-compounds (e.g.alkaloids, terpenoids, flavonoids, and phenolic compounds) to synthesise nanoparticles in more economical and feasible. Several findings concluded that in the field of medicine, Ag-NPs play a major role in pharmacotherapy (infection and cancer). Indeed, they exhibits novel properties but the reason is unclear (except some theoretical interpretation e.g. size, shape and morphology). But recent technological advancements help to address these questions by predicting the unique properties (composition and origin) by characterizing physical, chemical and biological properties. Due to increased list of publications and their application in the field of agriculture, industries and pharmaceuticals, issues relating to toxicity are unavoidable and question of debate. The present reviews aim to find out the role of plant extracts to synthesise Ag-NPs. It provides an overview of various phytocompounds and their role in the field of biomedicine (antibacterial, antioxidant, anticancer, anti-inflammatory etc.). In addition, this review also especially focused on various applications such as role in infection, oxidative stress, application in medical engineering, diagnosis and therapy, medical devices, orthopedics, wound healing and dressings. Additionally, the toxic effects of Ag-NPs in cell culture, tissue of different model organism, type of toxic reactions and regulation implemented to reduce associated risk are discussed critically. Addressing all above explanations, this review focus on the detailed properties of plant mediated Ag-NPs, its impact on biology, medicine and their commercial properties as well as toxicity.


Asunto(s)
Nanopartículas del Metal , Plata , Plata/química , Nanopartículas del Metal/química , Estudios Prospectivos , Extractos Vegetales/química , Antibacterianos/farmacología
20.
Small ; 19(38): e2300328, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37226388

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR) and polymerases are powerful enzymes and their diverse applications in genomics, proteomics, and transcriptomics have revolutionized the biotechnology industry today. CRISPR has been widely adopted for genomic editing applications and Polymerases can efficiently amplify genomic transcripts via polymerase chain reaction (PCR). Further investigations into these enzymes can reveal specific details about their mechanisms that greatly expand their use. Single-molecule techniques are an effective way to probe enzymatic mechanisms because they may resolve intermediary conformations and states with greater detail than ensemble or bulk biosensing techniques. This review discusses various techniques for sensing and manipulation of single biomolecules that can help facilitate and expedite these discoveries. Each platform is categorized as optical, mechanical, or electronic. The methods, operating principles, outputs, and utility of each technique are briefly introduced, followed by a discussion of their applications to monitor and control CRISPR and Polymerases at the single molecule level, and closing with a brief overview of their limitations and future prospects.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica/métodos , Biotecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA