Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(2): 307-319.e8, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36736320

RESUMEN

Gaucher disease (GD) is the most common lysosomal storage disease caused by recessive mutations in the degrading enzyme of ß-glucosylceramide (ß-GlcCer). However, it remains unclear how ß-GlcCer causes severe neuronopathic symptoms, which are not fully treated by current therapies. We herein found that ß-GlcCer accumulating in GD activated microglia through macrophage-inducible C-type lectin (Mincle) to induce phagocytosis of living neurons, which exacerbated Gaucher symptoms. This process was augmented by tumor necrosis factor (TNF) secreted from activated microglia that sensitized neurons for phagocytosis. This characteristic pathology was also observed in human neuronopathic GD. Blockade of these pathways in mice with a combination of FDA-approved drugs, minocycline (microglia activation inhibitor) and etanercept (TNF blocker), effectively protected neurons and ameliorated neuronopathic symptoms. In this study, we propose that limiting unrestrained microglia activation using drug repurposing provides a quickly applicable therapeutic option for fatal neuronopathic GD.


Asunto(s)
Enfermedad de Gaucher , Ratones , Animales , Humanos , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/patología , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Glucosilceramidasa/uso terapéutico , Glucosilceramidas/metabolismo , Glucosilceramidas/uso terapéutico , Microglía/metabolismo , Neuronas/metabolismo , Fagocitosis
2.
EMBO J ; 40(20): e107766, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34516001

RESUMEN

The Golgi apparatus, the main glycosylation station of the cell, consists of a stack of discontinuous cisternae. Glycosylation enzymes are usually concentrated in one or two specific cisternae along the cis-trans axis of the organelle. How such compartmentalized localization of enzymes is achieved and how it contributes to glycosylation are not clear. Here, we show that the Golgi matrix protein GRASP55 directs the compartmentalized localization of key enzymes involved in glycosphingolipid (GSL) biosynthesis. GRASP55 binds to these enzymes and prevents their entry into COPI-based retrograde transport vesicles, thus concentrating them in the trans-Golgi. In genome-edited cells lacking GRASP55, or in cells expressing mutant enzymes without GRASP55 binding sites, these enzymes relocate to the cis-Golgi, which affects glycosphingolipid biosynthesis by changing flux across metabolic branch points. These findings reveal a mechanism by which a matrix protein regulates polarized localization of glycosylation enzymes in the Golgi and controls competition in glycan biosynthesis.


Asunto(s)
Glicoesfingolípidos/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Brefeldino A/farmacología , Ceramidas/metabolismo , Toxina del Cólera/farmacología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Expresión Génica , Glicosilación/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/genética , Proteínas de la Matriz de Golgi/genética , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Toxina Shiga/farmacología
3.
J Virol ; 98(2): e0177623, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38197630

RESUMEN

Epstein-Barr virus (EBV) has a lifelong latency period after initial infection. Rarely, however, when the EBV immediate early gene BZLF1 is expressed by a specific stimulus, the virus switches to the lytic cycle to produce progeny viruses. We found that EBV infection reduced levels of various ceramide species in gastric cancer cells. As ceramide is a bioactive lipid implicated in the infection of various viruses, we assessed the effect of ceramide on the EBV lytic cycle. Treatment with C6-ceramide (C6-Cer) induced an increase in the endogenous ceramide pool and increased production of the viral product as well as BZLF1 expression. Treatment with the ceramidase inhibitor ceranib-2 induced EBV lytic replication with an increase in the endogenous ceramide pool. The glucosylceramide synthase inhibitor Genz-123346 inhibited C6-Cer-induced lytic replication. C6-Cer induced extracellular signal-regulated kinase 1/2 (ERK1/2) and CREB phosphorylation, c-JUN expression, and accumulation of the autophagosome marker LC3B. Treatment with MEK1/2 inhibitor U0126, siERK1&2, or siCREB suppressed C6-Cer-induced EBV lytic replication and autophagy initiation. In contrast, siJUN transfection had no impact on BZLF1 expression. The use of 3-methyladenine (3-MA), an inhibitor targeting class III phosphoinositide 3-kinases (PI3Ks) to inhibit autophagy initiation, resulted in reduced beclin-1 expression, along with suppressed C6-Cer-induced BZLF1 expression and LC3B accumulation. Chloroquine, an inhibitor of autophagosome-lysosome fusion, increased BZLF1 protein intensity and LC3B accumulation. However, siLC3B transfection had minimal effect on BZLF1 expression. The results suggest the significance of ceramide-related sphingolipid metabolism in controlling EBV latency, highlighting the potential use of drugs targeting sphingolipid metabolism for treating EBV-positive gastric cancer.IMPORTANCEEpstein-Barr virus remains dormant in the host cell but occasionally switches to the lytic cycle when stimulated. However, the exact molecular mechanism of this lytic induction is not well understood. In this study, we demonstrate that Epstein-Barr virus infection leads to a reduction in ceramide levels. Additionally, the restoration of ceramide levels triggers lytic replication of Epstein-Barr virus with increase in phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and CREB. Our study suggests that the Epstein-Barr virus can inhibit lytic replication and remain latent through reduction of host cell ceramide levels. This study reports the regulation of lytic replication by ceramide in Epstein-Barr virus-positive gastric cancer.


Asunto(s)
Carcinoma , Ceramidas , Infecciones por Virus de Epstein-Barr , Neoplasias Gástricas , Humanos , Carcinoma/virología , Línea Celular Tumoral , Ceramidas/farmacología , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Proteína Quinasa 3 Activada por Mitógenos , Neoplasias Gástricas/virología , Transactivadores/metabolismo , Activación Viral
4.
Cell Mol Life Sci ; 81(1): 71, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300320

RESUMEN

Hexosylceramides (HexCer) are implicated in the infection process of various pathogens. However, the molecular and cellular functions of HexCer in infectious cycles are poorly understood. Investigating the enveloped virus Uukuniemi (UUKV), a bunyavirus of the Phenuiviridae family, we performed a lipidomic analysis with mass spectrometry and determined the lipidome of both infected cells and derived virions. We found that UUKV alters the processing of HexCer to glycosphingolipids (GSL) in infected cells. The infection resulted in the overexpression of glucosylceramide (GlcCer) synthase (UGCG) and the specific accumulation of GlcCer and its subsequent incorporation into viral progeny. UUKV and several pathogenic bunyaviruses relied on GlcCer in the viral envelope for binding to various host cell types. Overall, our results indicate that GlcCer is a structural determinant of virions crucial for bunyavirus infectivity. This study also highlights the importance of glycolipids on virions in facilitating interactions with host cell receptors and infectious entry of enveloped viruses.


Asunto(s)
Orthobunyavirus , Glucosilceramidas , Acoplamiento Viral , Lipidómica , Espectrometría de Masas
5.
J Neurosci ; 43(3): 501-521, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36639889

RESUMEN

The most common genetic risk factor for Parkinson's disease (PD) is heterozygous mutations GBA1, which encodes for the lysosomal enzyme, glucocerebrosidase. Reduced glucocerebrosidase activity associates with an accumulation of abnormal α-synuclein (α-syn) called Lewy pathology, which characterizes PD. PD patients heterozygous for the neuronotypic GBA1L444P mutation (GBA1+/L444P) have a 5.6-fold increased risk of cognitive impairments. In this study, we used GBA1+/L444P mice of either sex to determine its effects on lipid metabolism, expression of synaptic proteins, behavior, and α-syn inclusion formation. At 3 months of age, GBA1+/L444P mice demonstrated impaired contextual fear conditioning, and increased motor activity. Hippocampal levels of vGLUT1 were selectively reduced in GBA1+/L444P mice. We show, using mass spectrometry, that GBA1L444P expression increased levels of glucosylsphingosine, but not glucosylceramide, in the brains and serum of GBA1+/L444P mice. Templated induction of α-syn pathology in mice showed an increase in α-syn inclusion formation in the hippocampus of GBA1+/L444P mice compared with GBA1+/+ mice, but not in the cortex, or substantia nigra pars compacta. Pathologic α-syn reduced SNc dopamine neurons by 50% in both GBA1+/+ and GBA1+/L444P mice. Treatment with a GlcCer synthase inhibitor did not affect abundance of α-syn inclusions in the hippocampus or rescue dopamine neuron loss. Overall, these data suggest the importance of evaluating the contribution of elevated glucosylsphingosine to PD phenotypes. Further, our data suggest that expression of neuronotypic GBA1L444P may cause defects in the hippocampus, which may be a mechanism by which cognitive decline is more prevalent in individuals with GBA1-PD.SIGNIFICANCE STATEMENT Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are both pathologically characterized by abnormal α-synuclein (α-syn). Mutant GBA1 is a risk factor for both PD and DLB. Our data show the expression of neuronotypic GBA1L444P impairs behaviors related to hippocampal function, reduces expression of a hippocampal excitatory synaptic protein, and that the hippocampus is more susceptible to α-syn inclusion formation. Further, our data strengthen support for the importance of evaluating the contribution of glucosylsphingosine to PD phenotypes. These outcomes suggest potential mechanisms by which GBA1L444P contributes to the cognitive symptoms clinically observed in PD and DLB. Our findings also highlight the importance of glucosylsphingosine as a relevant biomarker for future therapeutics.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Sinucleinopatías , alfa-Sinucleína , Animales , Ratones , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Hipocampo/metabolismo , Mutación/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Sinucleinopatías/patología
6.
J Lipid Res ; 65(3): 100508, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38280458

RESUMEN

Lipid transport is an essential cellular process with importance to human health, disease development, and therapeutic strategies. Type IV P-type ATPases (P4-ATPases) have been identified as membrane lipid flippases by utilizing nitrobenzoxadiazole (NBD)-labeled lipids as substrates. Among the 14 human type IV P-type ATPases, ATP10D was shown to flip NBD-glucosylceramide (GlcCer) across the plasma membrane. Here, we found that conversion of incorporated GlcCer (d18:1/12:0) to other sphingolipids is accelerated in cells exogenously expressing ATP10D but not its ATPase-deficient mutant. These findings suggest that 1) ATP10D flips unmodified GlcCer as well as NBD-GlcCer at the plasma membrane and 2) ATP10D can translocate extracellular GlcCer, which is subsequently converted to other metabolites. Notably, exogenous expression of ATP10D led to the reduction in cellular hexosylceramide levels. Moreover, the expression of GlcCer flippases, including ATP10D, also reduced cellular hexosylceramide levels in fibroblasts derived from patients with Gaucher disease, which is a lysosomal storage disorder with excess GlcCer accumulation. Our study highlights the contribution of ATP10D to the regulation of cellular GlcCer levels and maintaining lipid homeostasis.


Asunto(s)
Glucosilceramidas , ATPasas Tipo P , Humanos , Glucosilceramidas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Adenosina Trifosfatasas/metabolismo , Homeostasis , ATPasas Tipo P/metabolismo
7.
J Lipid Res ; 65(6): 100553, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704027

RESUMEN

Multiple isozymes are encoded in the Caenorhabditis elegans genome for the various sphingolipid biosynthesis reactions, but the contributions of individual isozymes are characterized only in part. We developed a simple but effective reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method that enables simultaneous identification and quantification of ceramides (Cer), glucosylceramides (GlcCer), and sphingomyelins (SM) from the same MS run. Validating this sphingolipid profiling method, we show that nearly all 47 quantifiable sphingolipid species found in young adult worms were reduced upon RNA interference (RNAi) of sptl-1 or elo-5, which are both required for synthesis of the id17:1 sphingoid base. We also confirm that HYL-1 and HYL-2, but not LAGR-1, constitute the major ceramide synthase activity with different preference for fatty acid substrates, and that CGT-3, but not CGT-1 and CGT-2, plays a major role in producing GlcCers. Deletion of sms-5 hardly affected SM levels. RNAi of sms-1, sms-2, and sms-3 all lowered the abundance of certain SMs with an odd-numbered N-acyl chains (mostly C21 and C23, with or without hydroxylation). Unexpectedly, sms-2 RNAi and sms-3 RNAi elevated a subset of SM species containing even-numbered N-acyls. This suggests that sphingolipids containing even-numbered N-acyls could be regulated separately, sometimes in opposite directions, from those containing odd-numbered N-acyls, which are presumably monomethyl branched chain fatty acyls. We also find that ceramide levels are kept in balance with those of GlcCers and SMs. These findings underscore the effectiveness of this RPLC-MS/MS method in studies of C. elegans sphingolipid biology.


Asunto(s)
Caenorhabditis elegans , Isoenzimas , Esfingolípidos , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimología , Esfingolípidos/biosíntesis , Esfingolípidos/metabolismo , Isoenzimas/metabolismo , Isoenzimas/genética , Espectrometría de Masas en Tándem , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ceramidas/metabolismo , Ceramidas/biosíntesis , Interferencia de ARN , Cromatografía Liquida
8.
Cell Struct Funct ; 49(1): 1-10, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38072450

RESUMEN

Gaucher disease (GD) is a recessively inherited lysosomal storage disorder characterized by a deficiency of lysosomal glucocerebrosidase (GBA1). This deficiency results in the accumulation of its substrate, glucosylceramide (GlcCer), within lysosomes. Here, we investigated lysosomal abnormalities in fibroblasts derived from patients with GD. It is noteworthy that the cellular distribution of lysosomes and lysosomal proteolytic activity remained largely unaffected in GD fibroblasts. However, we found that lysosomal membranes of GD fibroblasts were susceptible to damage when exposed to a lysosomotropic agent. Moreover, the susceptibility of lysosomal membranes to a lysosomotropic agent could be partly restored by exogenous expression of wild-type GBA1. Here, we report that the lysosomal membrane integrity is altered in GD fibroblasts, but lysosomal distribution and proteolytic activity is not significantly altered.Key words: glucosylceramide, lysosome, Gaucher disease, lysosomotropic agent.


Asunto(s)
Enfermedad de Gaucher , Humanos , Enfermedad de Gaucher/metabolismo , Glucosilceramidas/metabolismo , Fibroblastos/metabolismo , Lisosomas/metabolismo , Membranas Intracelulares/metabolismo
9.
J Neurochem ; 168(1): 52-65, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38071490

RESUMEN

Gaucher disease (GD) is a lysosomal storage disorder (LSD) caused by the defective activity of acid ß-glucosidase (GCase) which results from mutations in GBA1. Neurological forms of GD (nGD) can be generated in mice by intra-peritoneal injection of conduritol B-epoxide (CBE) which irreversibly inhibits GCase. Using this approach, a number of pathological pathways have been identified in mouse brain by RNAseq. However, unlike transcriptomics, proteomics gives direct information about protein expression which is more likely to provide insight into which cellular pathways are impacted in disease. We now perform non-targeted, mass spectrometry-based quantitative proteomics on brains from mice injected with 50 mg/kg body weight CBE for 13 days. Of the 5038 detected proteins, 472 were differentially expressed between control and CBE-injected mice of which 104 were selected for further analysis based on higher stringency criteria. We also compared these proteins with differentially expressed genes (DEGs) identified by RNAseq. Some lysosomal proteins were up-regulated as was interferon signaling, whereas levels of ion channel related proteins and some proteins associated with neurotransmitter signaling were reduced, as was cholesterol metabolism. One protein, transglutaminase 1 (TGM1), which is elevated in a number of neurodegenerative diseases, was absent from the control group but was found at high levels in CBE-injected mice, and located in the extracellular matrix (ECM) in layer V of the cortex and intracellularly in Purkinje cells in the cerebellum. Together, the proteomics data confirm previous RNAseq data and add additional mechanistic understanding about cellular pathways that may play a role in nGD pathology.


Asunto(s)
Enfermedad de Gaucher , Animales , Ratones , Enfermedad de Gaucher/metabolismo , Proteómica , Glucosilceramidasa/genética , Encéfalo/metabolismo , Transglutaminasas/genética , Transglutaminasas/metabolismo
10.
Mol Ther ; 31(1): 282-299, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36116006

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disorder with no effective cure currently available. Over the past few years our research has shown that alterations in sphingolipid metabolism represent a critical determinant in HD pathogenesis. In particular, aberrant metabolism of sphingosine-1-phosphate (S1P) has been reported in multiple disease settings, including human postmortem brains from HD patients. In this study, we investigate the potential therapeutic effect of the inhibition of S1P degradative enzyme SGPL1, by the chronic administration of the 2-acetyl-5-tetrahydroxybutyl imidazole (THI) inhibitor. We show that THI mitigated motor dysfunctions in both mouse and fly models of HD. The compound evoked the activation of pro-survival pathways, normalized levels of brain-derived neurotrophic factor, preserved white matter integrity, and stimulated synaptic functions in HD mice. Metabolically, THI restored normal levels of hexosylceramides and stimulated the autophagic and lysosomal machinery, facilitating the reduction of nuclear inclusions of both wild-type and mutant huntingtin proteins.


Asunto(s)
Enfermedad de Huntington , Ratones , Humanos , Animales , Enfermedad de Huntington/tratamiento farmacológico , Modelos Teóricos , Imidazoles/farmacología , Glicoesfingolípidos , Modelos Animales de Enfermedad , Proteína Huntingtina/genética
11.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474117

RESUMEN

Gaucher disease (GD, OMIM 230800) is one of the most common lysosomal disorders, being caused by the deficient activity of the enzyme acid ß-glucocerebrosidase (Gcase). Three clinical forms of Gaucher's disease (GD) are classified based on neurological involvement. Type 1 (GD1) is non-neuronopathic, while types 2 (GD2) and 3 (GD3) are neuronopathic forms. Gcase catalyzes the conversion of glucosylceramide (GlcCer) into ceramide and glucose. As GlcCer accumulates in lysosomal macrophages, it undergoes deacylation to become glycosylsphingosine (lyso-Gb1), which has shown to be a useful and reliable biomarker for the diagnosis and monitoring of treated and untreated patients with GD. Multiple myeloma (MM) is one of the leading causes of cancer-related death among patients with GD and monoclonal gammopathy of undetermined significance (MGUS) is a non-neoplastic condition that can be a telltale sign of a B clonal proliferation caused by the chronic activation of B cells. This study aimed to quantify Lyso-Gb1 levels in dried blood spots (DBS) and cerebrospinal fluid (CSF) as biomarkers for Gaucher disease (GD) and discuss the association of this biomarker with other clinical parameters. This is a mixed-methods study incorporating both cross-sectional and longitudinal elements within a cohort design with a convenience-sampling strategy. Data collection took place from January 2012 to March 2023. Lyso-Gb1 extraction from DBS involved the use of a methanol-acetonitrile-water mixture, followed by incubation and centrifugation. Analysis was performed using UPLC-MS/MS with MassLynx software version 4.2 and the control group for the DBS measurements included general newborns. CSF Lyso-Gb1 was extracted using ethyl acetate, analyzed by UPLC-MS/MS with a calibration curve, and expressed in pmol/L. Lysosomal activity in CSF was assessed by measuring chitotriosidase (Cht), and other lysosomal enzyme activities were assessed as previously described in the literature. Patients with metachromatic leukodystrophy (MLD) were used as controls. Thirty-two treated patients (twenty-nine GD1 and three GD3, all on ERT except for one GD type on SRT with eliglustat) and three untreated patients (one GD1, one GD2, and one GD3) were included. When analyzing only the treated GD1 group, a significant correlation was found between lyso-Gb1 and age (rho = -0.447, p = 0.001), ChT, and IgG levels (rho = 0.73, p < 0.001; and rho = 0.36, p = 0.03, respectively). Five GD1 patients (three females, mean age 40 years) also had their CSF collected and analyzed. The average measurement of lyso-Gb1 in CSF was 94 pmol/L (range: 57.1-157.9 pmol/L) versus <6.2 pmol/L in the control group (MLD). This is the first time, to the best of our knowledge, that lyso-Gb1 has been associated with IgG levels. While this finding reflects a risk for MGUS or MM and not only chronic plasma B-cell activation, it still requires further studies. Moreover, the analysis of CSF lyso-Gb1 levels in GD1 patients was demonstrated to be significantly higher than the control group. This raises the hypothesis that CSF lyso-Gb1 may serve as a valuable indicator for neurological involvement in GD, providing insights into the potential implications for neurological manifestations in GD, including GD1. The correlation between lyso-Gb1 and ChT levels in treated GD1 patients further underscores the interconnectedness of lysosomal markers and their relevance in monitoring.


Asunto(s)
Enfermedad de Gaucher , Gammopatía Monoclonal de Relevancia Indeterminada , Psicosina , Adulto , Femenino , Humanos , Recién Nacido , Biomarcadores , Brasil , Cromatografía Liquida , Estudios Transversales , Enfermedad de Gaucher/diagnóstico , Inmunoglobulina G/sangre , Psicosina/análogos & derivados , Espectrometría de Masas en Tándem
12.
Int J Mol Sci ; 25(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39201426

RESUMEN

We previously reported that a pathogenic abnormality in the barrier and water-holding functions of the stratum corneum (SC) in the skin of patients with atopic dermatitis (AD) is mainly attributable to significantly decreased levels of total ceramides in the SC. That decrease is mediated by the abnormal expression of a novel ceramide-reducing enzyme, sphingomyelin/glucosylceramide deacylase (SGDase), which is the ß-subunit (ASAH1b) of acid ceramidase. In this study, we determined whether mice overexpressing ASAH1b in their epidermis develop AD-like skin symptoms. We generated transgenic (TG) mice overexpressing ASAH1b, regulated by the involucrin promoter, to localize its expression in the upper epidermis. After hair removal using a depilatory cream containing glycolic acid, the TG mice without any visible skin inflammation at 8 weeks of age had increased levels of ASAH1b and decreased levels of SC ceramide, with disrupted barrier functions measured by trans-epidermal water loss compared to the wild-type (WT) mice. Interestingly, enzymatic assays revealed that SGDase activity was not detectable in the skin of the TG mice compared to WT mice. Immunological staining revealed that there was an increased expression level of IL-33 in the epidermis and an accumulation of macrophages in the dermis of TG mice compared to WT mice, which are phenotypic characteristics of AD, that were exacerbated by tape-stripping of the skin. In the skin of the TG mice, the mRNA levels of IL-5, CCL11, IL-22, CXCL10, and IFNγ were significantly upregulated compared to the WT mice, and tape-stripping significantly increased the mRNA levels of IL-4, IL-33, CXCL1, CXCL12, TLR9, and CD163 compared to WT mice. These findings strongly indicate that the skin of the depilatory cream-treated TG mice exists in an atopic dry skin condition that is highly sensitive to various environmental stimuli. The sum of our results suggests that ASAH1b itself, even in the absence of its enzymatic activity, is a major etiologic factor for atopic dry skin symptoms via an unknown mechanism.


Asunto(s)
Ceramidasa Ácida , Ceramidas , Dermatitis Atópica , Epidermis , Animales , Ratones , Ceramidasa Ácida/metabolismo , Ceramidasa Ácida/genética , Ceramidas/metabolismo , Dermatitis Atópica/metabolismo , Dermatitis Atópica/genética , Dermatitis Atópica/patología , Modelos Animales de Enfermedad , Epidermis/metabolismo , Epidermis/patología , Ratones Transgénicos , Piel/metabolismo , Piel/patología
13.
Molecules ; 29(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38257371

RESUMEN

Gaucher disease (GD) is a rare genetic metabolic disorder characterized by a dysfunction of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) due to mutations in the gene GBA1, leading to the cellular accumulation of glucosylceramide (GlcCer). While most of the current research focuses on the primary accumulated material, lesser attention has been paid to secondary storage materials and their reciprocal intertwining. By using a novel approach based on flow cytometry and fluorescent labelling, we monitored changes in storage materials directly in fibroblasts derived from GD patients carrying N370S/RecNcil and homozygous L444P or R131C mutations with respect to wild type. In L444P and R131C fibroblasts, we detected not only the primary accumulation of GlcCer accumulation but also a considerable secondary increase in GM1 storage, comparable with the one observed in infantile patients affected by GM1 gangliosidosis. In addition, the ability of a trivalent trihydroxypiperidine iminosugar compound (CV82), which previously showed good pharmacological chaperone activity on GCase enzyme, to reduce the levels of storage materials in L444P and R131C fibroblasts was tested. Interestingly, treatment with different concentrations of CV82 led to a significant reduction in GM1 accumulation only in L444P fibroblasts, without significantly affecting GlcCer levels. The compound CV82 was selective against the GCase enzyme with respect to the ß-Galactosidase enzyme, which was responsible for the catabolism of GM1 ganglioside. The reduction in GM1-ganglioside level cannot be therefore ascribed to a direct action of CV82 on ß-Galactosidase enzyme, suggesting that GM1 decrease is rather related to other unknown mechanisms that follow the direct action of CV82 on GCase. In conclusion, this work indicates that the tracking of secondary storages can represent a key step for a better understanding of the pathways involved in the severity of GD, also underlying the importance of developing drugs able to reduce both primary and secondary storage-material accumulations in GD.


Asunto(s)
Gangliósido G(M1) , Enfermedad de Gaucher , Humanos , Fibroblastos , beta-Galactosidasa/genética , Colorantes , Citometría de Flujo , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Glucosilceramidas
14.
Semin Cell Dev Biol ; 112: 82-91, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33160824

RESUMEN

Sphingolipids are complex lipids. They play a structural role in neurons, but are also involved in regulating cellular communication, and neuronal differentiation and maturation. There is increasing evidence to suggest that dysregulated metabolism of sphingolipids is linked to neurodegenerative processes in amyotrophic lateral sclerosis (ALS), Parkinson's disease and Gaucher's disease. In this review, we provide an overview of the role of sphingolipids in the development and maintenance of the nervous system. We describe the implications of altered metabolism of sphingolipids in the pathophysiology of certain neurodegenerative diseases, with a primary focus on ALS. Finally, we provide an update of potential treatments that could be used to target the metabolism of sphingolipids in neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Metabolismo de los Lípidos/genética , Enfermedades Neurodegenerativas/metabolismo , Esfingolípidos/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Esfingolípidos/genética
15.
Biochem Biophys Res Commun ; 642: 192-200, 2023 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-36586187

RESUMEN

Transforming growth factor (TGF)-ß/Smad pathway is implicated in the pathogenesis of liver fibrosis, a condition characterized by excessive deposition of extracellular matrix (ECM) proteins such as collagen in response to chronic inflammation. It has been reported that ceramide regulates collagen production through TGF-ß/Smad pathway activation. In this study, we examined whether miglustat, an inhibitor of glucosylceramide synthase, can suppress liver fibrosis by reducing TGF-ß/Smad pathway activity. Human hepatic stellate cells (HHSteCs) were cultured with TGF-ß and multiple miglustat concentrations to examine dose-dependent effects on the expression levels of ECM-related genes and Smad proteins. To evaluate the efficacy of miglustat for fibrosis mitigation, C57BL/6 mice were treated with carbon tetrachloride (CCl4) for 4 weeks to induce liver fibrosis, followed by combined CCl4 plus miglustat for a further 2 weeks. To examine if miglustat can also prevent fibrosis, mice were treated with CCl4 for 2 weeks, followed by CCl4 plus miglustat for 2 weeks. Miglustat dose-dependently downregulated expression of α-smooth muscle actin and ECM components in TGF-ß-treated HHSteCs. Both phosphorylation and nuclear translocation of Smad2 and Smad3 were also suppressed by miglustat treatment. Sirius-Red staining and hydroxyproline assays of model mouse liver samples revealed that miglustat reduced fibrosis, an effect accompanied by decreased expression of ECM. Our findings suggest that miglustat can both prevent and reverse liver fibrosis by inhibiting TGF-ß/Smad pathway.


Asunto(s)
Factor de Crecimiento Transformador beta1 , Factor de Crecimiento Transformador beta , Animales , Humanos , Ratones , Tetracloruro de Carbono/farmacología , Células Estrelladas Hepáticas/metabolismo , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
16.
Am J Kidney Dis ; 81(5): 517-527.e1, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36535535

RESUMEN

RATIONALE & OBJECTIVE: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of multiple kidney cysts that leads to growth in total kidney volume (TKV) and progression to kidney failure. Venglustat is a glucosylceramide synthase inhibitor that has been shown to inhibit cyst growth and reduce kidney failure in preclinical models of ADPKD. STUDY DESIGN: STAGED-PKD was a 2-stage, multicenter, double-blind, randomized, placebo-controlled phase 2/3 study in adults with ADPKD at risk of rapidly progressive disease, who were selected based on Mayo Clinic imaging classification of ADPKD class 1C, 1D, or 1E and an estimated glomerular filtration rate (eGFR) of 30-89.9mL/min/1.73m2. SETTING & PARTICIPANTS: Enrollment included 236 and 242 patients in stages 1 and 2, respectively. INTERVENTIONS: In trial stage 1, the patients were randomized 1:1:1 to venglustat, 8mg; venglustat, 15mg; or placebo. In stage 2, the patients were randomized 1:1 to venglustat, 15mg (highest dose identified as safe and well tolerated in stage 1), or placebo. OUTCOMES: Primary end points were rate of change in TKV over 18 months in stage 1 and eGFR slope over 24 months in stage 2. Secondary end points were eGFR slope over 18 months (stage 1), rate of change in TKV (stage 2), and safety/tolerability, pain, and fatigue (stages 1 and 2). RESULTS: A prespecified interim futility analysis showed that venglustat treatment had no effect on the annualized rate of change in TKV over 18 months (stage 1) and had a faster rate of decline in eGFR slope over 24 months (stage 2). Due to this lack of efficacy, the study was terminated early. LIMITATIONS: The short follow-up period after the end of treatment and limited generalizability of the findings. CONCLUSIONS: In patients with rapidly progressing ADPKD, treatment with venglustat at either 8mg or 15mg showed no change in the rate of change in TKV and a faster rate of eGFR decline in STAGED-PKD despite a dose-dependent decrease in plasma glucosylceramide levels. FUNDING: This study was funded by Sanofi. TRIAL REGISTRATION: Registered at ClinicalTrials.gov with study number NCT03523728.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Insuficiencia Renal , Adulto , Humanos , Riñón Poliquístico Autosómico Dominante/complicaciones , Riñón , Insuficiencia Renal/complicaciones , Tasa de Filtración Glomerular , Progresión de la Enfermedad
17.
Mov Disord ; 38(5): 783-795, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36916660

RESUMEN

BACKGROUND: Molecules related to glucocerebrosidase (GCase) are potential biomarkers for development of compounds targeting GBA1-associated Parkinson's disease (GBA-PD). OBJECTIVES: Assessing variability of various glycosphingolipids (GSLs) in plasma, peripheral blood mononuclear cells (PBMCs), and cerebrospinal fluid (CSF) across GBA-PD, idiopathic PD (iPD), and healthy volunteers (HVs). METHODS: Data from five studies were combined. Variability was assessed of glucosylceramide (various isoforms), lactosylceramide (various isoforms), glucosylsphingosine, galactosylsphingosine, GCase activity (using fluorescent 4-methylumbeliferryl-ß-glucoside), and GCase protein (using enzyme-linked immunosorbent assay) in plasma, PBMCs, and CSF if available, in GBA-PD, iPD, and HVs. GSLs in leukocyte subtypes were compared in HVs. Principal component analysis was used to explore global patterns in GSLs, clinical characteristics (Movement Disorder Society - Unified Parkinson's Disease Rating Scale Part 3 [MDS-UPDRS-3], Mini-Mental State Examination [MMSE], GBA1 mutation type), and participant status (GBA-PD, iPD, HVs). RESULTS: Within-subject between-day variability ranged from 5.8% to 44.5% and was generally lower in plasma than in PBMCs. Extracellular glucosylceramide levels (plasma) were slightly higher in GBA-PD compared with both iPD and HVs, while intracellular levels were comparable. GSLs in the different matrices (plasma, PBMCs, CSF) did not correlate. Both lactosylceramide and glucosylsphingosine were more abundant in granulocytes compared with monocytes and lymphocytes. Absolute levels of GSL isoforms differed greatly. GBA1 mutation types could not be differentiated based on GSL data. CONCLUSIONS: Glucosylceramide can stably be measured over days in both plasma and PBMCs and may be used as a biomarker in clinical trials targeting GBA-PD. Glucosylsphingosine and lactosylceramide are stable in plasma but are strongly affected by leukocyte subtypes in PBMCs. GBA-PD could be differentiated from iPD and HVs, primarily based on glucosylceramide levels in plasma. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Lactosilceramidos , Leucocitos Mononucleares/metabolismo , Glucosilceramidas , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Antígenos CD , Mutación
18.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37762265

RESUMEN

Ichthyoses are genetically determined cornification disorders of the epidermis characterized by the presence of different degrees of scaling, hyperkeratosis, and erythroderma often associated with palmoplantar keratoderma. Different classifications of these diseases have been proposed, often based upon the involved genes and/or the clinical presentation. The clinical features of these diseases present some overlap of phenotypes among distinct genetic entities, depending mainly on the penetrance of mutations. In this study, using a clinical, genetic, and molecular approach, we analyzed a family with two affected members who had clinical and histological features resembling erythrokeratodermia variabilis (EKV) or a type of erythrodermic hyperkeratosis with palmoplantar keratoderma. Despite of the clinical presentation, we demonstrated that the affected patients were genetically double heterozygous for two different mutations in the ABCA12 gene, known to be responsible for harlequin ichthyosis. To explain the mild phenotype of our patients, we performed a molecular characterization of the skin. In the upper layers of the epidermis, the results showed a patchy presence of the glucosyl-ceramides (GlcCer), which is the lipid transported by ABCA12, fundamental in contributing to skin impermeability. Indeed, the two mutations detected do not completely abolish ABCA12 activity, indicating that the mild phenotype is due to a partial loss of function of the enzyme, thus giving rise to an intermediate phenotype resembling EKVP, due to a partial depletion of GlcCer deposition.


Asunto(s)
Eritroqueratodermia Variable , Ictiosis Lamelar , Ictiosis , Queratodermia Palmoplantar , Humanos , Eritroqueratodermia Variable/genética , Ictiosis Lamelar/genética , Ictiosis/genética , Mutación , Glucosilceramidas , Transportadoras de Casetes de Unión a ATP/genética
19.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38003227

RESUMEN

In Gaucher disease (GD), a relatively common sphingolipidosis, the mutant lysosomal enzyme acid ß-glucocerebrosidase (GCase), encoded by the GBA1 gene, fails to properly hydrolyze the sphingolipid glucosylceramide (GlcCer) in lysosomes, particularly of tissue macrophages. As a result, GlcCer accumulates, which, to a certain extent, is converted to its deacylated form, glucosylsphingosine (GlcSph), by lysosomal acid ceramidase. The inability of mutant GCase to degrade GlcSph further promotes its accumulation. The amount of mutant GCase in lysosomes depends on the amount of mutant ER enzyme that shuttles to them. In the case of many mutant GCase forms, the enzyme is largely misfolded in the ER. Only a fraction correctly folds and is subsequently trafficked to the lysosomes, while the rest of the misfolded mutant GCase protein undergoes ER-associated degradation (ERAD). The retention of misfolded mutant GCase in the ER induces ER stress, which evokes a stress response known as the unfolded protein response (UPR). GD is remarkably heterogeneous in clinical manifestation, including the variant without CNS involvement (type 1), and acute and subacute neuronopathic variants (types 2 and 3). The present review discusses animal models developed to study the molecular and cellular mechanisms underlying GD.


Asunto(s)
Enfermedad de Gaucher , Animales , Enfermedad de Gaucher/metabolismo , Psicosina , Respuesta de Proteína Desplegada , Modelos Animales , Mutación
20.
J Lipid Res ; 63(5): 100199, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35315333

RESUMEN

In Gaucher disease (GD), the deficiency of glucocerebrosidase causes lysosomal accumulation of glucosylceramide (GlcCer), which is partly converted by acid ceramidase to glucosylsphingosine (GlcSph) in the lysosome. Chronically elevated blood and tissue GlcSph is thought to contribute to symptoms in GD patients as well as to increased risk for Parkinson's disease. On the other hand, formation of GlcSph may be beneficial since the water soluble sphingoid base is excreted via urine and bile. To study the role of excessive GlcSph formation during glucocerebrosidase deficiency, we studied zebrafish that have two orthologs of acid ceramidase, Asah1a and Asah1b. Only the latter is involved in the formation of GlcSph in glucocerebrosidase-deficient zebrafish as revealed by knockouts of Asah1a or Asah1b with glucocerebrosidase deficiency (either pharmacologically induced or genetic). Comparison of zebrafish with excessive GlcSph (gba1-/- fish) and without GlcSph (gba1-/-:asah1b-/- fish) allowed us to study the consequences of chronic high levels of GlcSph. Prevention of excessive GlcSph in gba1-/-:asah1b-/- fish did not restrict storage cells, GlcCer accumulation, or neuroinflammation. However, GD fish lacking excessive GlcSph show an ameliorated course of disease reflected by significantly increased lifespan, delayed locomotor abnormality, and delayed development of an abnormal curved back posture. The loss of tyrosine hydroxylase 1 (th1) mRNA, a marker of dopaminergic neurons, is slowed down in brain of GD fish lacking excessive GlcSph. In conclusion, in the zebrafish GD model, excess GlcSph has little impact on (neuro)inflammation or the presence of GlcCer-laden macrophages but rather seems harmful to th1-positive dopaminergic neurons.


Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa/metabolismo , Proteínas de Pez Cebra/metabolismo , Ceramidasa Ácida , Animales , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Glucosilceramidas , Humanos , Psicosina/análogos & derivados , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA